
Classifying Computer Science Papers

Tong Zhou, Yi Zhang, Jianguo Lu
School of Computer Science, University of Windsor

401 Sunset Avenue, Windsor, Ontario N9B 3P4. Canada
Email: {zhou142, zhang18f, jlu}@uwindsor.ca

Abstract

This paper addresses the problem of classifying academic pa-
pers. It is a building block in constructing an advanced schol-
arly search engine, such as in crawling and recommending
papers in a particular area. Our goal is to identify the best
classification method for scholarly data, to choose appropri-
ate parameters, and to gauge how accurate academic papers
can be classified using document content only. In addition,
we also want to find out whether the neural network approach,
which has been proven very successful in many other areas,
can help in this particular problem.
Our experiments are conducted on 160,000 papers from arXiv
data set, each is already labeled as either a computer sci-
ence (CS) paper or a paper in other areas. We experimented
with a variety of classification methods, including Multino-
mial Naive Bayes on unigram and bigram models, and Logis-
tic Regression on distributional representation obtained from
sentence2vec.
We find that computer science papers can be identified with
high accuracy (F1 close to 0.95). The best method is the
bigram model using Multinomial Naive Bayes method and
point-wise mutual information (PMI) as the feature selection
method.

Introduction
Academic papers need to be classified for a variety of appli-
cations. When we build an academic search engine special-
izing in computer science (CS), we need to judge whether a
document crawled from the Web and online social networks
is a CS paper; When recommending papers in certain area,
we need to infer whether a paper is on that topic or in the
area of a specific researcher. There are numerous techniques
to address these problems, but the basic building block is the
classification techniques based on the text.

Although text classification has been studied extensively
(Aggarwal and Zhai 2012), studies targeting academic pa-
pers are limited and inconclusive (Craven, Kumlien, and
others 1999) (Kodakateri Pudhiyaveetil et al. 2009) (Lu and
Getoor 2003) (Caragea et al. 2011). It is not clear how accu-
rate we can classify academic papers, and what are the best
methods. Thus, our research questions are: 1) Can we tell
the difference between a CS paper and a non-CS paper? 2)

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

What is the best method for academic paper classification?
3) What are the best parameters for each method? Each clas-
sification method has many parameters. Take Naive Bayes
(McCallum, Nigam, and others 1998) method for exam-
ple, there are different models (e.g.,unigram, bigram (Cav-
nar, Trenkle, and others 1994)), different feature selection
methods (e.g., mutual information (MI), χ2, point-wise mu-
tual information (PMI) (Rogati and Yang 2002) (Yang and
Pedersen 1997) ), different pre-processing (e.g., stop words,
stemming (Aggarwal and Zhai 2012)), systemic bias correc-
tion (e.g., length normalization and weight adjustment (Ren-
nie et al. 2003)). Due to the unique characteristics of aca-
demic papers, the choosing of correct parameters need to be
investigated. 4) Whether the neural network approach helps
in this area? Given the recent success of deep learning in
many domains, we need to check whether approaches spawn
from word2vec (Mikolov et al. 2013) and sentence2vec (Le
and Mikolov 2014) can improve the performance.

To find answers to these questions, we conducted a string
of experiments on a variety of scholarly data, including cite-
SeerX (Lawrence, Giles, and Bollacker 1999) and arXiv
(Warner 2005) data. This paper reports our result on the
arXiv data only. This is because each paper in arXiv is la-
beled with an area, and the label is considered accurate since
it is self-identified by its authors. Our experimental data set
is obtained from the most recent arXiv collection after bal-
ancing and duplicate removing, which contains 80,000 CS
papers as positive class and 80,000 non-CS papers as nega-
tive class.

The methods we tested include multinomial Naive Bayes
(MNB) on unigram and bigram models, and MNB and lo-
gistic regression (Hosmer, Jovanovic, and Lemeshow 1989)
on vector representations generated using sentence2vec. We
chose these methods for scalability consideration. Other
methods, such as the well-known SVM (Joachims 1998), are
tried without success. The experiments are carried on two
powerful servers with 256 GB memory and 24 core CPU.

Our result shows that CS papers can be classified with
high accuracy with large training data. Most methods can
achieve an F1 value above 0.9. The best method is the bi-
gram model using MNB. The out-of-box sentence2vec is in-
ferior to the bigram model by almost 2 percent. Interest-
ingly, removing stop words helps in all the methods, even in
sentence2vec, while stemming has limited impact. Histor-



ically, PMI is considered inferior in text classification (Xu
et al. 2007). We show that when the feature size is large, it
out-performs MI and χ2.

Related work
Classifying Academic Papers
Classification of academic papers have been studied in small
scale with mixed results. (Craven, Kumlien, and others
1999) used Naive Bayes algorithm to classify biomedical
articles. They gathered a corpus of 2,889 abstracts from
the MEDLINE database and concluded that Naive Bayes
reached higher classification precision than their baseline al-
gorithm. When recall = 25%, the precision for baseline al-
gorithm is 44% and the precision for Naive Bayes algorithm
is 70%. However, even though they claimed the good perfor-
mance for their result, 70% precision is rather low probably
due to the small training data size and poor selection of the
parameters.

(Kodakateri Pudhiyaveetil et al. 2009) categorized Cite-
Seer (an online scholarly database) papers into 268 different
categories based on the ACM CCS class definition. They
used k-NN algorithm to train the classifier with 268 classes
while each class has 10 sampled papers. For each test pa-
per, they output the top K predicted classes. However, they
didn’t use systematic evaluation scheme (e.g. cross valida-
tion scheme) to evaluate the performance of the classifier.

(Lu and Getoor 2003) conducted text classification on
multiple data sets by using the logistic regression algo-
rithm. They experimented with three kinds of data sets:
Cora (4,187 papers), CiteSeer (3,600 papers) and WebKB
(700 web pages). Each data set has multiple classes. They
used stemming and stop words removal to pre-process the
paper text, and used 3-fold cross validation and F1 measure
to evaluate the classifier. By using text only as features to
train the classifier, the highest F1 for Cora is 0.643, for Cite-
Seer is 0.551 and for WebKB is 0.832. Still, the problem is
the small data size (less than 5,000 docs).

Also using Cora and CiteSeer data sets, (Caragea et al.
2011) discussed lowering feature dimensionality to simplify
the complexity of classifiers. Under SVM and Logistic Re-
gression, they experimented with three different schemes:
Mutual Information algorithm, topic models, and feature ab-
straction. Both of them can reach a better classification ac-
curacy compared with using all features, and feagture ab-
straction performs the best (Cora: 79.88, CiteSeer: 72.85).

Classification and Feature Selection Algorithms
Apart from academic papers, most of the previous re-
searchers conducted more thorough text classification ex-
periments on benchmark data sets such as Reuters-21578.
(Yang and Liu 1999) thoroughly compares the performances
of five different text classification algorithms: SVM, k-NN,
LLSF (Linear Least Squares Fit), NNet (Neural Network)
and NB (Naive Bayes). Measured by micro average F1,
they concluded the performance ranking for the five algo-
rithms as SVM > kNN � {LLSF,NNet} � NB. Al-
though (Yang and Liu 1999) concluded that more sophisti-
cated algorithms such as SVM can outperform Naive Bayes,

 

 

CS

Math

Physics

Figure 1: Three classes of documents. Vectors with 100
dimensions are trained using Sentence2vec. Then they are
reduced to two dimension using t-SNE.

the time and space complexity of SVM are much higher than
Naive Bayes. Hence, Naive Bayes is still very popular, es-
pecially in text classification where feature dimensionality
is much higher. Moreover, previous researchers have proved
that even though the independent assumption of Naive Bayes
can be unrealistic in most of the text classification scenar-
ios, Naive Bayes can still perform surprisingly well (Mc-
Callum, Nigam, and others 1998). Authors in (McCallum,
Nigam, and others 1998) illustrated two models for Naive
Bayes: Bernoulli Model and Multinomial Model, and con-
cluded that Multinomial Model is better for text classifica-
tion. Another paper (Rennie et al. 2003) described improve-
ments on Multinomial Naive Bayes, using TF-iDF weight-
ing and length normalization to balance the feature weights.

As for feature selection, (Rogati and Yang 2002) com-
pared and concluded the most efficient filter feature selec-
tion algorithms for text classifiers. They concluded that χ2-
statistic (CHI) consistently outperformed other feature se-
lection criteria for multiple classification algorithms.

Data
The most recent arXiv collection contains 840,218 papers.
Each paper includes title and abstract, and is labeled with a
discipline (e.g. CS, Math, Physics, etc.). An overview of
the data can be depicted by Fig. 1. Each point is a vector
representing a paper in areas of Computer Science, Math or
Physics.

We observed that duplicates exist in the arXiv data set,
and removed the duplicates by comparing their URLs. Af-
ter removing duplicates, there are 84,172 CS papers and
575,043 non-CS papers. Non-CS corresponds to all the
other disciplines such as Math, Physics. We use random
sampling to equalize the amount of CS and non-CS papers
to solve the data set imbalanced problem (mostly reduce the
size of non-CS class). Our final experimental data set con-
tains sampled 80,000 CS and 80,000 non-CS papers. Most
of the non-CS papers belong to Math (29,899). Before ex-



tracting feature sets for different methods, we tokenize them
where each token contains only alphanumeric letters. Each
token is also case folded.

Methods

We used NLTK (Bird 2006) English Stop Words List to fil-
ter stop words, and Porter stemmer (Porter 1980) to do the
stemming.

In unigram and bigram models, the feature sizes are in
the order of 106. Thus, only MNB is tested for scalability
reasons. We also tried Bernoulli NB method (BNB), which
is inferior to MNB. Since BNB is well-known to be inferior
for long text classification (McCallum, Nigam, and others
1998), we do not report BNB method in this paper.

Sentence2vec (Le and Mikolov 2014) is a deep learn-
ing approach to learning the embeddings of sentence from
the training datasets. It has two models. One is the Dis-
tributed Memory Model of Paragraph Vectors (PV-DM),
which trains a sentence vector along with the word vectors
to predict the missing content. In this model, paragraph vec-
tor represents the missing information from the current con-
text and can act as a memory of the topic of the paragraph.
The second model is Distributed Bag of Words version of
Paragraph Vector (PV-DBOW), in which the sentence vec-
tor is trained to predict the words in a small window. Com-
bined with negative sampling, sentence2vec can update the
over 2,000 embedding per second per core. Sentence2vec
have several parameters for both models, the most impor-
tant parameters are window-size, negative sample size, and
the demission of the vectors. After series tests, we find the
combination of PV-DM model with vector dimension = 100,
window size = 10, negative sample = 5 gives the best em-
beddings for classification. Thus, we keep this setup in the
following experiment.

In MNB for text classification, feature weight needs to
be adjusted (Rennie et al. 2003). TF-iDF and length nor-
malization are taken into consideration to compute feature
weights instead of simple frequency count. We tested the
feature weight normalization using the following equation
that is given in (Rennie et al. 2003):

f ′i = log(1 + fi) · log
N∑
d δid

f ′′i =
f ′i√∑
k(f

′
k)

2

(1)

The first equation that calculates f ′i is the TF-iDF normaliza-
tion. TF is the frequency of a feature in a document, and is
normalized using logarithm. iDF gives more weight to fea-
tures that have lower document frequency. The second equa-
tion that calculates f ′′i is length normalization, the function
is to eliminate the effect of length variation to the weight
of features. Finally, normalized feature weight uses f ′′i in-
stead of fi as the final weight of features that input into the
classification system.

SW ST SW + ST OT

MNB

Precision 0.9021 0.8999 0.8972 0.8992
Recall 0.9150 0.9077 0.9146 0.9049
F1 0.9085 0.9038 0.9058 0.9021

Time 0:01:38 0:01:37 0:01:37 0:01:38

LR

Precision 0.9269 0.9228 0.9241 0.9035
Recall 0.9318 0.9295 0.9295 0.9290
F1 0.9293 0.9261 0.9268 0.9262

Time 0:03:49 0:03:51 0:03:47 0:03:48

Table 1: Classification results using setence2vec represen-
tation. Vector dimension is 100. Best F1 is achieved using
logistic regression. Precision, recall, and F1 are average of
10 runs.

SW ST SW + ST OT
sentence2vec 0.9085 0.9038 0.9058 0.9021

unigram
Un-NL 0.9326 0.9293 0.9289 0.9288

NL 0.9354 0.9317 0.9314 0.9312

bigram
Un-NL 0.9460 0.9425 0.9440 0.9424

NL 0.9467 0.9449 0.9448 0.9444

Table 2: F1 for various classification methods. Removing
stop words (SW) improves the performance consistently for
all classification methods. Stemming (ST) is not necessary.

Experiments
Impact of stop words and stemming
Table 1 and Table 2 show the performance on variations of
text pre-processing. Four models are created: SW is only
removing stop words, ST is only stemming, SW + ST is
removing stop words + stemming, OT is keeping original
text. Table 1 is for sentence2vec approach, and 2 includes
the unigram and bigram models . We can see that remov-
ing stop words improves the F1 value consistently across all
methods, while effect of stemming is very limited. Table
1 also shows that under sentence2vec, Logistic Regression
(LR) outperforms Multinomial Naive Bayes (MNB) with
more than 2% F1 measure value. Furthermore, from Table
2 we can see that under unigram and bigram, models with
normalized feature weight consistently perform better than
un-normalized (original frequency count as feature weight)
models.

Impact of Training Data Size
Fig. 2 shows the F1 value as a function of training data
size. We can see that the performance improves with the data
size in general as expected. What is interesting is bigram
model increases with a faster pace, thereby it outperforms
all other methods when the data size is large. s2v approach
is better than bigram model when data size is small. But its
improvement tapers off with the growth of data.

Panel (B) in Fig. 2 shows the impact of normalization.
For both bigram and unigram models, normalization plays
a minor role. It can be explained by the fact that the docu-
ment size (title + abstract) are similar, and the dependency
between tokens are similar across different classes.



Tranining data size
10

3
10

4
10

5
10

6

F
1

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

(A)

Unigram
Bigram
s2v MNB
s2v LR

Tranining data size
10

3
10

4
10

5
10

6

F
1

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

(B)

Unigram
unigram normalized
Bigram
Bigram normalized

Figure 2: Impact of training data size on F1. (A) Both unigram and bigram model out-perform sentence2vec when training data
is large; (B) Normalization plays a minor role in this data.

Size = 1,000 Size = 160,000
MNB LR MNB LR

sentence2vec 0.8848 0.8821 0.9085 0.9293

unigram
Un-NL 0.9148 - 0.9326 -

NL 0.9054 - 0.9354 -

bigram
Un-NL 0.8653 - 0.9460 -

NL 0.8671 - 0.9467 -

Table 3: Classification results with the increase of training
data size.

unigram bigram
Rank Name CTF Rank Name CTF

1 quantum 2856 / 24576 1 magnetic field 28 / 2924
2 algorithm 41238 / 4843 2 state art 4422 / 279
3 field 4523 / 20706 3 field theory 46 / 2204
4 network 31142 / 4014 4 two dimensional 679 / 3150
5 performance 23800 / 2081 5 log n 3705 / 262
6 algorithms 23178 / 2032 6 polynomial time 3364 / 156
7 based 47442 / 12647 7 x ray 65 / 1781
8 spin 248 / 10336 8 paper propose 3348 / 234
9 0 5897 / 19455 9 ground state 10 / 1515
10 equation 1193 / 11352 10 o n 3631 / 441
11 information 28191 / 4953 11 black hole 68 / 1492
12 networks 25829 / 4076 12 boundary conditions 94 / 1483
13 learning 16895 / 965 13 real world 2849 / 244
14 problem 40677 / 11110 14 su 2 2 / 1223
15 magnetic 247 / 8610 15 phase transition 247 / 1733

Table 4: Top Selected Features by χ2

Table 3 also lists the statistics of average F1 measure val-
ues corresponding to Fig. 2.

Impact of feature size
We rank features based on their scores produced by PMI,
MI and χ2 respectively. In Fig. 3 we can clearly see the
plotted top ranked few features are all bias in only one spe-
cific class, either CS or non-CS. X-axis represents the CTF
(Class Term Frequency) in CS class, Y-axis represents the
CTF in non-CS class. In Fig. 3 (A) (B), red nodes represent
the top 3,000 ranked unigram features, and the blue nodes
are all the remaining features. We can see that all of the red
nodes are deviated from y = x, which means the CTF in one
class are significantly larger than the other class. Accord-

10
0

10
5

CTF in CS 

10
0

10
5

C
T

F
 i
n

 n
o

n
-C

S
 

(A)

Top 3000
Remaining

10
0

10
5

CTF in CS 

10
0

10
5

C
T

F
 i
n

 n
o

n
-C

S
 

(B)

Top 3000
Remaining

10
0

10
2

10
4

CTF in CS 

10
0

10
1

10
2

10
3

10
4

C
T

F
 i
n

 n
o

n
-C

S
 

(C)

Top 3000
Remaining

10
0

10
2

10
4

CTF in CS 

10
0

10
1

10
2

10
3

10
4

C
T

F
 i
n

 n
o

n
-C

S
 

(D)

Top 3000
Remaining

Figure 3: Top features selected by different methods. Panel
(A) and (C): χ2; (B) and (D): PMI . (A) and (B) are uni-
gram models; (C) and (D) are bigram models.

unigram bigram
Rank Name CTF Rank Name CTF

1 supersymmetric 0 / 1828 1 yang mills 0 / 1151
2 mev 0 / 1586 2 gauge theories 0 / 714
3 chiral 1 / 3074 3 su 3 0 / 680
4 pion 0 / 1161 4 non perturbative 0 / 636
5 supersymmetry 0 / 1035 5 spin orbit 0 / 621
6 branes 0 / 1003 6 sum rate 946 / 0
7 mesons 0 / 948 7 quantum gravity 0 / 554

.

.

.
.
.
.

11 beamforming 1439 / 0 23 mimo systems 680 / 0
23 precoding 949 / 0 24 outage probability 679 / 0
28 multicast 891 / 0 28 access control 665 / 0
31 cnn 842 / 0 29 logic programs 665 / 0
34 p2p 764 / 0 35 ieee 802 590 / 0
37 qos 1431 / 1 36 interference alignment 580 / 0

Table 5: Top Selected Features by PMI



ingly, Fig. 3 (C) (D) shows the distribution of the bigram
top 3,000 ranked features and remaining features. Table 4
shows the top 15 selected features by χ2. Bold features in
Table 4 have higher CTF in CS class. We can see χ2 tend
to select big/popular words have high total occurrences but
still have significant different occurrences in the two classes,
and the ratio of CS features and non-CS features tend to be
equal. However, PMI tend to select very exclusive words,
we can see from Table 5 that top ranked features have al-
most 0 CTF in the other class. And top CS features ranked
lower than non-CS features, since non-CS papers have more
highly occurred exclusive words.

Fig. 4 demonstrates the impact of feature size on classifi-
cation performance when using three different kinds of fea-
ture selection algorithms: PMI, MI and χ2, and their com-
binations with bigram and unigram models. Two feature
weighting schemes, normalized feature weight and simple
frequency count, are tested. We select top k ranked features
for classifier and change k (X-axis) to draw the performance
curves. We can see that classification performance (F1) in-
creases with feature size for most cases. PMI increases faster
than χ2 and MI. Fig. 4 (A) (B) shows the unigram classifi-
cation results. We can see that when k > 30000, the clas-
sification results for PMI under frequency count model are
better than using all features; more features can let PMI per-
forms better than χ2 and MI for all the four models. More-
over, normalized feature weight improves the performances
for both PMI, MI and χ2. Fig. 4 (C) (D) shows the bigram
classification results. both PMI, MI and χ2 reaches the best
classification results when using all features. When gradu-
ally decreasing features, firstly χ2 and MI drops lower than
PMI, but then PMI drops below χ2 and MI. In addition, for
bigram features, an interesting phenomenon is that from fea-
ture size 106 to all features (5.2 millions), F1 first drop then
increase greatly to the highest value with all features. The fi-
nal increasing trend is caused by the increasing of TN (True
Negative) value that pull the classification precision higher.

Discussions and Conclusions
When classifying research papers in computer science, we
find that most classification methods can reach an F1 value
as high as 0.9. The best method is MNB on bigram language
model, which obtained an F1 value close to 0.95. The out-
of-box neural network approach does not perform as well
as bigram model. On sentence2vec representation, neither
logistic regression nor Naive Bayes can compete with bi-
gram model. Other classification methods, including SVM,
are also tested on smaller datasets because of the scalabil-
ity issue of these algorithms. SVM performs similar with
Logistic Regression on sentence2vec representation.

For multinomial Naive Bayes text classification, it was
long believed that PMI is not a good candidate for feature
selection. On the contrary to this believe, we show that PMI
is better than χ2 and MI. This is probably because of the size
of our training data is bigger– in Fig. 4 we can see that PMI
is inferior until the feature size exceeds 104.

This paper also shows that stop word removing improves
the performance for all the methods, including bag of words
model, bigram model, and various classification methods

10
2

10
4

10
6

Feature size

0.5

0.6

0.7

0.8

0.9

F
1

(A) unigram

CHI Square
MI
PMI

10
4

10
5

Feature size

0.91

0.915

0.92

0.925

0.93

F
1

Closeup of (A)

CHI Square
MI
PMI

10
2

10
4

10
6

Feature size

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
1

(B) unigram normalized

CHI Square
MI
PMI

10
4

10
5

Feature size

0.931

0.932

0.933

0.934

0.935

F
1

Closeup of B

CHI Square
MI
PMI

10
2

10
4

10
6

10
8

Feature size

0.5

0.6

0.7

0.8

0.9

F
1

(C) bi-gram

CHI Square
MI
PMI

10
5

10
6

Feature size

0.934

0.936

0.938

0.94

0.942

0.944

0.946

F
1

Closeup of C

CHI Square
MI
PMI

10
2

10
4

10
6

10
8

Feature size

0.6

0.7

0.8

0.9

F
1

(D) bigram normalized

CHI Square
MI
PMI

10
5

10
6

Feature size

0.938

0.94

0.942

0.944

0.946

F
1

Closeup of D

CHI Square
MI
PMI

Figure 4: Impact of feature size for unigram and bigram
models, with combination of text normalization. (A) Uni-
gram; (B) unigram normalized; (C) bigram; (D) bigram nor-
malized.



on distributional vector representation of documents. On
the other hand, stemming has limited impact on the perfor-
mance.

It is surprising to see that academic papers can be clas-
sified with high accuracy based on content only. We also
tried to classify papers in narrow areas, such as papers in
conferences VLDB, SIGMOD, and ICSE, each class trained
on two thousand of papers. We also observed high accu-
racy in these experiments. Among VLDB and ICSE, the F1

is above 0.98 because these two conferences focus on very
different topics, one in database, the other in software engi-
neering. What is surprising is that among VLDB and SIG-
MOD, which are both database conferences, the F1 value is
also above 0.88. We believe that if we augment the data with
the citation and co-author networks, the accuracy could be
even higher.

With such high accuracy, we can envision numerous ap-
plications in the pipeline. We are building an academic
search engine in the area of computer science. When crawl-
ing the data from the Web and online social networks, we
can judge whether a document is a computer science paper;
when conducting author disambiguation, we can determine
whether a paper is written by a certain person or a group
of researchers or a community of academics; when recom-
mending papers, we can classify the paper according to a
researcher’s profile.

Acknowledgement
The research is supported by NSERC Discovery grant
(RGPIN-2014-04463).

References
Aggarwal, C. C., and Zhai, C. 2012. A survey of text classi-
fication algorithms. In Mining text data. Springer. 163–222.
Bird, S. 2006. Nltk: the natural language toolkit. In Pro-
ceedings of the COLING/ACL on Interactive presentation
sessions, 69–72. Association for Computational Linguistics.
Caragea, C.; Silvescu, A.; Kataria, S.; Caragea, D.; and Mi-
tra, P. 2011. Classifying scientific publications using ab-
stract features. American Association for Artificial Intelli-
gence.
Cavnar, W. B.; Trenkle, J. M.; et al. 1994. N-gram-based
text categorization. Ann Arbor MI 48113(2):161–175.
Craven, M.; Kumlien, J.; et al. 1999. Constructing bio-
logical knowledge bases by extracting information from text
sources. In ISMB, volume 1999, 77–86.
Hosmer, D. W.; Jovanovic, B.; and Lemeshow, S. 1989. Best
subsets logistic regression. Biometrics 1265–1270.
Joachims, T. 1998. Text categorization with support vector
machines: Learning with many relevant features. Springer.
Kodakateri Pudhiyaveetil, A.; Gauch, S.; Luong, H.; and
Eno, J. 2009. Conceptual recommender system for cite-
seerx. In Proceedings of the third ACM conference on Rec-
ommender systems, 241–244. ACM.
Lawrence, S.; Giles, L. C.; and Bollacker, K. 1999. Dig-
ital libraries and autonomous citation indexing. Computer
32(6):67–71.

Le, Q. V., and Mikolov, T. 2014. Distributed repre-
sentations of sentences and documents. arXiv preprint
arXiv:1405.4053.
Lu, Q., and Getoor, L. 2003. Link-based classification. In
ICML, volume 3, 496–503.
McCallum, A.; Nigam, K.; et al. 1998. A comparison of
event models for naive bayes text classification. In AAAI-98
workshop on learning for text categorization, volume 752,
41–48. Citeseer.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Porter, M. F. 1980. An algorithm for suffix stripping. Pro-
gram 14(3):130–137.
Rennie, J. D.; Shih, L.; Teevan, J.; Karger, D. R.; et al. 2003.
Tackling the poor assumptions of naive bayes text classifiers.
In ICML, volume 3, 616–623. Washington DC).
Rogati, M., and Yang, Y. 2002. High-performing fea-
ture selection for text classification. In Proceedings of
the eleventh international conference on Information and
knowledge management, 659–661. ACM.
Warner, S. 2005. The arxiv: Fourteen years of open access
scientific communication. In Free Culture and the Digital
Library Symposium Proceedings 2005, 56.
Xu, Y.; Jones, G. J.; Li, J.; Wang, B.; and Sun, C. 2007.
A study on mutual information-based feature selection for
text categorization. Journal of Computational Information
Systems 3(3):1007–1012.
Yang, Y., and Liu, X. 1999. A re-examination of text cate-
gorization methods. In Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and devel-
opment in information retrieval, 42–49. ACM.
Yang, Y., and Pedersen, J. O. 1997. A comparative study on
feature selection in text categorization. In ICML, volume 97,
412–420.


