
 - 1 -

Comparing Web Services with Other Software Components
Yijun Yu

y.yu@open.ac.uk
Computing Department

The Open University

Jianguo Lu
jlu@cs.uwindsor.ca

School of Computer Science
University of Windsor

Juan Fernandez-Ramil
j.f.ramil@open.ac.uk

Computing Department
The Open University

Phil Yuan
yuanf@uwindsor.ca

School of Computer Science
University of Windsor

Abstract. Software metrics is vital for the management of
software development, especially when a new technology is
adopted and established practices have yet to be developed. As a
kind of software components, web service technology has
flourished and attracted a flurry of research activities. Despite
the vast amount of research on mechanisms of web services,
there have been little investigations of the overall nature of
existing web services from a software component point of view.
This paper is the first attempt to compare web services with
other software components in terms of established metrics in
software engineering, including object oriented metrics and
interface metrics. In this study we conclude that there are
statistical differences between the interface, variable name and
other OO metrics when one compares a large sample web
services with typical OO systems. The distributions obtained give
insight into the typical characteristics of web services and can be
used to identify candidates for wrapping into web services.

Keywords: web service, software metrics, interface, component,
XML Schema

1. Introduction
Software metrics is important to the management of
software development, and is a mature field that has been
studied for decades [17]. “The need for (software) metrics
is particularly acute when an organization is adopting a
new technology for which established practices have yet to
be developed”[7]. Although web service technology has
been adopted by major software vendors such as IBM,
Microsoft, BEA, Oracle, Borland, etc., and resulted in a
flurry of research activities, there are little studies on
existing web services in terms of software metrics. Web
services can be seen as software components where
implementation details are hidden behind the interfaces.
Many web service interfaces are automatically generated
by wrapping existing software systems using a language-
to-web service binding tool such as .Net frameworks,
Apache Axis java2wsdl, etc. To understand the state-of-
the-art of web services, there is a need to compare web
services with other software components that offer similar
functionality in terms of established software metrics.

Studies on web service metrics will benefit the
development and management of web services as well as
the research on it. As a developing and evolving
technology, new standards are being proposed, existing
standards such as SOAP (Simple Object Access Protocol)
[4], UDDI (Universal Description, Discovery and
Integration [18]), WSDL (Web Service Definition

Language) [22] are constantly under revisions, researches are
flourishing on web service modeling, discovery, composition,
and verification. On the other hand, web service developers
need to know the best practice or the “styles” of web service
implementation, better based on statistics of the existing web
services. All these research and development activities
require the investigation of web services metrics.

Web services are software components where implementation
details are hidden behind the interfaces. In their interface
definitions, web services are self-descriptive software
component whose data are expressed using XML Schemas,
and whose interfaces are expressed using the Web Service
Definition Language (WSDL [22]). As web services are
mostly generated from object-oriented (OO) programs, we
can learn from the substantial research on OO metrics [1-3, 6,
7, 15, 16, 19, 21].

Hence, the objective of our study is to find indicative metrics
for componentizing software components into Web services.
By analyzing the WSDL artifacts of existing web services,
this study first helps us to understand the nature of publicly
available web services. Since WSDL documents have an
interface definition without exposing implementation body,
our study is mostly related to interface metrics [5, 11],
however we found that such interface metrics for OO
programs are not always useful to tell whether a software
component is suitable to be made part of a Web service.
Through quantitative analysis of the collected data from both
Web services and software components, we have determined
which software metrics are more useful to identify suitable
candidates for Web service componentization.

The remainder of the paper is organized as follows. Section 2
explains how the data samples were obtained; Section 3
introduces interface metrics and uses the samples collected in
Section 2 to compare the metrics of WSDL and other
software component ; Section 4 does similar comparison with
respect to the OO metrics; Section 5 discusses the related
work. Section 6 discusses the threats to validity of our results
and presents our conclusions and future work.

2. Data
In this section, we explain the method used in collecting the
artifacts for the subsequent metrics-based analysis and
comparison.

 - 2 -

2.1 Web services
We collected descriptions of web services, i.e., WSDL
documents, using three methods: (1) searching WSDL files
using Google web service; (2) crawling on the Web for
possible WSDL files starting from popular web service
portals; and (3) collecting web service registered in UDDI
servers.

Among the three methods, Google web service is the most
effective in collecting WSDL files. We constructed a
program to search for possible WSDL links by sending out
queries automatically. When the results were larger than
the 1000 limit imposed by Google, the program can
partition the large result set to smaller ones by adding
additional keywords. Hence our program retrieved most of
the WSDL links provided by Google web service.

However, the results provided by Google web service and
Google manual search are different. Although Google
manual search indicates that there are around 30K possible
web service links, Google web service only provides a
small portion of the data (less than 10 %).

In order to find more WSDL documents, we also build a
multithreaded web crawler to crawl automatically for
WSDL links. The crawler starts with WSDL-rich web
sites, such as xmethods.com, webservicex.net,
webservicelist.com, salcentral.com, and
www.bindingpoint.com. We crawled millions of links, and
picked the ones that looked like WSDL URLs.

UDDI (Universal Description, Discovery and Integration)
[18] registries that we searched include the one’s provided
by IBM and Microsoft. We build a program to
exhaustively find all the web services on the servers by
searching the names of the web services. Since registries
have a limit on size of the returning result, we broke the
large result set by iterating through more specific queries.
Hence we retrieved all the items in the registries, both
containing thousands of them. However, many of those
registered items are not web services, or do not have a
links to WSDL files. In the end, only 549 WSDL
documents were collected by the UDDI method.

Having collected those WSDL documents from the three
methods, we found out that there were many duplicates and
syntactically incorrect WSDL files. After filtering out
those files, we obtained 2710 syntactically correct and
unique WSDL documents. We have provided a search and
download interface for those WSDL documents at
www.cs.uwindsor.ca/~jlu/wsdl

We should point out that this total number of WSDL files
is much larger than several other WSDL collections
reported in the literature so far. For example, Fan et al
[10]’s study on a WSDL collection contains 640 WSDL
documents, a WSDL search engine called Woogle [8] has
1213 WSDL documents in total summed from several

subcategories, including possible duplicates; and
xmethods.com, a popular WSDL portal, has only 515 WSDL
documents.

2.2 Other software components
While selecting the software components counterparts to
compare with web services, we consider the following
criteria. First, the web services describe their software
interfaces only. Hence the component to be compared with
should have a clear distinction between interface and
implementation. Second, WSDL use XML Schemas to
describe the data structure and, in some sense, the application
domain model. Since most software applications use an
object model, we should compare the schema model in
WSDL with the object model.

Many web services are wrapped from OO systems. In
particular, XML Schemas in WSDL are mapped from classes
of the underlying OO systems. The comparison with typical
OO systems in terms of representative OO metrics would
reveal the OO features in web services.

The OO systems to be compared with the web services are
from [7], which also developed the popular OO metrics that is
used in our paper. There are two libraries that are developed
in different organizations. One library (called GUI) is
developed by a software vendor for a GUI application, which
consists of 634 classes written in C++. The other (called
Manufacturing) is developed by a semiconductor
manufacturer for flexible machine control and manufacturing
system. It consists of 1459 classes written in Smalltalk.
Unfortunately, the data source in [7] is not available. For
improving the validity of our comparison, we decided also to
measure large-scale open-source OO projects such that the
observations can be replicated. Specifically, the Eclipse IDE
release version 3.2.2 has been chosen (called Eclipse) for our
comparison measurements. It consists of 89 plugin
components, written in Java. The system has in total 15499
classes and about 2 million LOC.

Whilst a WSDL file does not describe the implementation
details of the software component, it is straightforward to
compare their interfaces with other interfaces. The other
interfaces used in our comparison are from [5]. The data
contains twelve components from various areas, including

• CoreAudio: a low level interface to Audio hardware
written in C;

• DB: a high level interface for database querying,
updating, and connection management;

• MFC: a large component which provides a C++
framework for Windows application.

3. Interface metrics
WSDL defines a set of operations, which is similar to
interface definitions. Since there are no implementation
details, we can not measure the metrics that are based on the
complete source code, such as McCabe complexity [17] that

 - 3 -

measures the controls flow. What we can measure is based
on the information in the interface only, such as
operations, arguments, and identifiers. Following the
interfaces metrics proposed in [5], we adopted those
metrics for web services.

3.1 Arguments
Operation (no) and argument (na) counts provide a way to
measure the size of web services. Isolated, the total
number of operations and the total number of arguments
are not very meaningful values. They tell us the functional
size of the service. The smaller the number of operations
and arguments, the better the understandability. On the
other hand, the larger the number of operations and
arguments, the better the chances for the Web service to be
invoked and used. What really becomes interesting, is to
look at the ratio between the number of arguments and
operations [5]. One would expect that operations with
fewer arguments will be easier to understand and to wrap
as web services. In our study we use the APO metric
defined below.

Definition 1 (APO) Given the total number of arguments

an and total number of operations on , the argument per
operation (APO) is defined as

o

a

n
n

APO = (1)

Argument count an is the total number of arguments in a
WSDL document. Each part in a message will be counted
as an argument. A response message can have multiple
parts, i.e., more than one arguments. APO is similar to the
interface metric Argument Per Procedure defined in [5].

Comparing histograms of number of arguments (Na) and operations (No)

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 More

metric

nu
m

be
r o

f W
S

D
Ls

0

1000

2000

3000

4000

5000

6000

nu
m

be
r o

f c
la

ss
es

Na(WSDL)
No(WSDL)
Na(Eclipse)
No(Eclipse)

APO distribution histograms

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
M

or
e

APO

N
um

be
r o

f W
S

D
Ls

0

2000

4000

6000

8000

10000

12000

N
um

be
r o

f c
la

ss
esWSDL

Eclipse

0

2

4

6

8

10

12

14

APO(Eclipse) APO(WSDL)

0%
10%
50%
90%
100%

MAX=62

MAX = 9

Figure 1 Comparing the APO metric. The histogram (upper charts)
shows vertically the frequency of the metric horizontally distributed

over ranges. The box plot (the lowest chart) contrasts the distributions
to compare data points at the minimal (0%), maximal (100%), median

(50%) and a box of percentile (10%~90%). For better visualization,
here, the y-axis scale is such that the maximum APO for web services is

beyond the visible area

Example 1 (APO). Given the following WSDL document,
there are two operations, i.e., checkPrice with one input
and two output arguments, and checkAvailability with one
input and one output arguments. Hence, na is 5 and no is 2.
APO is 2.5.

<?xml version="1.0"?>
<definitions name="PriceCheck" xmlns:pc="http://example/PriceCheck"
xmlns:avail="http://example/ns/availability"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
 <xsd:schema>
 <xsd:element name="Sku" />
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:element>
 <xsd:complexType name="avail:priceType">
 <extension base=”Sku”/>
 <xsd:sequence>
 <xsd:element name="shipping" type="xsd:double"/>
 <xsd:element name="price" type="xsd:double"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</types>
<message name="PriceCheckRequest">
 <part name="sku" type="Sku"/>
</message>
<message name="PriceCheckResponse">
 <part name="pcResult" type="avail:priceType"/>
</message>
<message name="AvailabilityCheckRequest">
 <part name="sku" type="Sku"/>
</message>
<message name="AvailabilityCheckResponse">
 <part name="amount" type="xsd:integer"/>
</message>
<portType name="PriceCheckPortType">

 - 4 -

 <operation name="checkPrice">
 <input message="pc:PriceCheckRequest"/>
 <output message="pc:PriceCheckResponse"/>
 </operation>
<operation name="checkAvailability">
 <input message="pc:AvailabilityCheckRequest"/>
 <output message="pc:AvailabilityCheckResponse"/>
 </operation>
</portType>
<binding name="PriceCheckSOAPBinding"
 type="pc:PriceCheckPortType">
 <operation name="checkPrice"> … </operation>
 <operation name="checkAvailability"> … </operation>
</binding>
<service name="PriceCheckService">
 <port name="PriceCheck"
 binding="pc:PriceCheckSOAPBinding"/>
</service>
</definitions>

In Figure 1, we show a histogram of the APO metrics for
the WSDL documents and contrast them with that of
Eclipse components in a box plot. It is clear that with few
exceptions, most WSDL documents have a larger number
of APO.

Table 1 compares the APO of WSDL documents with
other components. In OO programming, a class method
saves one implicit argument (e.g., this pointer in C++, self
object in Smalltalk and this reference in Java). As
measured in [5], difference of OO and procedural
programs can account for about one argument smaller in
the APO. However, we observe that the average APO
(WSDL) is much larger than APO (OO), which cannot be
attributed only to the difference in OO and procedural
languages.

Table 1: APO metric (median indicated when possible1)

Component Arguments Operations APO Median
APO

WSDL 199208 36187 5.50 3.07

CoreAudio[5] 42 134 3.19 N/A

DB [5] 210 404 1.92 N/A

MFC[5] 5907 7735 1.31 N/A

Eclipse 144106 136762 1.05 0.67

Observation 1 (Larger APO in WSDL due to stateless
Web services) WSDL are stateless, therefore their
operations are designed to provide transaction-style
services (similar to static class methods in OO), as
opposed to stateful interface of objects. An object
instance method often depends on the state of the
instance variable (e.g.., this reference in Java) to
provide additional information to the method
parameters. In other words, without a persistency layer

1 As most distributions of the metrics are skewed, i.e., non-

symmetric, using the median provides a better estimator of the
center of the distribution than the average.

to store the temporary state into a database or into a file,
WSDL operations must obtain all necessary information
from the argument list. As a result, the APO metric will be
much larger than those of object-oriented systems.

Observation 2 (Larger APO in WSDL due to efficiency
considerations to minimize the number of SOAP messages
over the network) In order to provide interoperability, the
Web services messages must encode the parameters into
an envelope of SOAP messages in the XML format, which
implies larger message size than that in object-oriented
programs. In addition, such SOAP messages are sent over
the network in Web services, whereas the OO messaging
can be simply a local invocation inside computer’s
memory. Taking efficiency into account, therefore, the
WSDL arguments should encode as much information as
possible in order to reduce the total number of messages
sent across the network. As a result, the average number
of parameters per request/response message is much
larger.

Most operations arguments in WSDL are defined by a request
and a response message of certain XML schema type. These
message types consist of parts in simple types such as
xsd:string and xsd:integer.

Definition 2 (DAC, DAR) Let the distinct argument count
(DAC) be the cardinality of the set of (argument, type) pairs
appeared in a WSDL interface description. DAR is defined as

an
DAC

DAR = (2)

Example 2 (DAR) Given the WSDL description in Example
1, the set of the (argument, type) pairs is: {(sku, Sku),
(shipping, double), (price, double), (amount, integer)}. Hence
DAC=4, and DAR=4/5=0.8.

Table 2 lists the DAR values for various components.
Table 2: Average DAR metrics

Libraries DAC DAR

WSDL 17 0.54

DB [5] 129 0.32

CoreAudio [5] 33 0.25

MFC [5] 2363 0.31

Observation 3 WSDL documents have a high DAR, which
means that most of them are developed independently with
less similarities between arguments.

Consider two WSDL documents both have three distinct
arguments and twelve argument instances in total. Suppose in
the first WSDL each distinct argument is repeated four times
each. In the second WSDL, one distinct argument is used ten
times, and two others are used once. The DAR values for
both WSDLs would be the same. However, the second

 - 5 -

interface is more consistent, and allows better data
transferability. Hence ARS is introduced to capture this
difference [7]

Definition 3 (ARS) Given a sequence A of (name, type)
pairs in the web service, the argument repetition scale
(ARS) is:

A

a
AARS Aa

�

= ∈

2

)((3)

where |a| denotes the number of repetition of a in A.

Example 3 For the example Web service, the (name, type)
pair sequence is (sku, string), (sku, Sku), (shipping,
double), (price, double), (amount, integer). Note that the
pair (sku, Sku) appeared twice. Thus,

4.1
5

34
5

1*32*1 22

=+=+=ARS

In OO programs, DAC is often large for complex systems.
For example, DAC for Microsoft Foundation Classes
(MFC) is 2363. On the other hand, WSDL documents do
not exhibit large DAC. Table 3 compares the argument
metrics of WSDL documents with that of OO components
in [5].

Lower ARS indicates more specialized functionality and
higher DAR indicates more consistency of argument
declarations. Consistent argument declarations make it
easier to understand and reuse the components. Having
higher DAR and lower ARS, therefore, WSDL interfaces
are more reusable in general, but also more cumbersome to
understand the functionality of each operation.

Table 3: Average of ARS metrics

Libraries DAC ARS

WSDL 17 1.9

DB [5] 129 12.55

CoreAudio [5] 33 9.06

MFC [5] 2363 21.42

Observation 4 Comparing with other components, WSDL
tends to have higher DAR and smaller ARS, indicating
that fewer arguments are repeated. This indicates that
web services are coarse grained components with few
operations that share the same parameters.

3.2 Identifiers
Just as in programming languages, names used in WSDL
should be self-explanatory and easy to understand. In the
following, we measure the identifiers used in the WSDL
documents.

Definition 4 (Mean/Median Identifier Length, MIL/MeIL)
The mean identifier length (MIL) is the mean size (i.e.
number of characters) of argument and operation names
occurring in the WSDL documents. MeIL is the median
length of identifiers

Figure 2 shows the distribution of MIL in WSDL documents.

0

100

200

300

400

500

600

0 4 8 12 16 20 24 28
More

MIL

n
u

m
b

er
 o

f
W

S
D

L
s

Figure 2: MIL metric histogram in web service

The mean string commonality (MSC) metric can be used to
measure naming consistency. This can indicate the reusability
of web services.

Definition 5 (MSC) The Mean String Commonality of a set
of identifiers A is defined as:

2/)1(*

),max(
|),(|

)(
)(),(

−

�

=
∈

nn

yx
yxlcs

AMSC
Acombyx (4)

where n =|A|, lcs(x, y) is the largest common substring of x
and y, comb(A) is the set of all distinct combinations between
the identifiers in A.

Example 4 In the given WSDL example, the set of argument
names we measure for the interface is A={sku, shipping,
price, amount}, MIL is 5.5, MeIL is 6. The set of operation
names we measure for the interface is O={checkPrice,
checkAvailability}. The MSC(A) and MSC(O) are
calculated respectively as 0.181 and 0.588.

Table 4 lists the MSC for arguments, denoted as MSC(A),
and for operations, denoted as MSC(O) respectively for the
WSDL documents and the published metrics in [5].

Table 4: Identifier metrics

Language MIL MeIL MSC(A) MSC(O)

WSDL
12.0 11 9.00 0.19

CoreAudio [5] 15.04 12 0.27 0.46

DB [5] 6.23 6 0.14 0.18

MFC [5] 7.69 7 0.17 0.21

 - 6 -

Observation 5 WSDL descriptions tend to have longer
identifier length in general, except CoreAudio
component. Both WSDL and CoreAudio describes
interfaces specialized in small areas. Also, longer
identifiers make WSDL more self-explanatory.

Another reason for longer names may be due to the naming
convention introduced by WSDL generation tools. Most of
the names are generated automatically from conventional
programs by adding some prefix or postfixes. For example,
most message names end with ‘response’ or ‘request’. For
this reason, the MSC in WSDL arguments is much higher
than that of other software components. The MSC for
operations, however, is lower because the WSDL
operations tend to be self-contained and have coarser
granularity, therefore the naming does not share as much in
common as other components.

4. OO Metrics
Operations in WSDLs use XML Schema to define their
input and output data types. Since WSDL does not provide
the implementation details, we can only measure metrics
similar to WMC (Weighted Methods per Class), DIT
(Depth of Inheritance Tree), and NOC (Number of
Children) from the object-oriented metrics suite [7, 23].
Since many Schemas in WSDL are mapped from classes in
other programming languages, it is natural to compare
Schema structure with class structures using DIT and
NOC.

WSDL size can be measured in terms of number of
operations in the PortType. OPS (Operations Per Service)
is similar to WMC (Weighted Methods per Class) in the
OO metric suite.

Definition 6 (OPS) OPS is the total count of operations
that are declared by a PortType of a web service.

Figure 3 shows the distribution of OPS in both WSDL and
Eclipse. Compared with typical OO applications, the
median OPS is similar to one OO system (GUI), and
smaller than the others. The maximum OPS of WSDL is
larger than all the OO systems.

Operation histograms

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Mor

e

number of operations

N
um

be
r o

f W
S

D
Ls

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f c
la

ss
es

WSDL
Eclipse

Figure 3 : Comparing OPS distribution in WSDL with the WMC
distribution in Eclipse. Though histograms scale differently, they match

in shape

0

5

10

15

20

25

30

35

40

45

OPS(Eclipse) OPS(WSDL)

0%
10%
50%
90%
100%

MAX=897

MAX=18.77

Figure 4: Comparing OPS metric using boxplot

One observation is that a few large web services have a huge
number of operations. For example, 2.8MB size eBay has 120
operations and the DotNetJunkies service has 897 operations.
On the one hand, it shows that web service design typically
has larger number of services. Table 5 summarizes the OPS
metric for the WSDL and the compared OO and Java
components.

Table 5: Operation Per Service

 Median Max Min

WSDL 5 897 1

GUI (C++) [7] 5 106 1

Manufacturing
(Smalltalk) [7]

10 346 1

C: Eclipse (Java) 8 711 1

Figure 3 shows the distribution of the OPS metric value
among the Eclipse classes. Both distributions are very similar,
which suggests that OPS is not a good metric to distinguish a
software component from a web service interface. Figure 4
compares the OPS value in WSDL with Java components in
box plot.

Example 5 For the WSDL in Example 1, both XSD Schema
extension and restriction have one child, hence NOC for
those two types are 1.

Figure 5 reveals a distribution of the NOC metric of WSDL
documents and its comparison with Eclipse components.
Most web services have very small number of direct children
in the inheritance tree.

Definition 7 (DIT) DIT is defined as inheritance depth in
XML Schema used in WSDL. .

In a WSDL document, XML Schema definition is enclosed
by the <types/> tags. Inside the XML Schema, inheritance
relation is defined by the <extension base=”baseType”/> or
<restriction/> tag. Analyzing the inheritance relation of the
types, we obtain a directed acyclic graph. DIT is the length of
the longest inheritance path in the DAG.

 - 7 -

Comparing NOC histograms

0

200

400

600

800

1000

1200

1400

0 4 8 12 16 20 24 28
Mor

e
NOC

nu
m

be
r

of
 W

S
D

L
do

cu
m

en
ts

0

5

10

15

20

25

30

35

40

nu
m

be
r

of
 E

cl
ip

se
 p

lu
gi

ns

WSDL
Eclipse

Figure 5: Comparing NOC metric distributions

Definition 8 . (Number of Children) NOC is the immediate
number of children of a node in the XML Schema
inheritance tree.

Table 6 compares the median OO metrics of the
components with that of the WSDL documents.

Table 6: Comparing the median/average OO metrics

Language OPS/NOM NOC DIT

WSDL:Median
Average

5.00
13.35

1.00
6.52

1.00
0.67

Eclipse: Median
Average

7.78
8.82

5.62
71.26

5.00
5.24

Observation 6 WSDL descriptions tend to have much
larger spread in OPS than the other software WMC2
because they are provided as an interface to a larger
chunk of functionality: the service. On the other hand,
the NOC and DIT of the web services are all smaller,
indicating a limited reuse of the data structures
revealed by the interfaces.

Table 7 compares the DIT metric for WSDL documents
with other software components.

Table 7: Comparison for the DIT metric

Language Median Max Min

WSDL 1 5 0

GUI [7] 1 8 0

Manufacturing [7] 3 10 0

Eclipse 5 10 1

To have a better view of the difference of WSDL with
other components in terms of DIT, we conducted a
detailed comparison with Eclipse on the distribution.
Figure 6 compares the distribution and boxplots of DIT of

2 We use net.sourceforge.metrics to collect metrics for Eclipse,

where the WMC is weighted by the McCabe cyclomatic
complexity. To make a fair comparison with WSDL interfaces
for which it is impossible to obtain McCabe complexity, we
use the number of methods per class/interface (NOM) instead.

WSDL with that of Eclipse, which shows that the XML
Schema in the WSDL typically have smaller DIT.

DIT distributions

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 More
DIT

nu
m

be
r

of
 W

S
D

L
do

cu
m

en
t

0

5

10

15

20

25

nu
m

be
r o

f E
cl

ip
se

 p
lu

gi
ns

WSDL
Eclipse

0

2

4

6

8

10

12

DIT(Eclipse) DIT(WSDL)

0%
10%
50%
90%
100%

 Figure 6: DIT metric comparison with Eclipse

5. Related work
Central to the Web Service technology is the Web Service
Declaration Language (WSDL) that standardizes the interface
among the loosely coupled Web Service components.

A few works [10, 14, 20] are done in collecting and analyzing
public available web services. Fan et al [10] presents a
snapshot of publicly available web services (640 in total) in
the following three aspects: 1) application domains of web
services, such as data source look up, banking, and sensing;
2) number of operation per service, and 3) documentation of
web services, i.e., the length of documentation in each web
service. The relevance of the survey was in connection with
web service discovery and composition. For example,
documentation in WSDL will help web service discovery
using standard information retrieval techniques.

Kim et al [14] and Schmietendorf et al [20] survey features
specific for web services, such as RPC style and document
style of web services, liveness and delay, and SOAP message
size. Kim et al [14] also analyze in detail the Amazon and
Google web services. Schmietendorf et al [20] report
techniques used to generate web services, frequency of
changes of web services, styles of web service (RPC and
document style). It also summarizes the number of methods in
WSDLs and the number of arguments in each operation.
Compared with these studies, we focus on the comparison
with other traditional software components, in terms of
existing software metrics.

 - 8 -

Dong, X. et al [9] built a web service search and browsing
engine, by clustering web services into different
application domains. In a more general setting, our work is
related to metrics for various software artifacts, including
software applications, software components and interfaces,
XML documents and XML Schemas, and OO programs.

6. Conclusions and future work
We compared web services with other software libraries in
terms of interface, variable naming and OO metrics. The
comparison reveals that operations in WSDL interfaces
have more operands per operation than other software
components (larger APO). The argument metrics
comparison shows that web services share fewer common
argument names and longer names are used in the
arguments. Finally, the OO metrics reveals WSDL use less
inheritance in the Schemas of WSDL description than
typical OO software . Although these metrics are useful in
differentiating typical existing WSDL from other software
libraries, we also found that the number of operations per
service is less useful in identifying suitable software
components to be wrapped into web services.

Although we cannot guarantee the comparison is complete
as it is practically impossible to collect all the existing
WSDL, on one hand, and typical OO software, on the
other to compare, with diversified samples, we believe
they are quite representative to the existing web services
and other software libraries. To minimize thread of
validity, we conduct the comparison using open-source
projects and well-established software metrics. The
compared programming languages do not cover all
languages in use, but we believe they are representative
languages for existing software systems.

In the future, we are going to measure the argument
metrics of the Eclipse components and further classify
them using the interface metrics. It will be of particular
interests to correlate these metrics with the quality, the
popularity (e.g. number of hits), the domain type, and type
of software development process of the Web Services and
with the quality and other analogous characteristics of the
OO systems. These metrics could also be used as part of a
tool to identify in OO repositories candidates for wrapping
into Web services. We also plan to formalize the results
by doing some statistical testing (e.g. test whether the
medians are similar or not at a given significant level).

Acknowledgement
We would like to thank Abu Hassan and Edyta Saklak for
their help in building the programs to collect WSDL
documents.

References
[1] J. Barnard, "A new reusability metric for object-oriented

software," Software Quality Control, vol. 7, pp. 35-50, 1998.

[2] V. Basili, L. Briand, W. Melo, and lio, "A Validation of Object-
Oriented Design Metrics as Quality Indicators," IEEE Trans. Softw.
Eng., vol. 22, pp. 751-761, 1996.

[3] J. Bieman, "Deriving Measures of Software Reuse in Object Oriented
Systems," in Proceedings of the BCS-FACS Workshop on Formal
Aspects of Measurement, 1992, pp. 63-83.

[4] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.
F. Nielsen, S. Thatte, and D. Winer, "Simple Object Access Protocl
(SOAP) 1.1."

[5] M. Boxall and S. Araban, "Interface Metrics for Reusability Analysis
of Components," in ASWEC '04: Proceedings of the 2004 Australian
Software Engineering Conference (ASWEC'04), 2004.

[6] L. Briand, E. Arisholm, S. Counsell, F. Houdek, and T. e. Fosse,
"Empirical Studies of Object-Oriented Artifacts, Methods, and
Processes: State of the Art and Future Directions," Empirical
Software Engineering: An International Journal, vol. 4, pp. 385-402,
1999.

[7] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Trans. Softw. Eng., vol. 20, pp. 476-493,
1994.

[8] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs, "Swoogle: a search and metadata engine for
the semantic web," ACM Press New York, NY, USA, 2004, pp. 652-
659.

[9] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
"Similarity search for web services," in VLDB Conference Toronto,
2004.

[10] J. Fan and S. Kambhampati, "A snapshot of public web services,"
SIGMOD Rec., vol. 34, pp. 24-32, 2005.

[11] M. Ghassemi and R. Mourant, "Evaluation of coupling in the context
of Java interfaces (poster session)," in OOPSLA '00 (Addendum),
2000, pp. 47-48.

 [14] S. Kim and M. Rosu, "A survey of public web services," in WWW Alt.
'04: Proceedings of the 13th international World Wide Web
conference on Alternate track papers \& posters, 2004, pp. 312-313.

[15] L. Laranjeira, "Software Size Estimation of Object-Oriented
Systems," IEEE Trans. Softw. Eng., vol. 16, pp. 510-522, 1990.

[16] W. Li and S. Henry, "Maintenance metrics for the object oriented
paradigm," in Software Metrics Symposium, 1993. Proceedings.,
First International, 1993, pp. 52-60.

[17] T. McCabe, "A Complexity Measure," IEEE Trans. Software Eng.,
vol. 2, pp. 308-320, 1976.

[18] E. Newcomer, Understanding Web Services: XML, WSDL, SOAP,
and UDDI: Addison-Wesley Professional, 2002.

[19] S. Purao and V. Vaishnavi, "Product metrics for object-oriented
systems," ACM Comput. Surv., vol. 35, pp. 191-221, 2003.

[20] A. Schmietendorf and R. R. Dumke, "Empirical analysis of available
web services," in Proc. of the 13th International Workshop on
Software Measurement, 2003, pp. 51-69.

[21] M.-H. Tang, M.-H. Kao, and M.-H. Chen, "An Empirical Study on
Object-Oriented Metrics," in METRICS '99: Proceedings of the 6th
International Symposium on Software Metrics, 1999.

[22] W3C, "Web Services Description Language (WSDL) 1.1," 2001.
[23] H. Washizaki, H. Yamamoto, and Y. Fukazawa, "A Metrics Suite for

Measuring Reusability of Software Components," in METRICS '03:
Proceedings of the 9th International Symposium on Software
Metrics, 2003.

