Improve Network Embeddings with Regularization

Yi Zhang
School of Computer Science,
University of Windsor
Windsor, Ontario

Jianguo Lu
School of Computer Science,
University of Windsor
Windsor, Ontario

Ofer Shai
Chan Zuckerberg Initiative Inc.
Toronto, Ontario
ofer.shai@gmail.com

zhang18f@uwindsor.ca jlu@uwindsor.ca
ABSTRACT LINE 0.40 DeepWalk 0.1 node2vec
Learning network representations is essential for many downstream T 038 - ' '
tasks such as node classification, link prediction, and recommenda- 5 039 040 1
tion. Many algorithms derived from SGNS (skip-gram with nega- £ . . 0.30 .
tive sampling) have been proposed, such as LINE, DeepWalk, and 10° 10t 10° 10t 10° 10t
node2vec. In this paper, we show that these algorithms suffer from o 026
norm convergence problem, and propose to use L2 regularization s 028 1
to rectify the problem. The proposed method improves the embed- g 0% /4\”\N 02 M 026 m
dings consistently. This is verified on seven different datasets with - - o - ' 100 -
various sizes and structures. The best improvement is 46.41% for iteration iteration iteration

the task of node classification.

CCS CONCEPTS

« Information systems — Data mining;

KEYWORDS

Network embeddings, Skip-gram, Regularization, LINE, DeepWalk,
node2vec

ACM Reference Format:

Yi Zhang, Jianguo Lu, and Ofer Shai. 2018. Improve Network Embeddings
with Regularization. In 2018 ACM Conference on Information and Knowledge
Management (CIKM’18), October 22-26, 2018, Torino, Italy. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3269206.3269320

1 INTRODUCTION

Recent years, many network embedding algorithms have been
proposed. Among them, skip-gram with negative sampling (here-
after SGNS) based algorithms, such as LINE[8], DeepWalk[6], and
node2vec[4], are widely discussed. Despite the popularity of these
algorithms, the repeatability of the experiments is a common prob-
lem. For example, the macro-F1 of multi-label classification on
BlogCatalog, a widely used dataset for benchmarking network
embeddings[4, 6, 8], is reported at 0.273 in [6], but at 0.211 in [4]. It
is partially due to the randomness of the algorithms, the numerous
hyper-parameters involved. One of the hyper-parameters is the
iteration, i.e., the number of times to scan the data to train the
model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM 18, October 22-26, 2018, Torino, Italy

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6014-2/18/10...$15.00
https://doi.org/10.1145/3269206.3269320

Figure 1: Performance on node classification — BlogCatalog.

1.1 Performance degeneration over iteration

We observe that with the increase of iteration, the performance
decreases consistently for these algorithms over various datasets.
Figure 1 shows such phenomenon on the BlogCatalog data for those
three network embedding algorithms. The micro and macro F1
scores of node classification are plotted. To ameliorate the variation
caused by the randomness of the algorithms, for each algorithm,
we train five models independently, and report the mean of the
their performance. For better observation, we set the learning rate
to a fixed value of 0.025 instead of a decaying learning rate. During
the training, when every 10 samples have been trained, we take
a snapshot of the model and evaluate the embeddings in the node
classification task.

From the plot, we can see that the performances rise to the peak
after five iterations, then drop down continuously. In practice, a
grid-search of this hyper-parameter may help to find the best stop
time. However, a better solution is needed for producing a stable
result.

1.2 The norms of the embeddings

Next, we examine the evolution of the L2-norms of the vectors.
Overall, the norms will increase over iterations. Intuitively, large
nodes, the nodes that have higher degrees, should have larger norms
so that they can have a higher impact during the training. To ob-
serve the norm evolution of different types of nodes, we sample
four categories of nodes according to their degrees. The smallest
nodes are the ones with a degree between one and four. The sec-
ond smallest nodes have degrees between 22 + 1 and 2%. The third
category has degrees between 2* + 1 and 28, and the largest nodes
have degrees greater than 28 + 1.

For each group, we randomly select 25 nodes and record their
average L2-norms. Figure 2 shows the change of L2-norms over
training iterations that ranges from 1 to 50. Row 1 is for embedding
rectors, row 2 for output vectors. For all three algorithms (LINE,

https://doi.org/10.1145/3269206.3269320
https://doi.org/10.1145/3269206.3269320

LINE DeepWalk node2vec
a 100 |
20 -~
% 20 2
5 10 104]
: | T
G 0+ 0 = ; 0 T ;
107! 10° 10t 107! 10° 10!
4
]
o
(%
>
=
3
g
3 0 T T 0 T T 0 T T
1071 10° 10t 107t 10° 10t 1071 10° 10t
iteration iteration iteration
—.. Degree <2? 22+1=<Degree<2* 2%+1=<Degree<2® —— 28+ 1=<Degree

Figure 2: L2-norm of vectors — BlogCatalog.

DeepWalk, node2vec), we observe that the norms of larger nodes
are indeed larger than smaller nodes in the first few iterations. With
the growth of iterations, the norms of large nodes tend to converge.
However, the norms of smaller nodes keep growing and surpass
the norms of larger nodes. After that cross-point, the performance
degenerates as shown in Figure 1.

2 NETWORK EMBEDDINGS WITH L2
REGULARIZATION

Given a network G = (V, E), where V is a set of nodes and E is a
set of edges. An embedding is a dense d-dimension vector v; for a
node n; € V. The embedding v; should retain the information of
node n; in the network such as similarity and structure.

To learn the embeddings from a network, for each node n in
the network, existing works train the SGNS model with a spe-
cific sampling strategy N, (n) that captures the node-neighborhood
information. More specifically, DeepWalk and node2vec use the
dynamic window on the uniform and biased random walk paths,
and LINE uses random edge sampling. In our work, we add L2 reg-
ularization in the model to improve the embeddings. The objective
function is:

K
1
0 =3 Z Z [logo(uj - v;) + Z Ey~p, () log o(—uj - v;)]

n; €V n;eN,(n;) k=1
V] V|

=2 Moill? = A llusll2?, (1)
i=1 i=1

where S is the number of the observed training pairs. v; is the
embedding vector for node n;. u; is the output vector for node n;.
A is the weight for L2 regularization. |V| is the number of nodes in
the network. Py, is a noise distribution which is the frequency of
nodes raised to the power of 0.75. Note that for LINE, this frequency
follows the degree distribution, while in DeepWalk and node2vec,
it is the frequency of a node in the training samples. These works
use SGD to update their models. Thus the model updated immedi-
ately when a training sample arrives. To ensure a smooth update,
we evenly distribute the regularization weight A into each local
objective function by frequency. More specifically, for each training

sample (n;, nj), the local objective is:

K
log o(uj - v;) + Z Eyp~p,) logo(-u;j - vi)

k=1
© @)

~Aalloillf = Azllwjllf = " Buyep, Asllugll3-
k=1

Here A1, A2 and A3 are the regularization weight for embedding
vector v;, output vector u; and negative sample uy divided from 4,
which are defined as below:

A
A= Freqi(n;)’
A
Ao =
2 Freqo(nj) + Freqn(nj)’ ()
A

Freqo(ny) + Freqn(ng)
Here Freq;(-), Freqo(-) and Freqpn(-) denote the frequency of a node
trained as an input, output and negative sample per training itera-
tion respectively.
Some works adopt the subsampling strategy to reduce the train-
ing samples for frequent items[5]. With subsampling, the model ran-

domly discards a sample with probability P(i) = max(0,1 — ﬁ)

where t usually sets to 1074 to 107 in word embeddings based on
different sizes of the corpus. In our experiment, we find that the
model is sensitive to this parameter. Thus, we discard subsampling
in our experiment and keep all observed training samples. One can
easily adopt subsampling into our model and search for the best
parameter to improve the embeddings and training speed.

3 L2 REGULARIZATION ON EMBEDDING
VECTORS

Our regularization applies on both embedding vectors and output
vectors. It is necessary to compare with the approach that regular-
izes the embedding vectors only [1, 2]. Embeddings are updated
according to o(u - v) and u. Training with unrestricted u will also
lead to larger update weight during the training.

For example, assume that there is a training sample pair (n;, nj).
v; and u; are the corresponding embedding vector and output
vector. Without the regularizer, the update weight for v; is

K
(1- o’(uj - i) - uj + Z Eukwpn —o(ug - vi) - ug.
k=1
The first term is the weight that learnt from the output sample n;.
When u; is an unrestricted vector with large L2-norm, o(u; - v;) can
be larger or smaller than expected, leading o(u; - v;) closer to 0 or
1. Moreover, when u; is unrestricted, the final update weight could
be larger than expected. Thus, we here argue that the applying L2
regularization on embedding vectors are insufficient.

To support our claim. we train these algorithms by setting A5 and
A3 to 0, which leaves the output vector unrestricted. This equals
to the LogSig model proposed in [2]. The experiment results are
illustrated in Figure 3.

We can see that the norms for embedding vectors are restricted.
However, the norms for output vectors are still growing, even larger

node2vec

LINE DeepWalk

@

=

£ s

% 5 | '/,,---........

_g ol

=
@ 0 4 - -
107t 10° 10!

&

S]
g 40 ,/
2 L ned
= 20 -{y;—,__—-
a - g
£ <. T T

3 07 T T 0 T T 04 T T

107t 10° 10t 107! 10° 10! 107t 10° 10t
iteration iteration iteration

—.. Degree <2? —~—. 224+1=Degree<2* 2%+1=<Degree<2® —— 28+ 1=<Degree

Figure 3: Norms of the vectors in network embeddings — L2
regularization on embedding vectors.

than before — For example, the norms for small nodes in LINE
increased from 80.29 to 115.97. Meanwhile, we found that after
we apply regularization on embedding vectors, there is a strange
peak in the early stage of the training for the embedding vectors,
indicating un-smooth learning curve during the training.

Overall, we can see that applying regularization on embeddings
will stabilize the embedding vectors, but the convergence problem
still exists for output vectors, even severer than before. Compare
to our model, as showed in Figure 4, we can see the norms of
embeddings and output vectors converge for all three algorithms.

node2vec

LINE DeepWalk

embeddings

output vectors

T T T T T T
107t 10° 10t 1071 10° 10t 1071 10° 10t
iter iter iter

—.. Degree <2? ——. 224+1=Degree<2* 2%+1=<Degree<2® —— 28+ 1=<Degree

Figure 4: Norms of the vectors in network embeddings — L2
regularization on embedding vectors and output vectors.

Intuitively, the norm of a vector reflects the importance of the
corresponding node. Larger norm will bring large update step. By
adding the regularization properly, we see that the norms of small
nodes are restricted and smaller than large nodes.

4 EXPERIMENTS

We use seven datasets in our experiment. Some data is widely used
to benchmark the network embedding algorithms[2-4, 6-9]. The
statistics of the datasets are listed in Table 1. WebKB is the smallest
one, which has only 877 nodes and 1,608 edges. YouTube is the
largest one, which contains 1.14 million nodes and 2.99 million
edges. In the experiment, we test the original LINE, DeepWalk, and
node2vec, and compare them with their regularized counterparts.
Methods with subscript R are our regularized versions, methods
with subscript RE regularize embedding vectors only.

4.1 Experimental setup

We reimplement these algorithms in Cython with BLAS accelera-
tion. For a fair comparison, all algorithms are implemented in the

same framework. The code and data are available on our webpage!.
The learning rate is set to decaying from 0.025 to 0.00001 linearly
during the training. The window size is set to 5 for DeepWalk and
node2vec, and the number of negative samples for each training
sample is set to 5. We set lambda=1 for LINE and lambda=5 for
DeepWalk and node2vec. The difference in lambda is necessary
because DeepWalk and node2vec take five times more pairs per
iteration due to the window size.

Dataset | #Nodes | # Edges | # Labels | Multi-label
WebKB 877 1,608 5 no
Cora 2,708 5,429 7 no
CiteSeer 3,319 4,722 6 no
BlogCatalog 10,312 | 333,983 39 yes
PubMed 19,717 44338 3 no
Flickr 80,513 | 5,899,882 195 yes
Youtube | 1,138,499 | 2,990,443 47 yes

Table 1: Statistics of seven datasets.

4.2 Node classification

We evaluate the models with the node classification task. Following
the same method in [3, 4, 6, 8], we train a Logistic Regression
classifier with default parameters using scikit-learn in Python. To
evaluate the performance, we take r proportion of nodes to train
the classifier, then use the rest 1 —r nodes to test the performance of
the classifier, where r = 0.08 Flickr and Youtube and r = 0.8 for the
rests. for Since the datasets are unbalanced, we report both micro
and macro F1 in our experiment. Intuitively, micro-F1 evaluates
the overall performance over all classes, while macro-F1 takes the
unweighted mean of F1 for each class.

Due to the randomness of the algorithms, we train five models
for each algorithm on each dataset, and report the average of these
five models. Table 2 and Table 3 list the results.

Overall, smaller datasets gain more improvement compared to
larger datasets. The biggest improvement is LINER with CiteSeer
by 42.73% on micro-F1 and 46.4132% on macro-F1 over LINE. While
LINERE gains 8.2938% and 10.59% improvement over LINE. YouTube
is the largest one, in which we can see that LINEg improves the
micro and macro-F1 by 7.78% and 10.53% over LINE. On the other
hand, the micro-F1 of LINERg drops -0.13% compare to LINE.

Among three algorithms, LINE benefits most from the regular-
ization, especially on CiteSeer. While DeepWalk and node2vec also
receive around 5% improvements.

(a) LINE

(b) LINEgg

Figure 5: Visualization for Cora.

!http://zhang18f. myweb.cs.uwindsor.ca/n2v_r/

http://zhang18f.myweb.cs.uwindsor.ca/n2v_r/

WebKB Cora CiteSeer BlogCatlog PubMed Flickr YouTube

F1 Tmp(%) F1 Tmp(%) F1 Tmp(%) F1 Imp(%) F1 Tmp(%) F1 Imp(%) F1 Tmp(%)
LINE 0.5114 - | 0.5959 - | 0.3819 - | 0.3699 - | 0.7186 - | 0.3362 - | 0.2729 -
LINERg 0.5545 8.44 | 0.6450 8.24 | 0.4136 8.29 | 0.3812 3.05 | 0.7208 0.31 | 0.3352 -0.29 | 0.2726 -0.13
LINER 0.5761 12.67 | 0.7875 32.14 | 0.5451 42.73 | 0.3847 4.00 | 0.8092 12.61 | 0.3415 1.55 | 0.2942 7.78
DeepWalk 0.4034 - | 0.8077 - | 0.5541 - | 0.3919 - | 0.7956 - | 0.3505 - | 0.3123 -
DeepWalkpg | 0.4409 9.30 | 0.8011 -0.82 | 0.5587 0.82 | 0.4074 3.97 | 0.7997 0.51 | 0.3524 0.54 | 0.3137 0.44
DeepWalkg 0.4466 10.70 | 0.8292 2.65 | 0.5756 3.87 | 0.4146 5.80 | 0.8024 0.85 | 0.3545 1.13 | 0.3149 0.81
node2vec 0.4375 - | 0.7993 - | 0.5535 - | 0.4029 - | 0.7970 - - - - -
node2vecgrg 0.4341 -0.78 | 0.7952 -0.51 | 0.5493 -0.76 | 0.4054 0.64 | 0.7991 0.27 - - - -
node2vecr 0.4875 11.43 | 0.8207 2.68 | 0.5725 343 | 0.4170 3.51 | 0.8067 1.22 - - - -

Table 2: Micro-F1 on classification task, training ratio is 8% for Flickr and YouTube and 80% for the resets.

WebKB Cora CiteSeer BlogCatlog PubMed Flickr YouTube

F1 Imp(%) F1 Imp(%) F1 Imp(%) F1 Imp(%) F1 Imp(%) F1 Imp(%) F1 Imp(%)
LINE 0.3286 - | 0.5821 - | 0.3412 - | 0.2189 - | 0.6963 - | 0.1760 - | 0.1903 -
LINERg 0.3477 5.84 | 0.6320 8.57 | 0.3773 10.59 | 0.2322 6.06 | 0.7007 0.64 | 0.1830 3.96 | 0.1936 1.71
LINER 0.3459 5.27 | 0.7736 32.90 | 0.4996 46.41 | 0.2376 8.54 | 0.7951 14.19 | 0.1941 10.28 | 0.2103 10.53
DeepWalk 0.2215 - | 0.7958 - | 0.5026 - | 0.2543 - | 0.7805 - | 0.2103 - | 0.2431 -
DeepWalkgg | 0.2697 21.76 | 0.7925 -0.42 | 0.5095 1.38 | 0.2700 6.14 | 0.7849 0.57 | 0.2164 2.92 | 0.2436 0.22
DeepWalkg 0.2919 31.79 | 0.8241 3.55 | 0.5261 4.67 | 0.2812 10.57 | 0.7893 1.13 | 0.2170 3.17 | 0.2463 1.31
node2vec 0.2702 - | 0.7912 - | 0.5025 - | 0.2637 - | 0.7818 - - - - -
node2vecrg 0.2568 -4.95 | 0.7879 -0.41 | 0.4960 -1.28 | 0.2720 3.15 | 0.7838 0.26 - - - -
node2vecr 0.2869 6.17 | 0.8120 2.62 | 0.5178 3.04 | 0.2875 9.05 | 0.7939 1.55 - - - -

Table 3: Macro-F1 on classification task, training ratio is 8% for Flickr and YouTube and 80% for the resets.

Figure 5 demonstrates the difference of the embeddings produced
by LINE, LINEgg, and LINER. The dataset is Cora, a citation network.
The dimension of the embeddings is further reduced from 100 to
two using t-SNE, so that they can be plotted. Each dot represents a
paper, and its color reflects its category. For example, the red dots
represent Genetic Algorithms. From the plot, we can observe that
our method LINER can separate groups better.

5 WORD EMBEDDINGS

We also applied our L2 regularization SGNS, and observed improve-
ments as reported in Table 4. Both the data (Text8) and evaluation
tasks (word similarity and analogy) are the same as the ones pro-
vided in the implementation of [5]. Hyper-parameters are also the
same except iteration, which is 50 in our experiment. On similarity
task, our model improves the performance by 17% on rare words
test cases and 9.32% on SimLex-999. The analogy tasks also receive
3.58% and 0.32% on Google and MSR respectively.

6 CONCLUSIONS

In this paper, we study the norm convergence problem of SGNS
based network embedding algorithms. Due to the unrestricted
weight of the vectors, the L2 norm of small nodes will continue
growing during the training. Insufficient regularization in the pre-
vious works does not fix the issue. Our experiment shows that the
improper regularization will make the embeddings worse in some
cases. Based on our observation, we apply the L2 regularizer on
both input and output vectors to improve the embeddings. The
experiment shows that the new model can improve the embeddings
in node classification task. We verify our model on seven datasets
in size of hundreds to millions.

REFERENCES

[1] Qingyao Ai, Liu Yang, Jiafeng Guo, and W. Bruce Croft. 2016. Analysis of the
Paragraph Vector Model for Information Retrieval. In Proceedings of the 2016 ACM

Tasks Textcase SGNS | SGNSg | Imp(%)
Similarity . RW 0.3331 0.3913 17.47
SimLex-999 | 0.2800 | 0.3060 9.32

Analogy Google 0.4468 | 0.4628 3.58
MSR 0.5056 | 0.5072 0.32

Table 4: SGNS and SGNSg on Text8.

International Conference on the Theory of Information Retrieval (ICTIR ’16). ACM,
New York, NY, USA, 133-142. https://doi.org/10.1145/2970398.2970409

[2] Yihan Gao, Chao Zhang, Jian Peng, and Aditya G. Parameswaran. 2018. Low-Norm
Graph Embedding. (2018). arXiv:CoRR/1802.03560

[3] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems 151 (2018), 78 — 94. https:
//doi.org/10.1016/j.knosys.2018.03.022

[4] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning
for Networks. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
855-864. https://doi.org/10.1145/2939672.2939754

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality. In
Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
3111-3119.

[6] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning
of Social Representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’14). ACM, New York,
NY, USA, 701-710. https://doi.org/10.1145/2623330.2623732

[7] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding As Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and Node2Vec. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining (WSDM ’18). ACM, New York, NY, USA, 459-467.
https://doi.org/10.1145/3159652.3159706

[8] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web (WWW ’15). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, 1067-1077. https://doi.org/10.1145/2736277.2741093

[9] D.Zhang, J. Yin, X. Zhu, and C. Zhang. 2018. Network Representation Learning:
A Survey. IEEE Transactions on Big Data (2018), 1-1. https://doi.org/10.1109/
TBDATA.2018.2850013

https://doi.org/10.1145/2970398.2970409
http://arxiv.org/abs/CoRR/1802.03560
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1109/TBDATA.2018.2850013
https://doi.org/10.1109/TBDATA.2018.2850013

	Abstract
	1 Introduction
	1.1 Performance degeneration over iteration
	1.2 The norms of the embeddings

	2 Network Embeddings with L2 Regularization
	3 L2 regularization on embedding vectors
	4 Experiments
	4.1 Experimental setup
	4.2 Node classification

	5 Word Embeddings
	6 Conclusions
	References

