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Discover Millions of Spammers in Weibo

Yi Zhang · Jianguo Lu

Abstract Weibo is the Chinese counterpart of Twitter that has attracted hundreds of
millions of users. Just like other online social networks (hereafter OSNs), it has a large
number of spammers that are created to boost the ranking or follower number of other
accounts. Spammers are difficult to identify individually, especially when they are
created by sophisticated programs or controlled by human beings directly. This paper
proposes a novel spammer detection method that is based on the very purpose of the
existence of the spammers: they are created to follow their targets en masse with high
regularity, resulting in near-duplicate accounts that have similar sets of followers.

The discovery of near-duplicates is a challenging task for such a large network.
Instead of calculating the Jaccard similarity among all the pairs on the original graph,
we estimate the similarities among large accounts by taking a sample graph that
contains one million random nodes. We find 395 near-duplicates. From such near-
duplicates, we identify 12 millions of spammers (account for 4.56% of the total users)
and 741 millions of spam links (account for 9.50% of the total edges). Furthermore,
we characterize several typical structures of the spammers, cluster these spammers
into 34 spammer producers, and analyze the main targets of these spammers.

1 Introduction

Fake OSN followers have become a multimillion dollar business. In Twitter, bogus
followers are sold in large quantities ranging from thousands to millions [16]. Rampant
spamming is encroaching on the normal social network, disrupting the platform for
social communication and viral marketing. Users, as well as service providers, want
to detect and remove the spammers [19] [6] [2].

It is difficult to distinguish between a spammer and a normal account individually
[3]. A spammer account can look like a normal account, with normal screen name and
profile picture. It can also send messages that are consistent with its account profile.
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Spammers can be sophisticated robot accounts, or even directly controlled by real
human beings.

One trace that spammers can not hide is the very purpose of their existence, that
is, they are created to be sold in large quantities to many customers. Consider the
following scenario for a given spammer producer who owns N number of spammers.
Let us assume that the spammer consumers have few real followers, or their real
followers are negligible compared with the spammers they buy. If the producer sells
all its N spammers to two customers, those two customers will have the same set
of followers, i.e., they are near-duplicates. To reduce the risk of being detected, the
producer may sell part of its spammers, sayN/2 of them, instead of the all-out strategy.
Still, when there are a large number of customers, two subsets of the sold spammers
may overlap and generate near-duplicates.

Regardless the underlying mechanism of the generation of near-duplicates, its
occurrence is highly unusual that defies statistic possibilities. We borrow the idea from
plagiarism detection and near-duplicate web page detection [8]. Just as it is impossible
for two long articles to share most of their phrases, two bloggers are unlikely to have
almost the same large group of followers unless they are fake.

Discovering near-duplicates among hundreds of millions of accounts needs an
efficient method. Numerous algorithms are proposed to find the near-duplicates
among web pages, such as the MinHash algorithm that extracts a short representative
’fingerprint’ for each web page [8]. Our new challenge is that the Weibo data in its
entirety are not available. Instead, we can only use the Weibo API to call the service
remotely over the Web.

We take the sampling approach to estimate the Jaccard similarities among top
bloggers in Weibo. When the threshold value is 0.9, we find 395 near-duplicate
bloggers, who are then clustered into 34 spammer groups using the Jaccard similarity.
Each cluster corresponds to the producer of the spammers.

Next, we verify that the accounts in each cluster are indeed spammers by showing
that they have some uncanny regularities. Some clusters of spammers are obvious.
For instance, all the spammers have zero followers or zero messages, or the same
number of out-links. In some clusters, all the spammers are cell phone users, or
registered in the same city and the same month, indicating that they are created by
simple programs. In other clusters, most attributes are normal, indicating that they are
created by a sophisticated process. However, these tens of thousands of accounts have
the same maximally-allowed out-degree and form a closely knit link farm. We have
also manually checked and verified many suspected spammers, and found that our
method is accurate.

One may argue that there could be near-duplicates by chance. In theory, we show
in Section 2.3 that such chance is extremely small. In practice, we manually checked
these clusters of spammers, and demonstrate in Section 3.1 that they are obvious
spammers. Even if there were occasional false positive cases in future applications,
this method remains to be a robust one as long as the spammer industry exists: spammer
producers need to sell the links en masse in order to be profitable. When there are
large customers, the occurrence of near-duplicates is inevitable.

Our method is not only accurate, but also effective in capturing the spammers.
In total, 12 millions of spammers are uncovered, which account for 4.56% of the



total number of accounts in Weibo. These spammers generate 54 millions of spam
links, which account for 9.50 % of the total edges in the user network. In contrast
to our method, other approaches can only identify very small number of spammers.
For instance, the approach described in [5] only found 41 thousand spammers, and it
depends on the suspended-account list given by the service provider.

From these 34 clusters, four common structures of spammers are identified, rang-
ing from the most simple complete bipartite graph, to very complex link farm that
reciprocate links to each other. In addition to spammer sources, we also studied their
targets, and identified the top ’polluted’ normal accounts who receive most of the
spam links.

The main contributions of the paper are: 1) discovered 12 millions of spammers,
along with their structure, origins and targets; 2) proposed a novel method to identify
the spammers. It can detect sophisticated spammers as long as they follow their targets
en masse; 3) presented an innovative star sampling method that is tailored for the
Weibo web interface and Jaccard similarity.

There are several implications of this paper. First, it heralds the end of the large-
scale spam link industry, which sells links to large number of customers in large
quantity. Second, more importantly, we demonstrate that those spammers could be
identified using a small sample (0.5 % of the original user network) obtained from
the web API, without the access to the entire data. OSN service providers have the
motivation to keep their eyes closed on such market, to boost the total number of
registered users. Using our method, a third independent party can spot such spammer
groups. Thirdly, this is an success application that demonstrates the power of sampling
methods. Normally, sampling methods are used to discover simple properties such as
size [10] and average degree [4]. This paper shows that, by designing the sampling
method carefully, interesting discoveries can be made using limited sampling inter-
face. Lastly, we demonstrate that user network alone can be used to discover many
spammers. Most of existing methods use many features, especially message patterns,
to identify spammers. However, spammers can disguise their behaviour as normal
accounts.

The remaining paper is organized as the following. Section 2 defines the near-
duplicates, introduces our method to estimate the Jaccard similarity, and proves the
accuracy of the estimation. Section 3 describes the properties of the spammers that
are discovered, how they cluster the near-duplicates, therefore the spammers, into 34
groups. Section 4 discusses the spammer targets.

2 Near duplicate accounts

2.1 Near duplicates

Two large accounts are unlikely to have the same set of followers. When two books
have the same set of n-grams, we say that there is a plagiarism; When two web pages
receive the same set of hyper-links en masse, there is a Web link farm; When two
weibo accounts share thousands or even millions of followers, with uncanny regularity,
they are most probably artificially engineered. Borrowing the concept of near-duplicate
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Fig. 1. Jaccard similarities between the top 700 accounts in Weibo, sorted by the
harmonic mean of the degrees.

documents in information retrieval, we define the near-duplicate of OSN accounts as
follows:

Definition 1 (Near-duplicates) Two accounts a and b are called near-duplicates,
denoted as a ≈ b, if their Jaccard similarity in terms of their followers is close to one,
i.e.,

Jab =
|F (a) ∩ F (b)|
|F (a) ∪ F (b)|

> θ, (1)

where F (x) is the set of followers of account x, θ is a threshold value that is close to
one. In our experiment we let θ = 0.9.

For near-duplicates, we only consider large accounts, the accounts that have a
large number of followers. In our experiment, we select the top 10,000 accounts,
who have at least 50,000 followers. We obtain the Jaccard similarities among all the
combination of these accounts, resulting in total about 5× 107 pairs. Among them we
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Fig. 2. Jaccard similarity distributions of random graph (A) and Weibo (B). Bin-size =
0.05.

find 395 near-duplicate pairs. To demonstrate that these near-duplicates are outliers,
Fig. 1 plots a part of these Jaccard similarities among the top 700 accounts, along
with the expected values. Most of the observed Jaccard similarity are around the
expected similarities, while there are a few outliers that are above 0.9. Those groups
are WeiboAssitants, DatingGroup, and Zhejiang Telecom from right to left.

Fig. 2 Panel (B) gives a larger picture of Jaccard Similarity distribution among
all Weibo accounts whose in-degree are larger than 600,000. As a comparison, the
Jaccard similarity distribution of a random gram is plotted in Panel A. What is the
same between these two graphs is that most pairs have very low similarities. In random
graphs, the frequency decreases monotonically as a function of the Jaccard similarity.
It converges to zero quickly, and the probability of having a Jaccard Similarity as high
as 0.9 is close to zero. In Weibo, the frequency also drops to zero monotonically. What
is surprising is the peak for high similarity values, which is most probably caused by
spammers.

2.2 Discover Near-duplicate By Star Sampling

It is impossible to compute the Jaccard similarity directly. Weibo had over 200 millions
of accounts when we sampled the data in 2011. Calculating the pair-wise combination
between all the accounts is out of the question. Many accounts have very large number
of followers, in the order of 107. Set intersection operation is costly for such large
data. Although numerous efficient algorithms, such as MinHash [8], are proposed,
they are all based on the assumption that the data in its entirety are available. In OSN
application, data can be obtained only through web queries, which are costly because
of the network traffic involved. Thereby, we use samples to estimate the Jaccard
similarity.

A star subgraph is a node with all of its out-bound links. Star sampling is to take a
subgraph that is formed by random stars. First, uniform random nodes are selected.
Then, all the out-links of these nodes are collected.

Uniform random nodes are selected as follows: A uniformly distributed random
number is generated within the range of 1, ..., 1010, and is tested whether it is a valid
ID by probing Weibo web site. Overall, we found n = 1.08 million valid IDs, and
they are uniform random samples regardless of the ID distribution. One may doubt the



randomness of the sample, by arguing that the IDs may not be randomly distributed
across the ID space. We want emphasize that these IDs are random, and refer to
Appendix in [7] for its proof. One way to understand it is that every range has the
equal probability of being sampled. If a segment has less valid IDs, it will have less
sample IDs. For instance, there are very few valid IDs below 108. Corresponding,
there are proportionally less samples in this range.

In addition to the correctness of sampling, the bigger concern is its efficiency. The
success of this sampling method is due to that: 1) Every Weibo account has an numeric
ID, even when it has a screen name; 2) The ID space (1010) is not large compared
with the number of valid IDs (2× 108) space; 3) Probing the validity of an ID is fast,
and service providers do not impose limit on the number of times to such probe.

Once uniform random nodes are obtained, all the outbound links are extracted. For
every remote call, service providers would return a small number of links. In addition,
there are daily quota as for the number of calls allowed. Thus, this process would not
be feasible if there were larger nodes that have many out-bound links, such as the case
in Twitter. In Twitter, many accounts, such as Obama, contains millions of out-links.
Thanks to the policy set by Weibo, all accounts can not have out-links exceeding
2000, with a few excepts that is slightly larger than that. Thus, all the out-links can be
collected in our experiment.

These stars form a subgraph, where large accounts are sampled more often by the
stars [20]. This subgraph can estimate the Jaccard Similarity of the original graph as
explained below.

Given two accounts (nodes) n1 and n2. Suppose that their number of followers
are D1 and D2, and their common neighbours are C. Suppose that the sample ratio is
p = n/N , where n is the number of uniform random nodes in the sample graph, and
N is the number of nodes in the original graph. In the subgraph, the expected number
of common neighbours is c = pC, the expected number of degrees are d1 = pD1 and
d2 = pD2, respectively. The Jaccard Similarity in the original graph is:

S =
C

D1 +D2 − C
(2)

The similarity in the sample graph is

s =
c

d1 + d2 − c
=

pC

pD1 + pD2 − pC
= S (3)

Thus, s is the unbiased estimator of S. Next we need to study how large is the
variance. c, the common neighbours in the sample graph, follows binomial distribution
B(C, p), whose expectation is

E(c) = pC. (4)

According to the property of the binomial distribution, the variance of c is

var(c) = Cp(1− p) ≈ Cp. (5)



The approximation holds when we assume that the sampling ratio is small. In our
experiment, p ≈ 0.005. The relative standard error (RSE) is

RSE(c) =
1

c

√
var(c) ≈ 1√

c
. (6)

In our experiment, the minimal c is around 250, RSE = 1/
√
250 = 0.063. As-

suming that the distribution of c approximates a normal distribution, we can conclude
that the 95% confidence interval for our estimation is within the range of s± 0.126s.
Therefore the estimation has a high accuracy.

2.3 Suspected spammers

Near duplicates are suspicious in such circumstances, not only because they are
obvious outliers as depicted in Fig. 1, but also because of the large population of
Weibo accounts and large number of followers of the near duplicates. We draw an
analogy to plagiarism detection. If two documents are short, they could be the same
by chance. But long documents can be hardly the same by chance. Therefore, in our
experiment we only consider large near-duplicates, the account that at least contain
50,000 followers. In plagiarism detection, Jaccard similarity is between shingles
instead of terms, because the vocabulary is not large enough. In our setting, the total
number of account are very large. There are around 2× 108 accounts in Weibo. Given
two accounts a and b that each account has 105 followers. When the followers are
created randomly, the expected number of duplicates among the followers of a and b
is

duplicates =
sizeOfSubset1× sizeOfSubset2

totalPopulation
(7)

=
105 × 105

2× 108
(8)

= 50, (9)

according to the classic capture-recapture model [11]. Hence, the expected Jaccard
similarity is

50/(105 + 105 − 50) ≈ 0.00025. (10)

When we see a Jaccard similarity that is close to one, higher than the expected value
by a factor of thousands, we have a reason to hypothesize that the links are manipu-
lated deliberately. We call those accounts that follow at least two near-duplicates are
suspected spammers (hereafter spammers for conciseness).

To gain confidence that those unusual accounts are indeed spammers, let us
look into the details of one of the spammer group, the Antique shops, as illustrated
in Fig. 3. More details of these Weibo accounts, as well as other groups, can be
found at http://cs.uwindsor.ca/˜jlu/spammer. This group has 24 near-
duplicates, all of them have the same followers in the amount of 0.2 million. Among
these 0.2 million spammers, 96 percent have no followers at all; 81.68 percent have the

http://cs.uwindsor.ca/~jlu/spammer


Fig. 3. The antique shop group: near-duplicates (the red nodes) are followed by the
same group of spammers (green nodes). Those spammers are mostly of zero incoming
links. Most of the spammers point to the near-duplicates only, with a few exceptions
that point to a larger number of other nodes (the blue nodes).
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Fig. 4. Dendrogram of the clustering result of the 395 near-duplicates.

same out-degree (25, pointing to the near-duplicates only); 86 percent are registered
on the same two months (April and May, 2011); 80.06 percent are registered from
Beijing; zero percent are cell phone users or verified users; 95.57 percent have never
sent any messages. Such high regularity clearly demonstrates that they are created
deliberately to boost the follower number.

While the Antique shop is a typical spamming structure, we find a variety of spam-
ming topologies, ranging from a complete bipartite graph to sophisticated follower
link farms, the same as the link farm in the web [21]. We will discuss these structures
in Section 3.1.In addition, We have manually checked these 395 near-duplicates, and
found that 138 of them are already suspended, indicating their participation in spam-
ming activities. For suspected spammer accounts, the number is too large to check
them exhaustively. Among 100 randomly selected suspected accounts, we find that 95
are spammers (13 suspended, 14 highjacked), and 5 are legitimate.



Spammers
Cluster In-deg Out-deg #Spammers #Links #Near-duplicates Name

(avg) (avg) (×106) ×106
1 0.00 2.00 0.31 0.64 2 Love Shopping
2 0.00 4.00 0.06 0.27 2 Android Group
3 0.00 4.01 0.06 0.26 2 Gif Animation
4 0.17 5.73 0.07 0.44 3 Campus Chongqing
5 0.20 5.62 0.10 0.61 4 Campus Shangrao
6 0.43 5.69 0.22 1.30 3 Spam Group
7 0.84 7.29 0.09 0.70 2 Campus Jinan
8 0.95 6.09 0.11 0.71 2 Campus Xian
9 1.01 4.11 0.24 1.01 2 Mobile Neimengu

10 1.33 6.58 0.62 4.09 2 Mobile Winner
11 2.85 8.88 0.27 2.42 6 Liaoning Telecom
12 3.40 56.24 0.10 5.83 4 3G
13 3.58 6.79 0.86 5.84 2 Zhejiang Telecom
14 4.38 22.19 0.09 2.07 2 Mobile Dream
15 5.29 4.66 0.22 1.02 2 Love Hubei
16 7.15 18.96 3.49 66.24 2 Weibo Assistant
17 9.12 7.55 0.13 0.95 2 Mobile Marketing
18 10.22 69.19 2.49 172.71 3 Dating Group
19 10.68 36.43 0.65 23.63 5 Telecom Animation
20 15.51 29.41 0.20 5.96 24 Antique Shop
21 16.91 7.69 0.22 1.68 2 Telecom Jilin
22 23.97 17.53 0.05 0.95 3 Telecom Wuhan
23 41.56 213.27 0.08 17.49 7 Naming
24 44.55 99.14 0.12 12.05 2 Photo
25 47.58 130.10 0.16 20.19 12 Deleted
26 60.30 675.34 0.28 190.22 55 Green Tea etc.
27 63.54 204.11 0.27 42.18 53 Pets etc.
28 67.84 270.69 0.19 52.11 45 Wedding etc.
29 78.02 333.40 0.07 23.24 6 Deleted
30 93.05 924.70 0.19 177.81 117 Sydney Coupon
31 125.48 484.12 0.06 28.38 2 Spam Farm
32 133.09 134.46 0.07 8.68 3 Software
33 203.13 615.68 0.07 42.03 2 Health
34 251.16 504.65 0.08 43.55 10 Chinese med

Sum 11.90 741.10 395
Mean 14.01 61.83

Table 1. 34 Clusters of near-duplicates and the statistics of their spammers, sorted in
the increasing order of their average in-degrees. Each cluster has a clickable URL link
that points to our web page showing the details of the near-duplicates and their similar
accounts.

3 Clusters of Near-duplicates

When the threshold value θ = 0.9, we find that there are 395 near-duplicate accounts
in Weibo in 2011. From these near-duplicates, in total there are 11.90 millions of
distinct spammers and 741.10 millions of spam links, which constitute 4.56% and
9.50% of the total numbers of Weibo accounts and links, respectively. The largest two
groups of spammers are WeiboAssistant (about 3 million spammers) and DatingGroup
(about 2 millions spammers).
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(A) Sorted by ID.

(B) Sorted by 34 clusters.

Fig. 5. Jaccard similarities between 395 near-duplicates that are sorted by IDs (A) and
clusters (B).

These 395 near-duplicates and the corresponding spammers are created by a vari-
ety of spam producers. To find out their origins, we run the agglomerative hierarchical
clustering algorithm on these near-duplicates, using (1-JaccardSimilarity) as the dis-
tance. Fig. 4 shows the resulting dendrogram that is created with the unweighted pair
group method with arithmetic averages (UPGMA) linkage. When cutting the dendro-
gram at the value of 0.85, we find 34 clusters. The details of the clusters, including
the statistics of the spammers and the links to the web page depicting the details of
each near-duplicates, are listed in Table 1. It lists the clusters in the increasing order
of the average in-degrees of the spammers. In addition to the in-degrees, we also list
the average out-degrees, the number of spammers, the number of spam links, and the



(A) Sorted by ID

(B) Sorted by clusters

Fig. 6. Common target between 1000 random spammers that are sorted by IDs (A)
and clusters (B). The Z-axis is in the scale of log 10.

number of near-duplicates in each cluster. For each cluster we also provide a web page
that describes the details to these near-duplicates.

To verify the result of clustering, we plot the relationship between the near-
duplicates and random spammers before and after the clustering in Fig. 5 and Fig. 6
respectively. For the near-duplicates, we observe that: 1) some near-duplicates IDs
(e.g., the red block around IDs 250 in Panel (A) of Fig. 5) are contiguous, indicating
that they are created around the same time; 2) When near-duplicates are clustered,
there are small groups of near-duplicates that contain only a few members, mostly
in the left lower corner in Panel (B) of Fig. 5; 3) there are several large clusters. The
largest one (cluster 30) contains 117 near-duplicates, and is depicted in the upper-right
corner of Fig. 5; 4) Some clusters (the first and last a few clusters) are completely
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Fig. 7. The network of near-duplicates. Red nodes and edges are near-duplicate
accounts and their connections. All edges originate from near-duplicates. There is an
edge between a blue node B and a red node R if their similarity S > 0.01, where
S = F (B) ∩ F (R)/min(F (B), F (R)). A blue node is turned to orange when its
SpammedIndex ≥ 0.5.

isolated from the remaining near-duplicates, with zero Jaccard Similarity between
them. This is another evidence that they are not normal accounts. Large accounts
normally have some overlapping followers.

Next, we explore the relationship between the spammers of those clusters depicted
in Fig. 6. There are 12 millions of spammers, which are too large to visualize them.
We select 1000 spammers uniformly at random, and plot the size of common followers
between the random spammers in Fig. 6 . Panel (A) is sorted by ID, and Panel (B) by
clusters. From Panel (A), we can observe that spammers are roughly grouped by their
IDs, indicating different spam producers create their spam account at different time
period. After clustering, we highlight the following observations: 1) there are two large
groups of spammers, corresponding to WeiboAssistant (cluster 16) and DatingGroup
(cluster 18). Note that these two clusters contain only five near-duplicates (two for
WeiboAssistant and three for DatingGroup). Thus they are not discernible in Panel
(B) of Fig. 5. Yet they have millions of spammers, thus forming two large blocks in
Panel (B) of Fig. 6; 2) a large cluster of near-duplicate (cluster 30) has a small number
of spammers as shown in the upper corner of panel B. Yet spammers in cluster 30
are highly integrated by sharing hundreds of common followers; 3) Since clusters



are sorted in terms of in-degrees, spammers in each cluster becomes increasingly
more integrated; 4) Spammers in most clusters have the similar number of common
followers.

3.1 Types of Spammers

From these 34 clusters, we describe the following four representative types of spam-
mers, ranging from simple complete bipartite graph to complex link farm. Before
going into the details of these types of spammers, we summarize their properties in
Fig. 10 in contrast to the random accounts in the first column.

For random accounts in Weibo, the in- and out-degrees have a heavy tail, just the
same as Twitter and many other social networks. The message counts for each account
also have a long tail resembling a power law. The fourth row describes the spam links
vs. in-degree. For random accounts, it shows that large accounts (accounts with large
in-degree) tend to receive more spam links. Row 5 depicts the location distribution,
while row 6 shows the percentage of the accounts that are created in each of the 27
months. For random accounts, almost the same amount of new accounts are created
during the last 10 months.

– Complete Bipartite Graph: Spammers and their targets are disjoint. The number
of spam targets is very limited, and every spammer connects with every target.
For example, Fig. 8 (A) is a random sample of the spammers in Cluster 1 (Love
Shopping), where every spammer follows only two spam targets. Their in-degree
is 0.00, out-degree is 2.00. Most probably the spammers are created for the sole
purpose to boost the follower number of these two accounts. Accounts in Cluster
C1 are obviously spammers as can be shown by the column two in Fig. 10: their in-
degrees are mostly 0, out-degrees are two, most accounts never post any messages,
and their creation time and place are also the same.

– Bipartite Graph: Spammers and their targets are disjoint. Spammers aim at more
spam targets. Fig. 8 (B) illustrates the spammers in Cluster C3( Gif Animation).
Every spammer follows multiple spam targets, but its out-degree is a constant (4
for these spammers).

– Power law in-degree: This kind of spammers are more sophisticated in that they
try to blend in by making their in-degrees following a power law, just like most
networks [15]. Spammers follow their main targets as well as some other random
accounts, so that it is not obvious to detect. In contrast to the zero in-degree in the
bipartite graphs, these spammers receive follow links. Interestingly, the in-degrees
of spammers follow a power law. However, most of their out-degrees are the same,
and their frequencies follow a log-normal distribution. Fig. 8 (C) illustrates such
an example spammer group (C19, Telecom Animation) where many spammers
(23%) have out-degree 28. Most of their targets are disconnected, while their main
targets remain to be an obvious small set.

– Link farms: The main targets are no-longer limited to a few accounts. Spammers
and their targets are closely knit–spammers are the targets of other spammers.
Fig. 8 (D) illustrates a spammer cluster that involves 117 near duplicates (cluster



C30), and many other spammer targets. Spammers typically have the maximal
out-degree that is allowed by the system.

(A) Complete bipartite graph (B) Bipartite graph

(C) Cluster 19: follow more targets

(D) Cluster 30: Follower link farm
Fig. 8. Four types of spammers.

4 Spammer Targets

To quantify the patrons of the spammers, there are two issues we need to consider: 1) A
suspected spammer is not always 100% spammer. The higher is its Jaccard Similarity,
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the higher probability it is a spammer. Therefore we introduce the SpammerIndex to
reflect the probability of being a spammer. 2) An account may receive spammers from
multiple sources. The SpammedIndex of an account quantifies the total number of
possible spammers it receives.

4.1 Spammer Index and Spammed Index

The probability of an account being a spammer, we call it the SpammerIndex, is
the Jaccard Similarity of the near-duplicates it created, minus the expected Jaccard
similarity. More formally, we give the following definition:

Definition 2 (SpammerIndex) Given an account i. Let a and b be the most similar
accounts that both have account i as their follower. The spammer index of i is the
deviation from the expected Jaccard similarity, i.e.,

si =

{
Jab − Eab, ∃ab s.t.Jab − Eab > θ ∧ i ∈ F (a) ∩ F (b);
0, otherwise,

(11)

where θ is the threshold value,Eab is the expected Jaccard similarity between accounts
a and b, and F (x) is the set of followers of account x.

Intuitively, if node i is involved in the creation of a near-duplicate pair a and b, we
say that i is a spammer with probability Jab − Eab.

Note that large accounts naturally share more followers, therefore they have higher
Jaccard Similarity. Consider a hypothetical extreme case when two very large accounts
includes almost all the followers. Their expected Jaccard similarity would be close to
one, yet their followers should not be regarded as spammers because their expected
Jaccard similarity is also close to one. Therefore, we need to deduce the expected
Jaccard similarity value in the definition.
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Fig. 10. Properties of four different types of clusters C1, C3, C19, and C30(columns 2
to 7), and a comparison to random accounts (column one).

Example 1 (SpammerIndex) In Fig. 9, Suppose that there are N = 1000 number of
nodes, among them 16 nodes are plotted. The remaining nodes may point to nodes 1 ∼
5 only. Suppose that the normalized degree variance is Γ = 2. The expected number of
overlapping between nodes nd1 and nd2 is approximately 9× 9/N × Γ ≈ 0.16 [13].
The expected JS is 0.16/9 ≈ 0.02, assuming the degrees of both nodes nd1 and nd2
are 9. The SpammerIndex for each spammer node (the black dots) is 1− 0.02 = 0.98.

Each account can have spammers as well as normal accounts as its followers. We
define the SpammedIndex as the total amount of the spammers it contains:



Definition 3 (SpammedIndex) The SpammedIndex Sj of an account j is the sum of
the SpammerIndex it receives from its followers. I.e.,

Sj =
∑

i∈F (j)

si. (12)

Intuitively, the SpammedIndex measures the total amount of possible spam fol-
lowers. Popular accounts have large number of followers, and consequently large
SpammedIndex. To reflect the proportion of the spammed links it receives, we define
the normalized SpammedIndex (NS) as below:

Definition 4 (NS) The Normalized SpammedIndex NSj of an account j is the pro-
portion of the spammers links it receives as followers. I.e.,

NSj =
Sj

|F (j)|
(13)

Example 2 (SpammedIndex) Continuing the previous example In Fig. 9, the SpammedIn-
dex for nd1 and nd2 is 0.98. The SpammedIndex for node 1 is 4× 0.99/d1, where d1
is the in-degree of node 1 that is greater than four. Note that node 1 to 8 may have
incoming links not plotted.

In sub-Fig C, node 3 receives spam index from two spam groups.

Example 3 (SpammerIndex) Account 1002158795 follows near-duplicates Dating-
ForMan and DatingForWoman. The Jaccard similarity between these two accounts
is 0.969, while the expected Jaccard similarity is 0.053. Hence the SpammerIndex of
account 1002158795 is 0.969− 0.053 = 0.916.

4.2 Top Spammed Accounts in Weibo

Table 2 lists the top 20 accounts that have the highest SpammedIndex. We can see that
most of them receive around one million spammers. Although their SpammedIndex is
large, their spam ratio is not very high in general, because many of them have tens of
millions of normal followers.

Fig. 11 depicts the relationship between the (normalized) SpammedIndex and the
In-degree of the top 10,000 accounts. We find that, unsurprisingly, large accounts
normally attracts more spam links, as indicated by Panel (A). It is a log-log scatter plot
of the SpammedIndex as a function of the in-degree. Panel (B) is the corresponding
smoothed plot with window size 100.

What is interesting is the NS, the normalized SpammedIndex. Surprisingly, we
find that the value of NS for most accounts lies in two extremes, close to either zero or
one, as depicted in Panel (C). This indicates that there is a large number of accounts
whose followers are mostly spammers. Among the top 100,000 accounts, we find that
there are 2,542 accounts whose NS are greater than 0.9, and 5448 accounts whose
NS ≥ 0.5. In other words, among the top 100,000 accounts, 5% of them are made of
mostly fake-followers. Note that this number is much larger than 395 (near-duplicates),
indicating that thousands of accounts receive spam links from multiple sources.



ID Name Followers SpammedIndex Normalized SpammedIndex
(×106) (×106)

1642909335 微博小秘书 17.43 2.11 0.12
1654164742 微博名人 6.46 1.77 0.27
1380274560 易建联 5.87 1.24 0.21
1362607654 黄健翔 7.83 1.15 0.15
1656809190 赵薇 11.70 0.96 0.08
1197161814 李开复 9.87 0.94 0.09
1266321801 姚晨 15.42 0.91 0.06
1761047370 大嘴韩乔生 3.99 0.91 0.23
1087770692 陈坤 7.74 0.91 0.12
1182389073 任志强 5.41 0.89 0.16
1182391231 潘石屹 7.75 0.88 0.11
1682352065 周立波 9.64 0.80 0.08
1658688240 手机微博 3.02 0.80 0.26
1686326292 梁咏琪 5.94 0.79 0.13
1670071920 史玉柱 4.44 0.76 0.17
1222713954 陈志武 3.32 0.75 0.22
1470110647 于嘉 3.67 0.74 0.20
1192515960 李冰冰 8.85 0.69 0.08
1282005885 蔡康永 12.29 0.68 0.06
1650569064 朱骏 3.32 0.68 0.20

Table 2. Top 20 ’polluted’ accounts sorted by SpammedIndex. Near-duplicate
accounts are not included.

Panel (D) is the smoothed plot with window size 100 that corresponds to Panel (C).
It shows that: 1) smaller accounts are more spammed than large accounts in average;
2) the average NS fluctuates widely around 0.2 for smaller accounts, indicating that
NS values are dichotomized.

4.3 The Dating group

One particular interesting group of near-duplicates is the dating group 1. It is very
large, containing 2.5 million spammers. Most spammers are not obvious ones like
the AntiqueShop group. Many top bloggers have these spammers in large amount, in
hundreds of thousands.

The near duplicates Three accounts, Dating, DatingForWomen, and DatingFor-
Men are the near duplicates that share 2.5 million followers. These three accounts are
no longer active at the time of writing this paper. The last post from DatingForWoman
is on December 21, 2012. In total it has 723 posts, 51 friends. DatingForMan has been
dormant since September 3, 2012. After that there was only one post on January 26,
2014. In total it has 3156 posts, 41 friends. The Dating account also stopped posting
on March 15, 2012. It posted 1782 times. The Jaccard similarities between them are:
J(Dating,Women)=0.95, J(Dating,Men)=0.96, and J(Men,Women)=0.97.

A person can be interested in looking for a date with a woman or a man, but
normally not for both. The uncanny strong correlation between these three groups of
followers in the amount of millions is an indication that these accounts are manipulated

1 http://569.asxzy.net/view_node-1787709495

http://569.asxzy.net/view_node-1787709495
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Fig. 11. Panels A and B: SpammedIndex against in-degrees. Panels C and D:
Normalized SpammedIndex against in-degree. Panel B and D are obtained by
smoothing with window size 100.

Fig. 12. Screen shot from Weibo Analytics web site http://7.yeezhao.com/.
Fake follower rate of the Dating account is above 87.89%. Taken at the time of
writing this paper.

and possibly spammers. A Weibo analytics web site also confirmed that most of them
are spammers, as shown in Fig. 12.

Whom do the spammers point to Next, we study the spam targets, the accounts
the spammers point to. These spammers have 1.7× 107 out-links, account for about
2 % of the total links in the Weibo user network at the time the sample was taken.
Large accounts have high visibility. Naturally, they are the major spam targets. Fig. 13
shows that the node size has positive correlation with the spam links received. What is
surprising is that there are two stratified groups of spam targets. One group receives
spam links in hundreds of thousands, and most of them receive the links in the same
amount, around 200,000. Among this group, some accounts moved forward to attract
other links. Others lag behind, having spammers as the major source of their followers.
In addition, there is a large group at the left-lower corner whose number of spam links
are close to their in-degrees, indicating that most of the followers are spammers from
the dating group.

http://7.yeezhao.com/
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Fig. 13. Number of spam links from the Dating group as a function of the in-degree.

Who follow spammers There are very few accounts that follow these spammers.
Unlike link farms in the Web, where spam pages normally point to each other to boost
their PageRank values, this group of spammers aim at the simple inflation of follower
number only. Many of the spammers have 0 to 3 in-links (40%).

5 Related Work

It is a challenging task to detect spammers. Two of the approaches are 1) use suspended
account list given by the service provider; 2) manually label the spammers, then learn
a classifier from such training data [12]. For Twitter, Ghosh et al. [5] identified 41k
spammers based on two criteria: 1) they are suspended by Twitter; 2) they have posted
URLs that are blacklisted by two of the most popular URL shortening services. Then
they summarize the properties of these spammers collectively without clustering.
Compared with this work, we identify millions of spammers, and characterize the
distinctive properties and structure for spammers in each cluster.

Most spammer detection systems have some spammer accounts labeled first. Then
they try to learn the characteristics of spammers. For instance in [1] 355 spammers
and 710 non-spammers are used to train the model for spam detection. [9] uses both
the network structure and micro-blogs to detect spammers in Twitter. It also utilizes
the information of the users who are suspended by Twitter, and regard this set of users
as spammers. [14] detects spammers by clustering tweets streams. [17] use honey pot
to attract spammers in Facebook, MySpace and Twitter. They also train a Random
Forest algorithm to find more spammers in these three OSNs.

Near-duplicates are normally used for web documents [8]. Recently it is also used
to analyze Tweets in Twitters [18] [22]. These approaches study the similarity between



the documents/tweets, while we study the similarity of accounts by comparing their
followers.

6 Conclusions

This paper proposes to use near-duplicates to identify spammers in OSNs. The method
is conceptually simple in that it depends on the user network only, instead of individual
user behaviours. The implementation is based on the estimation of Jaccard Similarity
using random sampling. Unlike traditional fast algorithms for Jaccard similarity, we
estimate the Jaccard similarities without the access to the entire data.

The method is applied on Weibo OSN, and find millions of spammers. We cor-
roborate our method by detailed analysis on the spammers that are found. All the
spammer groups have their highly regulated properties that make them distinct from
normal accounts.

We want to emphasize that Weibo, as well as other OSNs, evolve quickly over
time. Every day, many spammers are deleted, and new accounts and followers are
added. Since our sampling process spans over one month (in the month of November
in 2011), the estimation of the Jaccard Similarity may not be very accurate due to the
dynamics of the social networks.

Our method is conservative in identifying the spammers in that 1) The threshold
value for near-duplicate is 0.9. When it is reduced, much more spammers are detected;
2) We can not discover spammers that do not create near-duplicates. In this case,
spammers either support one target only, or they are split into small portions and sold
to a small number of consumers.

Our method can be extended to other social networks. The restriction is that it
requires the accounts to be sampled uniformly at random. In the year of 2011, Weibo
provided a mechanism of uniform random sampling. Now that feature is disallowed.
That is why we can not discover the spammers for the current Weibo, nor can we
sample the current Twitter due to the severe restriction imposed by the Twitter APIs.

The rampant spamming activities revealed in this paper prompt us the urgent needs
of independent research on OSNs. OSN service providers have their own agenda and
may not be interested in cleaning up the spammers. We have to resort to sampling
methods to dig into the data that are hidden behind these searchable interfaces.
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