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Abstract Academic influence has been traditionally measured by citation
counts and metrics derived from it, such as H-index and G-index. PageRank
based algorithms have been used to give higher weight to citations from more
influential papers. A better metric is to add authors into the citation network
so that the importance of authors and papers are evaluated recursively within
the same framework. Based on such heterogeneous author-citation academic
network, this paper gives a new algorithm for ranking authors. It is tested
on two large networks, one in Heath domain that contains about 500 million
citation links, the other in Computer Science that contains 8 million links. We
find that our method outperforms other 10 methods in terms of the number of
award winners identified in their top-k rankings. Surprisingly, our method can
identify 8 Turing award winners among top 20 authors. It also demonstrates
some interesting phenomenons. For instance, among the top authors, our rank-
ing negatively correlates with citation ranking and paper count ranking.

Keywords Heterogeneous Network · Author Ranking · PageRank · Scholarly
Data

1 Introduction

Academic influence is inherently difficult to measure. Citation count has been
used widely since 1927 (Gross and Gross, 1927). H-index was introduced to
simplify the citation count by disregard papers that are less cited (Hirsch,
2005). However, H-index treats papers equally once they pass a threshold
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value (the H-index), measures unfavorably for authors who publish one or two
very highly cited papers. G-index ameliorates this problem by giving credits
for citation counts of each paper that pass a threshold value (the G-index)
(Egghe, 2006).

Citations are not independent and acting alone. Instead, they form a com-
plex network in which papers and authors interact with each other. In such
network, not every citation is equal. A citation from an influential paper should
have a higher weight than others. Thus, Bonacich (1972) proposed that the
principal Eigenvalues of a citation matrix should be used for the importance of
the papers. This idea also inspired the well-known PageRank algorithm when
applied on the Web network (Brin and Page, 1998). Intuitively, the influence
of a node is proportional to the probability of being visited in a random walk
on the graph.

Despite the successful application of the PageRank algorithm in the Web
domain, we have not seen a wide application of the algorithm in bibliomet-
rics where the very idea originated. This is due to two significant differences
between the academic network and the Web. Firstly, citation networks are
mostly acyclic: papers only cite papers in the past, not the ones to be pub-
lished in the future. Although occasionally there are loops due to the merge
of different versions of a paper, most citations form a chain chasing down to
earlier papers. Secondly, academic networks are inherently heterogeneous. In
the Web network where PageRank is used, there is only one type of node (web
pages) and one type of links (hyperlinks). In the academic network, there are
at least two kinds of nodes, i.e., papers and authors.

To solve the first problem, Chen et al. (2007) proposed to employ a lower
damper factor (α) in the PageRank algorithm. It can be interpreted as a
higher random jump probability (1 − α) in the random walk interpretation.
They propose to use α = 0.5 in contrast to normal practice which is α = 0.85.
A high random jump probability implies that every node/paper will receive
credits from random sources. Hence, author ranking will be highly correlated
with paper counts as we will demonstrate in the Experiment section.

To solve the second problem, there are at least two approaches. One ap-
proach is to work on an author network that is derived from the heterogeneous
network. Then, the PageRank algorithm is applied to the author network. The
difference is how the author network is induced. West et al. (2013) derived an
author-citation network that is induced from the paper citation network. In
the induced author network, author A has a weighted link to author B if
A cites a paper written by B. The weight reflects the division of credits to
multiple authors and multiple references.

The second approach develops algorithms directly on the heterogeneous
academic network. Zhou et al. (2007) proposed Co-Ranking method to run
random walks on three different networks-a social network between authors, a
citation network connecting papers, and a bipartite network between authors
and papers. Sun et al. (2009) use a heterogeneous network to represent the
academic network, where authors, papers, and conferences are nodes in the
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graph. First, they apply their RankClus framework to generate clusters based
on conferences, then use the Authority Ranking rule on each conference cluster.

Regardless of the approach, there is no objective evaluation to compare
the resulting ranking. Evaluation of the existing methods is mostly anecdotal,
citing a few well-known authors being ranked high by their methods. The data
is also fragmented, consisting of small networks in a narrow area.

This paper proposes a new ranking method, called APR (Author-PageRank),
which applies to heterogeneous academic networks. Papers can only cite older
papers, therefore random walks can only go from older papers to newer ones.
APR handles the acyclic network problem by adding links between papers and
authors. When a new paper and an old paper are written by one author, the
random walks can start from the old paper to its author, then go to the new
paper; thereby random walks can visit newer papers. Different from the large
jump probability used in (Chen et al., 2007) that transfers much of the weight
to random papers, it transfers only 15% weight of random jump. It tackles
the second problem (the heterogeneous network problem) by combining the
author and paper networks together. Instead of random walking on different
networks and aggregating the results (Zhou et al., 2007), one random walk
is performed on the entire network. Additionally, rather than working on an
induced author network, the entire network is maintained so that information
is not lost or skewed during the network transformation as in (West et al.,
2013).

We test our method on two large data sets. One is a large academic net-
work in health domain that is collected by us. It contains 15 million papers,
12 million authors, about 500 million citations. The other is the well-known
AMiner (ArnetMiner Academic Social Network) network in computer science
developed by Tang et al. (2008). We evaluate our methods based on the num-
ber of Nobel Prize winners for the Health data, and the number of Turing
Award winners for the CS data. Our method outperforms all other methods
consistently for both datasets. Among the top 50 CS authors ranked by APR,
there are 16 Turing Award Winners. Our ranking result is also very different
from that of existing methods in terms of Spearman rank correlation. One in-
teresting result is that APR is negatively correlated with paper count, H-index,
and G-index among top authors.

2 Related Work

Measuring academic influence for papers, journals, authors et al. has been
studied for decades. The most straightforward method is citation count (Gross
and Gross, 1927), which is still been widely used recently. An entity with more
citations would be ranked higher. H-index (Hirsch, 2005) and G-index (Egghe,
2006) are introduced to treat papers differently according to citation count.

PageRank algorithm is applied to address the academic ranking problem
because not every citation is equal. It is firstly applied on citation network to
identify the most influential papers in (Chen et al., 2007) and they also find
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that a paper’s citation number and its PageRank value are closely correlated.
Amjad et al. (2015b) proposes a new informative metric called Topic-based
Heterogeneous Rank which measures the impact of a scholarly data with re-
spect to a given topic in a heterogeneous scholarly network containing authors,
papers and journals. One of the main limitations of the proposed method is
the computational complexity and high memory usage. Su et al. (2011) studies
how missing data in the PageRank algorithm influences the result of papers
ranking and proposes PrestigeRank algorithm on that basis, but there is in-
sufficient evidence to make a definite conclusion that PrestigeRank is better
than PageRank or citation counts. Zhou et al. (2016) introduces a preferen-
tial mechanism to the PageRank algorithm when aggregating resource from
different nodes to enhance the effect of similar nodes. Though the method
in this paper can more accurately predict papers future degree than PageR-
ank, the prediction for small or zero degree nodes is still not satisfactory. Yan
(2014) proposes topic-based PageRank, when applied to a data set on library
and information science publications. Another two methods CiteRank (Walker
et al., 2007) and FutureRank (Sayyadi and Getoor, 2009) are introduced to
rank papers and predict the future citation number. PageRank is also used to
rank journals (Bollen et al., 2006) (Su et al., 2011) (Dellavalle et al., 2007)
(González-Pereira et al., 2010), and even scientific contribution of countries
(Ma et al., 2008).

There are several different kinds of academic networks for author rank-
ing Amjad et al. (2018). PageRank is first applied to authors ranking in (Liu
et al., 2005). They propose AuthorRank, a weighted PageRank algorithm, in a
co-authorship network. If any two authors co-authored a paper, an undirected
edge with unit weight is created between these two authors. Ding et al. (2009)
use an author co-citation graph, which is same as the co-authorship network
in (Liu et al., 2005). They focus on evaluating the impact of various damping
factors. Their methods differ from our work in that they use a homogeneous
network that consists of only papers or authors. Besides the co-authorship net-
work, they claim that the importance of authors can be derived from papers.
Sidiropoulos and Manolopoulos (2006) proposes a new version of PageRank.
They first rank papers on the citation network consisting only papers and
choose the same number of papers for each author. Then authors are ranked
by computing the average score of all their papers. A similar research is in-
troduced in (Fragkiadaki and Evangelidis, 2016). Another interesting work is
called PR-index (Gao et al., 2016), which combines h-index and PageRank
together to obtain an objective evaluation criteria. They first rank papers by
PageRank, then replace the h-index’s citation component with the PageRank
score. Therefore, PR-index considers both productivity and popularity of an
author. The importance of an author is determined only by the influence of
his/her papers, without considering the relation of coauthors and the impact
from authors to papers. Author citation network is also widely used. Liang and
Jiang (2016) generate an author citation network based on paper citations. A
paper citation results in several author citations, each of which links a citing
author to a cited author in the author citation network. Yan and Ding (2011)
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also use an author citation network and a weighted PageRank algorithm to
get the importance of authors. A similar paper is proposed in (Radicchi et al.,
2009). They create a weighted author citation network from paper citation net-
work. A weighted PageRank algorithm is then used to calculate the score of
each author in the network. Another method is proposed in (West et al., 2013).
They propose the Eigenfactor score on author network matrix. It is based on
Eigenvector and gives more weight to the highly cited authors. Author net-
work is easy to obtain and is effective when the network size is small, but not
scalable for large data. The complexity of the PageRank algorithm depends
on the number of edges in the network. The author citation network is a dense
network compared with paper-author heterogeneous network, and PageRank
is not expected to be executed on such a network when the number of links
explodes. Paper-paper citation link is crucial for author ranking, since the in-
fluence of an author should be evaluated by his/her papers. A heterogeneous
network, consisting of papers and authors, is first used by Zhou et al. (2007).
There are three networks in the framework, citation network, author social
network and paper-author network. They used two separate networks(i.e. ci-
tation network and author social network), and random walks are performed
independently on these two networks, then the ranking are integrated after-
wards. In contrast, we delete the directed links between authors and use such
a heterogeneous network to rank authors for the first time. Sun et al. (2009)
combine clustering and ranking together. They rank authors within each con-
ference cluster. The reputation of conference can affect an author’s influence.
Basically, they use paper-author and conference-author links, but not paper-
paper citation links.

Besides using the PageRank algorithm on academic networks, centrality is
also applied to obtain the author importance. Bibi et al. (2018) use various
centrality measures to represent the importance of authors. They also find
the centrality measures are significantly correlated with the citation count
and h-index. Citation count and H-index are still widely used in recent years.
Steinbrüchel (2018) divides authors into two groups: PIs (principal investi-
gators) and non-PIs. The author then introduces a new index hpi based on
h-index, where PIs will obtain more weight than non-PIs. Amjad and Daud
(2017) first use Latent Dirichlet Allocation (LDA) to split authors into dif-
ferent domains, then allocate paper citations to coauthors according to their
topic probability. Daud et al. (2017) try to find new influential researchers by
considering the co-authors’ citations, the order of appearance and the cita-
tion number of co-author venues. Similarly, Usmani and Daud (2017) obtain
the ranking scores for papers and venues, then generate authors’ scores ac-
cordingly. Another work (Amjad et al., 2015a) suggests authors should receive
citations according to their productivity and author position.

Based on the literature review, several works derive author’s importance
from papers, without considering the impact between them. Most researchers
use co-authorship network and author-citation network to rank authors with-
out paper information. This kind of network is also dense and cannot be large
scaled. The heterogeneous network proposed by Zhou et al. (2007) may be a
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progress, but they treat citation and author ranking separately. In our work,
we believe that integrating authors and papers in a coherent network is a bet-
ter attempt. The importance of an author is determined by not only his/her
published papers, but also coauthors. Besides, papers with influential authors
will attract more attention. This paper thus aims to measure the academic
influence on such an academic network, and propose the APR method and
make some comparison with some existing methods.

3 APR Framework

3.1 Problem Definition

Measuring academic influence is to evaluate authors quantitatively. We use a
heterogeneous network to represent the academic data. The network consists
of two types of nodes, i.e., authors and papers. There are two types of links
– the citation link between papers, and authorship link between a paper and
an author. We define the importance of an author as the probability of the
author being visited by a long random walk in the heterogeneous network.

Definition 1 (Heterogeneous Author-citation Network )
Given a set of authors a = {a1, a1, . . . , am} and a set of papers p =

{p1, p2, . . . , pn}. Let EPP denote the citation links between papers; EPA de-
note the authorship relation between a paper and an author. The heterogeneous
author-citation network is a graph G = (a ∪ p, EPP ∪ EPA).

For a network contains m papers and n authors, the graph can be repre-
sented by a binary (m+ n)× (m+ n) adjacency matrix A:

A =

(
APP APA
AAP 0

)
, (1)

where APP is the citation matrix between papers, APA and AAP represent
paper-author relations. APA = ATAP , since the relation between papers and
authors are symmetric. Note that in our graph, there are no direct relations
between authors.

Given a heterogeneous author-citation network G = (a ∪ p, EPP ∪ EPA),
our goal is to obtain a vector r for the network G, where r can reflect the
importance/influence of authors a (and papers p).

Fig. 1 gives an example of a heterogeneous author-citation network. In this
network, isolated components (p6 and p7) would receive very low weight if they
were evaluated in citation network only. Now it is connected with the main
citation network via author a4. Besides, a random walk can also go up stream
from p4 to p1 via author a1.

It differs other paper/author networks such as the one proposed in (Zhou
et al., 2007),(Sun et al., 2009), and (West et al., 2013). In our heterogeneous
graph, there are no edges between authors. Author relations can be induced



Measuring Academic Influence Using Heterogeneous Author-Citation Networks 7

a1a2

a3

a4

a5

p1

p2 p3

p4 p5

p6

p7

Fig. 1: An example of the heterogenous author-citation network structure.

from several sources, such as co-authoring a paper (Zhou et al., 2007), citation
of one author to another (West et al., 2013), or even publishing in the same
conference (Sun et al., 2009). Such induced relations lost information during
the graph transformation. Moreover, the induced graph normally expands in
size, sometimes in orders of magnitude. For instance, if an author writes m
papers, each cites n papers on average, and each paper has k coauthors, then
there will be m × n × k induced author-citation edges. Direct links between
authors may also make author social network dominating the ranking system.
Coauthors of a paper form a clique. Random walk traffic will be directed
to such cliques, especially when the cliques size is large. The ranking should
be decided mainly by papers, not author relations. Therefore, we excluded the
edges between coauthors in the graph. Although direct edges are not presented,
coauthor relation still plays a major role in the ranking system: the weight of
an author is passed indirectly to his co-author via their papers.

3.2 APR method

The adjacency matrix represented by A can be turned into a column stochastic
matrix B, where each column sums up to one. Now the network can be viewed
as a Markov chain, and the influence of authors are defined as the stationary
distribution of the Markov process. In other words, an author’s importance is
interpreted as the probability of a random surfer visiting the node. Because not
every Markov chain has a stationary distribution, it is necessary to modify the
network so that stationary distribution is guaranteed. We follow the normal
practice, which is to add virtual links to every pair of nodes with an equal but
small transition probability. I.e., a new stochastic matrix M is introduced by
adding every cell with a small transition probability:

M = αB + (1− α)
1

n
eeT , (2)

where e is a vector of 1’s, α is the damping factor that is normally chosen to be
a value around 0.85 (Brin and Page, 1998). n is the length of the matrix. Now,
the Markov process represented by M is guaranteed to be strongly connected
and aperiodic, and its stationary distribution is guaranteed. The author (and
paper) ranking is also the principal Eigen vector r of the matrix M , which
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
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0.32
0.09
0.22
0.17


Fig. 2: An example of the APR framework.

can be computed by the following equation:

Mr = r. (3)

Fig 2 gives an example. In this network, there are two papers and three
authors. p1 cites p2. p1 is written by a1 and a2 and p2 is written by a2 and
a3. We first derive the network into the adjacency matrix A, then turn it into
the column stochastic matrix B. By adding virtual links to the network, a
new stochastic matrix M can be deduced. In this example, we set α = 0.85.
The importance of authors and papers is the principal Eigen vector of M .
As expected, a2 is the most influential author, who writes two papers and
one paper has citation. Although a1 and a3 both write only 1 paper and
share a same coauthor, a3’s paper has citation. In this case, a3 will gain more
importance.

In our work, the largest network contains 12 million authors and even larger
number of papers. Despite the large size of the matrix (107×107), fortunately,
it is sparse, and we do not actually store the virtual links during the compu-
tation. Hence, we can use the ‘power iteration method’ (Brin and Page, 1998)
to compute the principal Eigenvector of matrix M . In our implementation, we
iterate 100 times to guarantee the convergence.

4 Experiments

Experiments are conducted on two large academic networks, one is in Health
domain and another is on Computer Science(hereafter CS) domain. The statis-
tics are tabulated in Table 1. The Health data are mostly from PubMed. It
focuses on academic papers in health domain only. In total there are 26,249,870
papers. After removing papers that have neither citations nor references, our
citation network contains 15,366,456 papers and 479,358,572 citation links.
Compared with the largest public available citation network, the Microsoft
Academic Graph (MAG1), our data is more complete in the health domain.

1 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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MAG data covers all the areas, hence contains much more papers (100 mil-
lion). However, it has the same amount of links as our data. Compared to
MAG, our data is much more complete in the health area as is demonstrated
by the higher average degree of the graph (31 vs. 5).

Table 1: The academic networks for the Health and CS domains. Note that
the data size is reduced due to the removal of isolated nodes.

Node and Links Counts

Health

Paper 15,366,456
Author 12,682,306

Paper-Paper link 479,358,572
Author-Paper link 139,435,221

CS

Paper 1,286,254
Author 1,004,536

Paper-Paper link 8,024,869
Author-Paper link 6,945,771

The second is the CS data from ArnetMiner Academic Social Network
(AMiner) (Tang et al., 2008). The CS data integrates publications from DBLP
and citation links from ACM Digital Library, CiteSeer, and other sources . It
consists of 2,092,356 papers, 8,024,869 citation links, and 1,712,433 distinct
authors. The numbers in the network are reduced after removing isolated pa-
pers.

Fig 3 shows the reference and citation distributions of papers in CS and
Health dataset. As expected, both citations and references have a long tail that
resembles a power-law distribution. We use the maximum likelihood estimation
(Clauset et al., 2009) to estimate the power-law exponents. The probability
density function (PDF) is computed and plotted on the figure as α.

Our experiments are carried out on two servers. Each one equips with 24-
core CPU and 256GB memory. The complexity of PageRank-based algorithms
depends on the number of edges in the graph. The largest graph in our exper-
iment contains about 600 million edges, which can be loaded into the memory
easily. The code and data can be accessed on our webpage2.

4.1 Compared Metrics

We compare our method with Co-Ranking(Zhou et al., 2007), P (paper count),
C(citation count)(Gross and Gross, 1927), H(H-index)(Hirsch, 2005), G(G-
index)(Egghe, 2006), SPR(summation of PageRank)(Fragkiadaki and Evan-
gelidis, 2015), and their weighted versions Cw and SPRw(Lindsey, 1982).
Weighted metrics split credits among co-authors. For an author a, P is the
total number of papers that an author has published. Other indexes for a are
defined as:

2 http://zhao15m.myweb.cs.uwindsor.ca/apr/

http://zhao15m.myweb.cs.uwindsor.ca/apr/
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Fig. 3: Reference and citation distributions of CS and Health dataset. The
x-axes represent the number of references or citations. The y-axes denote the
frequency of references or citations.

C(a) =
∑
p∈a

CitationCountp (4)

Cw(a) =
∑
p∈a

CitationCountp
AuthorCountp

(5)

SPR(a) =
∑
p∈a

PRp (6)

SPRw(a) =
∑
p∈a

PRp
AuthorCountp

(7)

Here PRp is the PageRank value for the paper p in citation network.

For SPR, two damping factors are tested (0.85 and 0.5). 0.85 is the em-
pirically best damping factor suggested by Brin and Page (1998) for web page
ranking. α = 0.5 was suggested by Chen et al. (2007) to offset the acyclic
problem in citation network. Our APR method uses the default α = 0.85 since
there are already loops in our heterogeneous network. For the sake of simplic-
ity, we adopt this parameter in consistency with SPR0.85 method. Authority
Ranking in (Sun et al., 2009) is not compared because it uses co-author and
co-conference links. Citation information is not included.
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Fig. 4: Number of award winners among top-k authors on CS dataset.

5 Results

5.1 How Good Is APR?

We evaluate the ranking results using the number of award winners within top-
k authors in Fig 4 and Fig 5. To quantify the difference among these methods,
we treat each line as a ROC(Receiver Operating Characteristic) curve (Hanley
and McNeil, 1982), then AUC(Area Under the Curve) can be calculated from
each curve. The AUC values of the ROC curves in Fig 4 Panel A and Fig 5
Panel A are listed in Table 2. The awards are Nobel Prize for the health data
and Turing Award for the CS data. In the figure, Panel A is the global view
of top authors. Panel B is a zoom-in for the starting section that contains
the top 500 for CS and top 10,000 for the Health data. We can see that
APR outperforms all other methods consistently in both CS and Health data.
Table 3 is the number of Turing and Nobel winners within top authors on two
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Fig. 5: Number of award winners among top-k authors on Health dataset.

datasets. APR performs best almost within every range. Table 4 and 5 list
the top 25 authors ranking by APR and their indexes in other metrics on CS
and Health dataset.

From the plots, especially Panel B of the Health data, we can see that the
methods fall into roughly four groups. The baseline is P . Without question,
it gives the lowest performance. Above that, we see a group that contains of
H,G and C, which are citation-based methods. As expected, G-index is indeed
an improvement of H-index. Both G and H cannot compete with C in most
cases, probably because they over-simplified the citation data.

PageRank-based algorithms outperform citation-based algorithms with α =
0.85. Sitting in between Citation-based and PageRank-based method are SPR0.5,
which is a special case of PageRank algorithm with high random jumping prob-
ability (α = 0.5). We shall understand that PageRank is a spectrum algorithm.
When α is smaller, there is a higher probability of random jump. Thus the
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Table 2: AUC values of the ROC curves in Fig 4 Panel A and Fig 5 Panel A.

Methods
CS Health

AUC (1e3) Improvement AUC (1e6) Improvement
APR 246.8 – 114.8 –

P 91.8 169.07% 70.2 63.53%
C 170.1 45.10% 82.9 38.49%

Cw 195.1 26.51% 100.5 14.14%
H 135.0 82.90% 77.7 47.72%
G 163.4 51.13% 78.6 45.91%

SPR0.85 231.0 6.87% 99.0 15.87%
SPRw0.85 240.5 2.65% 110.4 3.93%

SPR0.5 198.6 24.30% 91.1 25.97%
SPRw0.5 216.9 13.83% 106.0 8.27%

Co-Ranking 238.1 3.66% 109.4 4.88%

Table 3: Number of Turing/Nobel award winners within top authors.

Methods
CS Health

50 100 200 500 1,000 100 500 1,000 2,000 10,000
APR 16 20 29 45 48 15 55 67 90 143
PN 0 2 4 5 12 0 1 2 8 34
C 8 14 19 22 27 3 17 28 38 80

Cw 11 15 21 30 33 8 37 48 60 111
H 4 7 12 16 23 9 19 27 39 74
G 9 16 20 22 29 4 20 27 42 76

SPR0.85 13 20 27 35 41 12 34 43 61 110
SPRw0.85 16 20 30 41 44 15 48 67 86 139

SPR0.5 10 13 20 26 31 8 19 26 36 84
SPRw0.5 12 18 26 34 38 10 34 50 67 118

Co-Ranking 16 20 29 39 43 13 48 66 81 139

algorithm favors more authors with more papers or citations. For C, SPR0.5,
and SPR0.85, their weighted versions are consistently better.

Fig 6 shows the top-100 APR authors along with their rankings in terms
of citation count. It shows that 1) APR can identify many (20) Turing award
winners; 2) Correlation between APR and C is low. For instance, Marvin
Minsky is the 1461-st most cited author, but our APR rank is 35. This prompts
us to explore how different APR is from other methods.

5.2 How Different Is APR?

Fig 7 shows the pair-wise Spearman’s rank correlation coefficient among 11
methods for the top 100 authors. The top authors are determined by their
APR values. When we extend the list to include more authors, the correlation
coefficients will increase, but the pattern discussed below is similar.

We can observe that the metrics differ with each other greatly, especially
with APR. APR differs from the other methods the most, probably because
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Table 4: Top 25 authors by APR on CS Dataset and their indexes in other
metrics. Bold names are Turing Award winners.

Rank Name APR P C Cw H G SPR0.85 SPRw0.85 SPR0.5 SPRw0.5 CoRanking

(10−3) (10−3) (10−3) (10−3) (10−3) (10−3)

1 Donald E. Knuth 7.76 119 6,538 6,040 27 81 16.36 15.58 6.65 6.19 3.03
2 J. Ross Quinlan 3.49 35 8,500 8,321 19 35 8.85 8.60 4.60 4.48 1.48
3 E. W. Dijkstra 3.26 59 4,275 3,791 17 59 5.87 5.36 2.80 2.53 1.05
4 G. Salton 3.05 119 8,552 5,129 27 93 11.84 7.89 5.57 3.60 1.31
5 Jeffrey D. Ullman 2.57 203 14,868 6,854 49 121 15.88 7.48 8.08 3.74 1.48
6 Judea Pearl 2.56 130 6,819 5,764 25 83 5.50 4.60 3.79 3.13 0.93
7 V. N. Vapnik 2.50 40 10,733 7,577 24 40 8.11 5.64 5.14 3.59 1.23
8 S Haykin 2.17 28 4,770 4,698 12 28 3.75 3.67 2.89 2.80 0.78
9 David E. Goldberg 2.14 152 9,123 7,618 26 95 6.80 5.69 5.12 4.13 1.22
10 C. A. R. Hoare 2.10 94 6,558 5,540 22 81 7.42 6.42 3.65 3.09 1.13
11 Milton Abramowitz 1.88 1 1,450 1,450 1 1 1.99 1.99 1.36 1.36 0.42
12 John Hopcroft 1.87 100 6,487 2,949 22 81 9.80 4.59 4.78 2.21 0.90
13 David S Johnson 1.67 61 10,915 5,439 22 61 8.97 4.45 5.48 2.69 0.91
14 John McCarthy 1.64 54 1,773 1,328 13 43 6.34 3.74 2.20 1.38 0.69
15 Alfred V. Aho 1.59 63 7,862 3,358 25 63 11.09 5.05 5.11 2.30 1.00
16 John H. Holland 1.57 35 3,837 3,535 17 35 2.92 2.66 2.08 1.87 0.57
17 M. R. Garey 1.50 26 9,408 4,587 13 26 8.05 3.91 4.79 2.32 0.80
18 Ronald L. Rivest 1.48 141 12,177 4,284 32 111 13.60 5.10 6.94 2.60 1.02
19 Thomas M. Cover 1.48 36 4,540 2,287 11 36 3.63 1.84 2.32 1.18 0.39
20 Leslie Lamport 1.43 113 8,084 6,207 33 90 7.73 5.61 3.96 2.94 1.11
21 Robin Milner 1.39 75 7,258 5,477 29 75 4.07 3.00 2.60 1.95 0.59
22 Allen Newell 1.37 70 3,551 1,991 18 60 6.70 3.36 2.96 1.55 0.68
23 Nils J. Nilsson 1.37 24 1,912 1,631 14 24 2.38 2.11 1.35 1.18 0.44
24 Niklaus Wirth 1.36 67 2,345 1,630 21 49 4.71 3.14 2.31 1.56 0.60
25 Jakob Nielsen 1.35 85 4,077 3,420 28 64 4.56 3.70 2.79 2.27 0.80

Table 5: Top 25 authors by APR on Health Dataset and their indexes in other
metrics. Bold names are Nobel Award winners.

Rank Name APR P C Cw H G SPR0.85 SPRw0.85 SPR0.5 SPRw0.5 CoRanking

(10−4) (10−4) (10−4) (10−4) (10−4) (10−4)

1 Ulrich K Laemmli 16.88 71 136,247 131,505 41 71 25.22 24.46 12.59 12.20 5.10
2 CDC 3.03 710 8,923 8,432 38 67 1.94 1.90 1.76 1.72 0.40
3 H R EAGLE 2.34 84 6,134 4,825 29 79 4.27 3.43 1.45 1.14 0.66
4 CCP4 2.09 1 8,391 8,391 1 1 0.62 0.62 0.36 0.36 0.15
5 M M Bradford 2.01 6 83,952 83,921 4 6 7.28 7.27 4.35 4.34 1.52
6 A Robert Neurath 1.96 136 2,836 738 27 50 3.94 3.56 1.58 1.29 0.90
7 Marta Hamilton 1.91 91 19,776 18,593 21 91 2.21 2.02 1.35 1.20 0.43
8 Shelley McGuire 1.84 29 8,272 8,272 25 29 0.79 0.79 0.51 0.51 0.17
9 Jean L Marx 1.72 521 4,734 4,390 30 47 1.23 1.17 1.16 1.10 0.22
10 Robert F Service 1.65 370 5,324 5,298 33 62 1.04 1.03 0.95 0.95 0.20
11 Eliot Marshall 1.56 572 4,193 3,905 24 52 1.15 1.08 1.19 1.12 0.20
12 John R Vane 1.51 368 32,565 14,006 81 174 7.87 3.63 3.71 1.66 0.73
13 Richard A Kerr 1.43 698 3,452 3,370 21 38 1.11 1.09 1.28 1.26 0.19
14 G E Palade 1.41 176 22,365 12,188 77 149 11.56 7.51 3.53 2.07 1.37
15 David Baltimore 1.38 490 55,514 18,399 122 223 7.94 2.88 3.92 1.38 0.63
16 William Bernard Kannel 1.33 444 58,111 16,715 118 234 7.35 2.26 4.27 1.34 0.47
17 Edwin M Southern 1.25 81 17,377 15,297 31 81 4.75 4.33 1.85 1.62 0.93
18 Yasutomi Nishizuka 1.22 146 18,142 13,492 48 135 2.91 2.17 1.65 1.18 0.45
19 Scott Kirkpatrick 1.19 2 11,056 3,688 2 2 1.87 0.62 1.06 0.36 0.11
20 Frederick Sanger 1.19 72 41,887 12,930 30 72 13.48 4.20 4.67 1.47 0.90
21 John P Perdew 1.19 83 49,596 22,137 35 83 3.73 1.71 2.55 1.16 0.32
22 W J Rutter 1.14 211 25,853 6,580 66 160 6.81 1.74 2.93 0.76 0.38
23 J L Goldstein 1.12 375 42,660 12,554 106 200 7.46 2.26 3.66 1.09 0.49
24 Elizabeth Pennisi 1.11 392 2,971 2,887 25 39 0.71 0.69 0.76 0.74 0.14
25 Michael Scott Brown 1.10 447 49,342 14,014 117 211 7.65 2.27 3.85 1.12 0.50

it is the only method that includes authors in the heterogeneous network.
For the Health data, the highest positive correlation happens between APR
and Eigen-vector based methods such as Co-Ranking (correlation coefficient
ρ = 0.26) and SPRw0.50 (ρ = 0.45). It is expected that APR correlates with
these methods since all of them are based on random walk interpretation. It is
surprising that the closest correlation coefficient is only 0.29(with SPRw0.85)
for Health, and 0.55 for CS(with Co-Ranking). Both are quite low, indicating
that the ranking results are very different. What is even more interesting is
that in Health data, APR correlates with several indexes negatively, including



Measuring Academic Influence Using Heterogeneous Author-Citation Networks 15

20 40 60 80 100
APR rank

0

1

2

3

4

5

C
ita

tio
n 

ra
nk

 (l
og

10
)

Knuth

Quinlan

Dijkstra

Salton

Ullman

Pearl

Vapnik

Haykin

Goldberg

Hoare

Abramowitz

Hopcroft

Johnson

McCarthy

Aho

Holland

Garey

Rivest

Cover

Lamport
Milner

Newell

Nilsson
Wirth

Nielsen

Date

Jain

Bishop

Tufte

Booch

Shneiderman

Bleier

Bertsekas

Shamir

Minsky

Kohonen
Gallager

Breiman

Joachims

Press

Papadimitriou

Tarjan

Simon
Rijsbergen

Rappaport

Koza
Teukolsky

Hinton

Fukunaga

Gray

Gonzales

Thomas

VetterlingJr.
Canny

Stallings

Codd

Witten

Yager

Hansen

Sutton

Patterson

Laski

Blinn
Norman

Mitchell

Buckley

Goldberg

Zisserman
Schapire

Boehm

MarcusFlannery

Weiss

Tanenbaum

MacKay

RumelhartYao

Pnueli

Jr.

Pawlak

Lowe

Denning

Molina

Wilkinson

Kleinrock

Fletcher

Dongarra

Russell

Leiserson

Han

Jacobson

AdlemanWinograd
Manna

Faugeras

Davis

Rheingold

Foster

Card
Better for Citation

Better for APR

Fig. 6: Top 100 APR vs. their citation rankings.

H-index (ρ = −0.17), G-index (ρ = −0.15), and Paper count ((ρ = −0.08).
Among the top authors, the more influential you are, the fewer papers you
write. This pattern also extends to the CS data.

Fig 5 illustrates the satisfied layers of the metrics. There are a few close-
pairs. For instance, Co-Ranking and SPRw0.85 correlate almost perfectly
(ρ = 0.99). This can be explained by the fact that Co-Ranking runs random
walks on three disparate networks. When they do the random walk on the
citation network, it equals to calculate the PageRank values for the citation
matrix independent of the author network. Their combination with the author
network is merely summing up the PageRank values for each author from the
citation network. Another group includes indexes H, G, and extends slightly
to C. They are citation-based metrics.

Next, we look at the cause of the difference. In Fig 8 and 9, each subplot is
the rank value against the rank for each metric. The rank values are normalized
so that they sum up to one. This way we can compare them on the same
scale. APR is plotted in every subplot as a reference (the red line). We can
see that the weights (ranking values) of authors have a long tail distribution
that resembles a power-law. That means that the top authors collect most of
the weights, while a large majority of the authors have very small weights.
Although the pattern is the same across all the metrics for both datasets, the
slopes are different, indicating the in-equalities are different. For the CS data,
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the coefficient of variation (CV) of weights is 23.61 for APR, merely 1.13 for
H, 2.25 for G, and 6.42 for P . When the variation of the weights are small, it
won’t be easy to tell the difference between the authors. That may explain why
those metrics are not good. Among the top 10,000 authors, the Gini coefficient
is 0.42 for APR, 0.36 for H, and 0.38 for G.
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5.3 Weighted vs. Unweighted Methods

Weighted methods share credits between multiple authors of a paper. They
reflect authors’ contribution in a more accurate way. This is verified in both
data sets as illustrated Fig 10. In the figure we can see that weighted methods
outperform the corresponding unweighted versions consistently along all the
top authors.
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6 Results of Paper Ranking

Since APR is running on the heterogeneous network, it also gives the ranking
for papers. Table 6 lists the 15 highly ranked papers in CS dataset, and Table
7 lists the 15 highly ranked papers in Health dataset. We also list the citation
number for each paper. Our evaluation rule is only valid for authors. It is
hard to measure the quality of papers. While we still find that papers’ APR
values and citation numbers are highly positively correlated, with Pearson’s
correlation coefficient 0.78 and Spearman’s correlation coefficient 0.49 in CS
data; 0.82 and 0.72 in Health data.

Table 6: Top 15 papers in CS Dataset. Bold names are Turing awards Winners
and their papers.

Rank Title Author names Citation

1
Computers and Intractability: A Guide to the Theory of NP
Completeness

M. R. Garey;David S Johnson 8,166

2
Handbook of Mathematical Functions, With Formulas,
Graphs, and Mathematical Tables

Milton Abramowitz 1,450

3
Genetic Algorithms in Search, Optimization and Machine
Learning

David E. Goldberg 6,272

4 The Design and Analysis of Computer Algorithms Alfred V. Aho;John Hopcroft 1,945
5 The nature of statistical learning theory V. N. Vapnik 5,100

6
A method for obtaining digital signatures and public
key cryptosystems

Ronald L. Rivest; A Shamir; L M Adleman 2,085

7 C4.5: programs for machine learning J. Ross Quinlan 4,674

8
The art of computer programming, volume 3: (2nd ed.)
sorting and searching

Donald E. Knuth 1,609

9 A relational model of data for large shared data banks E. F. Codd 1,497
10 Elements of information theory Thomas M. Cover;J. Thomas 3,341

11
Treating hierarchical data structures in the SDC Time Shared
Data Management System (TDMS)

Robert E. Bleier 27

12
Probabilistic reasoning in intelligent systems: net-
works of plausible inference

Judea Pearl 3,230

13 Pattern Classification (2nd Edition) R O Duda;Peter E Hart;D G Stork 4,293

14
The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms

Donald E. Knuth 1,235

15 Report on the algorithmic language ALGOL 60 J Backus;John McCarthy; Alan J. Perlis... 146

7 Discussions and Conclusions

This paper proposes Author PageRank (APR) as a method for measuring
academic influence of authors in a heterogeneous author-citation network. We
demonstrate that it outperforms 10 other methods on two very large data sets.
We also show that the ranking results differ greatly with all the other methods.

To the best of our knowledge, this is the first attempt in integrating authors
and papers in a coherent academic network. In the past, various approaches
have been tried to add author data into citation network. When treating cita-
tion and author ranking separately in the case of Co-Ranking, we show that
their result is actually the same as the PageRank on the citation network
alone. When transforming the heterogeneous network into an author-citation
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Table 7: Top 15 papers in Health Dataset. Bold names are Nobel awards
Winners and their papers.

Rank Title Author names Citation

1
Cleavage of structural proteins during the assembly of the
head of bacteriophage T4

Ulrich K Laemmli 128,117

2
A rapid and sensitive method for the quantitation of micro-
gram quantities of protein utilizing the principle of protein-
dye binding

M M Bradford 83,911

3 DNA sequencing with chain-terminating inhibitors Frederick Sanger; S Nicklen... 30,432

4
Electrophoretic transfer of proteins from polyacrylamide gels
to nitrocellulose sheets: procedure and some applications

T Staehelin;John Gordon;Harry Towbin 26,244

5 A short history of SHELX George M Sheldrick 40,521

6
Detection of specific sequences among DNA fragments sepa-
rated by gel electrophoresis

Edwin M Southern 13,583

7
Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs

Zong Hong Zhang;Thomas L Madden... 35,770

8 Isolation of biologically active ribonucleic acid from sources
enriched in ribonuclease

W J Rutter;John M Chirgwin... 11,263

9 Optimization by simulated annealing Scott Kirkpatrick;C D Gelatt;M P Vecchi 11,051

10
The use of lead citrate at high pH as an electron-opaque stain
in electron microscopy

Erica Reynolds 13,984

11 The CCP4 suite: programs for protein crystallography Collaborative Computational Project 8,391

12
CLUSTAL W: improving the sensitivity of progressive multi-
ple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice

Des G Higgins;Toby James Gibson... 33,092

13 Basic local alignment search tool Wolfgang J Miller;Eugene W Myers... 26,627
14 A new method for sequencing DNA A M Maxam;Wendy V Gilbert 3,653

15
Interference of sodium ethylenediaminetetraacetate in the de-
termination of proteins and its elimination

A Robert Neurath 21

network, the resulting graph can be too large to be processed. There are com-
putational challenges when carrying out PageRank-based algorithms due to
the very large size of the data. Some methods based purely on author citation
relations are not scalable (e.g., (Radicchi et al., 2009), (West et al., 2013)),
hence they can not deal with data sets of our size. In the author-citation
network, although the node number is reduced by containing authors only,
the number of links can increase in orders of magnitude, depending on the
average reference number and the average number of papers per author. We
solve this computational problem by replacing a dense author-author graph
with a sparse author-paper-author network, hence reducing the number of
edges greatly. Probably this is the reason why we never see PageRank-like
algorithms run on a very large author network.

Our algorithm can be tuned in many aspects. Now we adopt the most
simple approach. For instance, the damping factor is the commonly used 0.85;
random jump is uniformly random to all the nodes including authors and
papers; the random walk moves to the next node among all its neighbors
with equal probability. Improvements can be made to have different jumping
probabilities. Fig 11 shows the impact of damping factor on the overall result
for α ranging from 0.05 to value very close to 1 (note that if it is one, the
eigenvector may not converge). We can see that while 0.85 is better than
most other values, there is still space to improve. We may also assign different
weights for authors and papers, so that a random walk from a paper will
have a fixed probability to cited papers, and have the remaining probability
to authors.
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Fig. 11: The impact of damping factors on the ranking results. (top panel) 50
Turing winners in CS dataset; (bottom panel) 100 Nobel winners in Health
dataset.

Academic networks are not restricted with authors and papers. We can add
other entities, such as journals, conferences, and institutions into the ranking
framework (Wang et al., 2013). Ranking is not limited to author’s overall
influence. Better ranking could be domain dependent (Yan, 2014), given that
different areas have their own style of the publication. In additional to measur-
ing influence, there are other aspects need to be reflected, such as an author’s
potential and impact in the future. We also plan to extend the ranking from
authors to journal (Bergstrom et al., 2008) and institutes (Liu and Cheng,
2005). Those are the topics that we will continue to work on.
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