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ABSTRACT
This paper proposes to use simple random walk, a sampling
method supported by most online social networks (OSN), to
estimate a variety of properties of large OSNs. We show that
due to the scale-free nature of OSNs the estimators derived
from random walk sampling scheme are much better than
uniform random sampling, even when uniform random sam-
ples are available disregarding the notorious high cost of ob-
taining the random samples. The paper first proposes to use
harmonic mean to estimate the average degree of OSNs. The
accurate estimation of the average degree leads to the discov-
ery of other properties, such as the population size, the het-
erogeneity of the degrees, the number of friends of friends,
the threshold value for messages to reach a large component,
and Gini coefficient of the population. The method is vali-
dated in complete Twitter data dated in 2009 that contains
42 million nodes and 1.5 billion edges.

Keywords
OSN, Online Social Network, Hansen-Hurwitz, Estima-
tor, Scale free network, Harmonic mean

1. INTRODUCTION
The properties of online social networks are of great

interests to general public as well as IT professionals.
Yet the raw data are usually not available to the public
and the summary released by the service providers is
sketchy. Thus sampling is needed to reveal the hidden
properties or structure of the underlying data [5, 20,
13].

For instance, we may want to learn the average num-
ber of friends in a network, or the average degree of
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a graph. One obvious but often impractical method
is to select randomly a set of users {U1, U2 . . . , Un},
count their degrees {d1, . . . , dn} for each user, and cal-
culate the sample mean as the estimate of the popula-
tion mean:

d̂SM =
1

n

n∑
i=1

di (1)

The sample mean estimator d̂SM is an unbiased es-
timator of the population, if the users can be selected
randomly with equal probability. Unfortunately this is
not the case in most practice. When micro bloggers are
selected, they are often not picked randomly due to the
limited access methods provided by OSN sites. Rather,
more popular bloggers tend to have a higher probability
of being sampled if users are crawled by following the
links.

There are studies on the sampling methods for OSN
[5, 20] and in related areas such as social networks [22,
26], graphs [13, 25], web URLs [8], and search engine
index and deep web [1, 17, 16]. The typical underlying
techniques include Metropolis Hasting Random Walk
(MHRW) [18] for uniform sampling and Random Walk
(RW) [14] for unequal probability sampling.

A random walk on graph follows one of the links with
an equal probability among all the links. A blogger with
more followers will have higher probability of being sam-
pled. It is well known that the asymptotic probability
of a node being sampled is proportional to its degree
[14]. Therefore, the sample mean tends to overestimate
the population average degree.

MHRW is reported rather good at obtaining a ran-
dom sample of random networks. However, in the sam-
pling process many nodes are retrieved, examined, and
rejected. The cost is rather high especially for OSN
where the node retrieval needs network traffic and usu-
ally there are quota for daily accesses.

Even when uniform random samples are obtained,
the sample mean estimator has a high variance because
the degree distribution of OSNs usually follows power
law. Many nodes have small degrees, while some nodes
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may have very large degree. The inclusion/exclusion of
a super large node in a sample will make the estimates
diverge.

When uniform random samples are hard to obtain, it
is rather common to use PPS (Probability Proportional
to Size) sampling and Hansen-Hurwitz related estima-
tors [7]. In particular, the harmonic mean instead of
the arithmetic mean of the sample can be used as the
estimator of the average degree of OSN:

d̂H = n

[
n∑
i=1

1

di

]−1

(2)

Here the subscript H indicates that it is the harmonic
mean, and that it can be derived from the traditional
Hansen-Hurwitz estimator as described in the next sec-
tion. For this estimator the sample is obtained by sim-
ple random walk, resulting in the node selection prob-
ability proportional to its degree. This estimator was
first derived and studied in depth by Salganik et al. [22]
to estimate the properties of hidden population such as
drug-addicts. In that setting the true values are un-
known, the assumptions such as sampling probability
are flimsy, thus the veracity of the estimator is impos-
sible to evaluate.

In the context of OSN, Kurant et al. [11, 5, 6] stud-
ied various sampling methods, including random walk,
to discover network properties such distribution of node
degrees. [5] studied the sampling of Facebook, in partic-
ular the Re-Weighted Random Walk that can be also
traced back to Hansen-Hurwitz estimator. [11] men-
tioned harmonic mean estimator, but fell short of the
analysis and comparison of the estimator.

Rasti et al. [21] studied re-weighted random walk
sampling in peer-to peer networks. Both [5] and [21]
compare their methods with Metropolis-Hasting ran-
dom walk, not uniform random samples. The compar-
ison to uniform random samples was conducted in [10]
for the estimation of population size not average degree.

This is the first paper to show that in a real large
network the harmonic mean estimator is much better
than sample mean estimator in uniform random sam-
ples, even ignoring the cost of obtaining the uniform
samples. In practice as demonstrated in Twitter net-
work, the sample size can be thousands times smaller
than uniform random samples to achieve similar accu-
racy. In theory, the improvement can be unlimited with
the growth of the network size.

The contributions of this paper are 1) the properties
of the estimator (bias and variance) are analyzed and
empirically verified in a large real network; 2) the ad-
vantage over uniform random sample is analyzed and
compared. In particular we found that in Twitter data
the estimator is much better–it has a very small bias,
and the variance is orders of magnitude smaller than
the sample mean estimator; 3) the cause is identified

as the heterogeneity of the data induced by the scale-
free nature of the network. Coefficient of variation is
proposed to quantify the heterogeneity; 4) the accurate
estimation of the average degree can lead to the dis-
covery of a string of other network properties such as
the network size, the heterogeneity of the degrees, the
threshold value for message diffusion, and the inequality
of the friends in the network.

We want to emphasize that our method is not limited
to the estimation of direct connections between users in
OSN. The average degree can be the average number of
friends in the case of Facebook or Linkedin, or average
followers and followees in Twitter and Weibo networks.
In addition to such explicit graph where edges represent
the following (or friend) relationships, in OSNs there
are implicitly derived graphs where an edge exists if two
nodes share messages, groups, etc.., resulting in message
networks and group networks. In a message network,
two persons are linked if they shared a message. In
group network, two persons are connected if they belong
to the same group. Thus, the degree can represent the
direct connections to friends, the number of message
reposts on the network, or the number of groups people
are associated with.

2. ESTIMATORS

2.1 Sample mean estimator
Suppose that in the population there are N number

of users. Each user has a property Yi, i ∈ {1, 2, . . . , N},
which can be age, number of friends, or number of mes-
sages etc..

Let the population total is τ =
∑N
i=1 Yi, and popu-

lation mean is Y = τ/N . Our task is to estimate Y
using a sample. In particular, this paper focuses on the
degree property, i.e., estimating the average degree d
using a sample {d1, d2, . . . , dn}.

If a uniform random sample Y1, . . . , Yn is obtained,
the sample mean is an unbiased estimator as defined
below:

ŶSM =
1

n

n∑
i=1

Yi (3)

When Yi is the degree of node i, i.e., Yi = di, the
above equation becomes the sample mean estimator for
degrees:

d̂SM =
1

n

n∑
i=1

di (4)

The variance of the estimator d̂SM is [24]

var(d̂SM ) =
N − n
N

σ2

n
(5)

where σ2 is the population variance for degrees that
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can be calculated by

σ2 =
1

N

N∑
i=1

d2i −

(
1

N

N∑
i=1

di

)2

=
1

N

N∑
i=1

d2i − d
2

(6)

where d is the arithmetic mean of all the degrees in the
total population.

The estimated variance of the estimator d̂SM is

v̂ar(d̂SM ) =
N − n
N

s2

n
(7)

where s2 is the sample variance of d1, d2, . . . , dn.
The problem with this sample mean estimator is that

uniform sample is not easy to obtain. Moreover, the
population variance σ2, and consequently the estimator
variance, are large due to the scale-free nature of the
network. The degree distribution in online social net-
works follows power law or Zipf law. That is, if we rank
all the nodes according to their degrees in decreasing
order (d1, d2, . . . , dN ), then

di =
A

iα
, (8)

where A and α are constants. α is called the exponent
or slope that is typically around one in various scale-free
networks 1.

With such degree distribution the population vari-
ance is very large, leading to large variance of the sam-
ple mean estimator. Suppose that α = 1, which is typ-
ical for many scale free networks [19] including Twitter
network [12]. σ2 can be approximated as below by com-
bining Equations 8 and 6:

σ2 = E(X2)− E2(X)

=

(
E(X2)

E2(X)
− 1

)
E2(X)

=

(
N
∑N
i=1 d

2
i

(
∑N
i=1 di)

2
− 1

)
d
2

=

(
N
∑N
i=1 i

−2

(
∑N
i=1 i

−1)2
− 1

)
d
2

≈
(

N

ln2N
− 1

)
d
2

(9)

It shows that the variance does not converge when the
network size N grows to the limit.

1Note that there are two ways to describe the property of
power law, one using the Zipfian approach as used here,
the other is the frequency of the degrees that is equivalent
to Zipfian approach except that the exponent is greater by
one.

2.2 Harmonic mean estimator
When sampling probability is not equal for each unit,

a common approach is to use Hansen-Hurwitz estima-
tors. One of them is to estimate the population total
[24]:

τ̂HH =
1

n

n∑
i=1

Yi
pi
, (10)

where pi is the selection probability of unit i, τ =∑N
i=1 Yi is the population total, and

∑N
i=1 pi = 1. Se-

lection probability of unit i is the probability it is se-
lected in one draw of the sample elements. Note that
Hansen-Hurwitz estimator is used when sampling with
replacements, i.e., a unit can be sampled multiple times
just the same as in random walk sampling.

When Yi = 1 for all i ∈ {1, 2, . . . , N}, the above esti-
mator is reduced to another version of Hansen-Hurwitz
estimator that estimates the total number of nodes N =∑N
i=1 Yi:

N̂HH =
1

n

n∑
i=1

1

pi
(11)

In our OSN case, samples are often obtained by ran-
dom walk. It is well known that random walk obtains
a biased sample. Asymptotically the probability of a
user being visited in a random walk is proportional to
its degree, i.e., in the case of random walk,

pi =
di∑N
j=1 dj

=
di
τ

(12)

Therefore an estimator for degree mean d̂H can be
derived from the unbiased Hansen-Hurwitz estimator
for N as follows:

d̂H =
τ

N̂HH

= τ

[
1

n

n∑
i=1

τ

di

]−1

= n

[
n∑
i=1

1

di

]−1

(13)

The estimator for the arithmetic mean degree turns
out to be the harmonic mean of the degrees in the sam-
ple. Salganik et al [22] gave a similar derivation using
the ratio of two estimators in the setting of respondent
driven sampling.

Although N̂HH is an unbiased estimator, its inverse
may not be unbiased. Cochran [3] showed that the bias
is on the order of 1/n. Since the sample size n in social
network sampling is rather large in general, the bias is
negligible.
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Figure 1: Comparison of d̂SM in UR (Uniform

Random) sampling and d̂H in RW (Random
Walk) sampling. Panels A (for UR) and B( for
RW) show that the estimation fluctuates with
the increase of sample size. Panels C (for UR)
and D (for RW) show the box plots of 100 es-
timations for sample sizes ranging between 500
and 8000.

The variance of N̂HH is

var(N̂HH) =
1

n

N∑
i=1

pi(1/pi −N)2 (14)

It can be estimated from a sample using

v̂ar(N̂HH) =
1

n(n− 1)

n∑
i=1

(1/pi −N)2 (15)

Using Delta method the variance of estimator dH is

v̂ar(d̂H) =
s2v
v4n

(16)

where vi = 1/di, v and s2v are the sample mean and
variance of vi’s. This equation will be used in calculat-
ing the error bound in Figure 2.

3. EXPERIMENTS

3.1 Data
The estimator is verified on the Twitter network data

that are provided by Kwak et al. [12], characterizing
the complete Twitter network as of July 2009. The
data contain about 1.47 billion edges and 41.7 million

Table 1: Empirical bias and standard error of
the two estimators over 100 runs for various
sample size n.

Bias Standard error
n

UR RW UR RW
500 2.6295 1.1444 108.1054 12.0539

1000 -4.1512 0.1016 53.8785 8.7383
2000 -0.8226 -0.0320 36.2923 5.6482
4000 4.0328 -0.2842 45.0989 4.1571
8000 2.1037 -0.0674 25.1908 2.7238

nodes or users, occupying around 20 gigabytes hard
drive space. Since they are too large to fit into the
memory of commodity computers, we index them using
Lucene, a popular index engine. Then the random walk
and uniform random sampling are performed on the in-
dex that are stored in hard drive. Since our method is
better to be used in undirected graph, we remove the
direction in Twitter data.

3.2 Results
Two estimators, d̂SM in Equation 1 and d̂H in Equa-

tion 13, are tested on the data for five different sample
sizes 500, 1000, 2000, 4000, and 8000. For each sam-
ple size 100 samples are selected using uniform random
sampling and random walk sampling respectively. Their
bias and standard errors are tabulated in Table 1.

It shows that indeed d̂H has a very small bias as ex-
pected. What is striking is that its standard error is
much smaller than d̂SM .

We use Figure 1 to explain the result further. Panels
C is the box plot for d̂SM using uniform sampling. It
shows that the estimation fluctuates very much, can
even go as high as 1000 when n=500, where the true
mean is 70.5. The big variance problem is ameliorated
slightly but remains large with the growth of the sample
size.

On the other hand the box plot for d̂H in Panel D
shows much smaller variance.

We also run five large samples, each with size 4 ×
105, as depicted in panels A (for UR) and B (for RW).
Note that in the case of uniform random sampling, the
estimate jumps from time to time even when the sample
size is rather large.

Figure 2 shows four estimations bounded by the 95%
confidence interval calculated by Equation 16.

3.3 Discussions
This paper shows that the biased sampling is much

better than uniform sampling for the estimation of av-
erage degrees. In the past, people try to obtain uni-
form samples whenever possible, and resort to biased
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Figure 2: 95% confidence interval and four RW
(Random Walk) estimation processes using d̂H
estimator. The error bound is drawn from Equa-
tion 16.

sampling such as PPS (Proportional To Size) sampling
only when uniform sampling is impossible [22] or costly.
The results of this paper suggest that in the context of
online social networks, random walk sampling instead
of uniform sampling should be used, even when uniform
random samples are readily accessible.

It is easy to understand that the variance of uniform
random estimator d̂SM is large because online social
networks are mostly scale-free as shown in Equation 9.
The smaller variance of d̂H can be explained below.

Let dW be the random variable for the degrees sam-
pled by random walk. First we draw its empirical dis-
tribution and its comparison with uniformly sampled
degrees in Figure 3. Uniform random (UR) samples re-
semble the distribution of the total population [23] that
obeys power law with exponent around one. On the
other hand, in random walk (RW) sampling scheme dW

has a flatter starting section and a drooping tail, which
can be approximated by the Mandelbrot law:

dWi =
B

(a+ i)b
(17)

where b is the exponent, B is a normalization constant,
a is a constant that corresponds to the position where
the curve droops down.

Let

v =
1

n

n∑
i=1

1

dWi
. (18)
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Figure 3: The degree distributions of the sam-
ples obtained from UR (Uniform Random) and
RW (Random Walk) samplings. n=500,000.
The nodes, including the ones being repeatedly
sampled, are ranked in decreasing order of their
degrees, and drawn with degrees against their
ranks.

The variance of the reciprocal of the variable is

var(1/dW ) =

(
n
∑n
i=1(i+ a)2b

(
∑n
i=1(i+ a)b)

2 − 1

)
v2

=

n n∑
i=1

(i+ a)2b

(
n∑
i=1

(i+ a)b

)−2

− 1

 v2

≈

(
n

[
1

2b+ 1
n2b+1

] [
1

b+ 1
nb+1

]−2

− 1

)
v2

≈
(

(b+ 1)2

2b+ 1
− 1

)
v2

Thus var(1/dW ) is a constant that does not grow
with the population size as σ2 does.

4. IMPLICATIONS
Average degree plays a pivotal role in discovering

other properties of a large network. Its accurate es-
timation has a ramification on a string of other hidden
properties of large networks. One immediate result is
the total number of edges in the graph when user size
is known. However, the more profound consequence is
that we can discover the heterogeneity, CV (Coefficient
of Variation), of the entire network with a small sam-
ple using average degree. The discovery of CV will in
turn deduce other properties such as the total number
of users, the inequality of degrees (friends of friends and
Gini coefficient).

4.1 Estimate heterogeneity
d can be used to estimate CV, Coefficient of Vari-
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Figure 4: 15 Estimation processes of γ2 in Twit-
ter data using Equation 20. The red dotted line
is the true value.

ation (denoted as γ), that is an important metric to
measure the heterogeneity of degree distribution. It is
defined as the standard deviation normalized by the av-

erage degree: γ2 = σ2/d
2
. Expanding the definition for

variance we have

γ2 + 1 =
d2 − d2

d
2 + 1

=
1

N

N∑
i=1

d2i

[
1

N

N∑
i=1

di

]−2

= N

N∑
i=1

d2i

[
N∑
i=1

di

]−2

On the other hand the sample mean of the degrees ob-
tained by random walk is

dW =
1

n

n∑
i=1

dWi

=
N∑
i=1

pidi

=
1

Nd

N∑
i=1

d2i (19)

Combining the two equations we derive the estimator
for CV as follows:

γ̂2 + 1 =
dW

d
, (20)

where dW is the sample mean of the degrees obtained
by random walk, d can be estimated by the arithmetic
mean of the same data. The convenience of the method
is that only one random walk is needed. Figure 4 shows
15 estimates that converge quickly with the growth of
the sample size.

4.2 Population estimation
Once γ2 is available, it can be used to estimate the

population size as follows, which is a special case of Eq
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Figure 5: 15 estimation processes of twitter ac-
counts N using Equation 21. Red dotted line is
the true value.

3.20 in [2]:

N̂ = (γ2 + 1)

(
n

2

)
1

C
, (21)

where n is the sample size, C is the number of colli-
sions, and the sample is obtained by random walk 2. In
the area of capture-recapture research [2, 17, 15], it has
been a perplexing problem for the population estima-
tion of heterogeneous data whose capture probabilities
are unequal, mainly due to the difficulty of estimating
the heterogeneity. Now in the setting of OSN, the prob-
lem is solved thanks to the estimator d̂H .

Because of the accurate predication of the hetero-
geneity of the data (γ2), the estimation of population
size is rather good as shown in Figure 5. Since this es-
timator hinges on collision times, extra caution should
be taken to avoid spurious collisions caused by random
walk. For instance if a node A is only connected to node
B, a visit to A will cause node B visited twice. To avoid
such loops, we take samples spaced every a few steps
apart.

4.3 Other properties

4.3.1 Friends of friends
γ2 can be also used to measure the ratio between the

number of friends of your friends , and the number of
your friends. As the saying goes, your friends have more
friends than you do. To be more precise, your friends
have γ2 + 1 times more friends than you do.

The mean number of friends of friends is [4]

N∑
i=1

d2i /
N∑
i=1

di = d+ σ2/d (22)

2Here is a simple derivation for the estimator. The expected
number of collisions is

E(C) =

(
n

2

)
N∑
i=1

p2i =

(
n

2

)
1

τ2

N∑
i=1

d2i =

(
n

2

)
γ2 + 1

N
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The above equation shows that your friends have no
less than the friends you have. Simple rearranging the
equation results in:∑N

i=1 d
2
i /
∑N
i=1 di

d
= 1 + σ2/d

2

= 1 + γ2 (23)

In words, the equation says that on average your friends
have 1+γ2 times more friends then you do. In a homo-
geneous network where everybody has the same number
of connections, γ = 0, thus your friends have the same
number of friends as you do. In twitter society, γ2 is
around 1000, thus your friends have a thousand times
more friends than you do.

4.3.2 Message diffusion
Along the same line γ2 can be used to quantify the

diffusion of messages that is borrowed from epidemiol-
ogy. In particular, it can be derived that the threshold
for the occurrence of large component, or the occurrence
of epidemics [9] (Eq 7.8) is

π =
(γ2 + 1)d− 2

(γ2 + 1)d− 1
, (24)

where π is the proportion of the nodes that are immuned
uniformly from the network.

4.3.3 Clustering Coefficient
Some structural network properties can be also de-

rived using γ2. For instance, one important network
property is Clustering Coefficient, indicating the pro-
portion whether your friend of friend is also your friend.
It is hard to calculate directly for a large network, but
can be estimated [19] (eq 13.47) by

dγ4/n. (25)

4.3.4 Gini coefficient
Gini index is used to measure the inequality of wealth.

It can also be used to measure the inequality of friend-
ships in OSNs. Using d the Gini coefficient can be ap-
proximated by

Ĝ =
1

2n(n− 1)d

n∑
i=1

n∑
j=1

|di − dj | (26)

The classic problem of Gini coefficient estimation is
that the mean is hard to obtain. Thanks to the estima-
tion of average degree, in Twitter network, we find its
Gini coefficient is around 0.70-0.82.

5. CONCLUSIONS
This paper proposes to use random walk to sample

a network and use the harmonic mean to estimate the
average degree. The empirical experiments show that

the estimator is much better even than uniform random
samples.

The method is very practical in that in thousands or
even hundreds of steps of random walk we can learn
the average degree of a large network containing tens of
millions of nodes and billions of edges.

The method works well because of the scale-free na-
ture of the underlying network where the variance tends
to be very large, potentially unlimited when the net-
work size becomes infinitely large. For such networks,
we analytically showed that the harmonic mean estima-
tor removed the large variance problem.

Therefore the estimator works not only for online
social networks, but also any scale-free networks that
are ubiquitous and more common than random net-
works. For instance, we also validated the estimator in
document-term graph where document and terms are
nodes, and they are connected if a document contains
a term.

The method relies on the assumption that random
walk produces samples whose selection probability is
proportional to their degrees. Theoretically this is true
only asymptotically. Therefore the samples before the
mixing time should be thrown away. Our experiments
show little difference whether or not to include the first
batch of samples in the random walk.

The degree estimation is not only important by itself
but also crucial for discovering other network proper-
ties. The success solution of average degree can lead
to the discovery of the heterogeneity of the underlying
data, the user and link size etc.

The method is not restricted to the degrees of the ex-
plicit networks where the edges are the friendship rela-
tions. Instead, the edges can be forged by other implicit
relations, such as sharing the same message.
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