0.234625
-0.3495746
0.765924
0.0234H

-0.4575%3
—Imxn

Vector Search

Jianguo Lu

November 15, 2023

Vector Search November 15, 2023 1/28

Outline

@ Vector search examples

e T — e 1, 302 oY

Vector search examples

Vector index in Lucene

o Lucene 9.0 (2021) added support for dense vector indexes and approximate k-NN search.
o Takes advantage of the HNSW algorithm.

o Lucene is all you need?

1Jimmy Lin et al. Vector Search with OpenAl Embeddings: Lucene Is All You Need.-2023. aiXiv: 2308.14963 [cs.R].

e e — ey 1, B VS

https://arxiv.org/abs/2308.14963

Vector search in Lucene

o KnnVectorField

document .addField (new KnnVectorField("field", float[] vector))

o KnnVectorQuery

indexSearcher.search(new KnnVectorQuery("field", float[] vector, int
topK)

e e — e 1, 30 YT

Vector search examples

Luence vector search

public static void main(String[] args) throws Exception {

Directory directory = FSDirectory.open(Paths.get(" my_index_knn"));

StandardAnalyzer analyzer = new StandardAnalyzer();

IndexWriterConfig indexWriterConfig = new
IndexWriterConfig(analyzer);

indexWriterConfig.setUseCompoundFile(false);

IndexWriter indexWriter = new IndexWriter(directory ,
indexWriterConfig);

for (int i = 1; i <= 500; i ++) {

Document document = new Document();

document.add(new KnnVectorField (" vectorl”,
TestDataGenerator.generateData (128),
VectorSimilarityFunction .EUCLIDEAN));

document.add (new KnnVectorField (" vector2”,
TestDataGenerator.generateData (128),
VectorSimilarityFunction .EUCLIDEAN));

indexWriter.addDocument(document) ;

indexWriter. flush ();

indexWriter.commit();

}
indexWriter . flush ();
indexWriter.commit();
IndexReader reader = DirectoryReader.open(indexWriter);
IndexSearcher searcher = new IndexSearcher(reader);
KnnVectorQuery knnVectorQuery = new KnnVectorQuery(”vectorl”,
TestDataGenerator.generateData (128), 10);
TopDocs search = searcher.search(knnVectorQuery, 10);
Vector Search November 15, 2023

FAISS (Facebook Al Similarity Search)

'pip install faiss-cpu

import faiss
import numpy as np

index = faiss.IndexIDMap(faiss.IndexFlatIP(768))
index.add_with_ids (embeddings, np.arange(len(data)))

import faiss

index = faiss.IndexFlatL2(d)
print (index.is_trained)
index.add (xb)

print (index.ntotal)

e e —

November 15, 2023 6/28

FAISS (Facebook Al Similarity Search)

IndexFlatL2 : brute-force L2 distance search on them
IndexIVF : Inverted File Index.
IndexHNSW : Hierarchical Navigable Small World.
IndexLSH : Locality Sensitive Hashing
Indexing
-
Hosh-based Tree-based Groph-based TInverted file
oY i N
:Sphtuiccxl NGT
hashing Weighbourhood Giraph
and Tree) IVMF
Spectral (Inverted imul'ti-
i / index file)
W Trinary Scalable)
LSH Pm%iz:“ kNN graph
(/_oca“t/
7 4 HNSW IvF
il 7 (Inverted file)
hasiing Annoy Vamana
k\ AG <z 7 X /4

Vector Search

November 15, 2023

7/28

Search Example in FAISS

k = 4 # we want to see 4 nearest neighbors
D, I = index.search(xb[:5], k) # sanity check

print (I)

print (D)

D, I = index.search(xq, k) # actual search

print (I[:51) # neighbors of the 5 first queries
print (I[-5:1) # neighbors of the 5 last queries

e e — e 1, 30 VS

Outline

© Inverted File Index (IVF)

e T — e 1, 302 WS

Inverted File Index (IVF)

Inverted File Index Example

import faiss

d = 64 # Dimension of the vectors

nlist = 100 # Number of clusters

quantizer = faiss.IndexFlatL2(d) # Quantizer (flat
index = faiss.IndexIVFFlat(quantizer, d, nlist,

xb = ... # Your dataset

index.train (xb)
index.add (xb)

k = 5 # Number of nearest neighbors
Xxq = ... # Your query vector

D, I = index.search(xq, k)

print ("Nearest neighbors:", I)

e e —

faiss .METRIC_L2)

November 15, 2023

10/28

Inverted File Index (IVF)

Inverted File Index

o Flat indicates that there is no decompression of original vectors and they are fully stored.

@ To create this index, we first need to pass a quantizer — an object that will determine how
database vectors will be stored and compared.

o Two parameters:

o nlist: defines a number of regions (Voronoi cells) to create during training.
o nprobe: determines how many regions to take for the search of candidates.

e e — e 1, 30 Y

Inverted File Index (IVF)

Voronoi graph

o Create several non-intersecting regions
@ Each region has its own centroid (white dots)

@ Distance from a centroid to any point of its region is less than the distance from that point
to another centroid.

[} = = =
Vector Search

APRN G4
12/28

November 15, 2023

Inverted File Index (IVF)
Search

then taken as candidates.

o When given a query, distances to all the centroids of Voronoi partitions are calculated.
@ The centroid with the lowest distance is chosen and vectors contained in this partition are
o Faster than brute force search
]

Vector Search

=

November 15, 2023

DA

13/28

Edge problem

@ |IVF does not guarantee that the found object will always be the nearest.

o Example: the actual nearest neighbour is located in the red region but we are selecting
candidates only from the green zone. Such a situation is called the edge problem.

Vector Search

5 =

November 15, 2023

DA

14/28

Inverted File Index (IVF)
Solution

o This case typically occurs when the queried object is near the border.
centroids to the object.

@ Solution: choose several regions to search for candidates based on the top m closest

Vector Search

=

November 15, 2023

DA

15/28

nprobe=3.

Now we search in three cells.

Vector Search

November 15, 2023

DA

16/28

Outline

© HNSw

e T — e 1, 302 T

Code for HNSW

Example: Create an IndexHNSW
d = 64 # Dimension of the vectors

index = faiss.IndexHNSWFlat(d, 32, faiss.METRIC_L2)

Train on a dataset
xb = ... # Your dataset
index.train (xb)

Add vectors to the index
index .add (xb)

Perform a search
k = 5 # Number of nearest neighbors

Xxq = ... # Your query vector

D, | = index.search(xq, k)

print(”" Nearest neighbors:", 1)
I Ve et

November 15, 2023

18/28

HNSW

HNSW?

AN

queryl‘vectar
O nearest neighbor

@

2Yu A Malkov and Dmitry A Yashunin. “Efficient and robust approximate nearest neighbor search using hierarchical navigable
small world graphs”. In: IEEE transactions on pattern analysis and machine intelligence42.4 (2818), pp= 824-836.

e e ey 1, B oy

Navigable Small World (NSW)

Inserting data points one by one.

When a new node is inserted, it is then linked by edges to the M nearest vertices to it.

Long-range edges will likely be created at the beginning phase of the graph

With more nodes added, newly connected edges will be smaller.

AO ji\ac w &1

e e — e 1, 30 0

Search the graph

When we want to find the nearest neighbor to a query vector,
@ initiate the search by starting at one node (i.e. node A in that case).
@ Among its neighbors (D, G, C), look for the closest node to the query (D).
o We iterate over that process until there are no closer neighbors to the query.
@ Once we cannot move anymore, we found a close neighbor to the query.

A A Search starting point A A'sneighbors

F initiate F FindA's

search

Move to closest
neighbor from query

A
Move to closest |
F neighbor F'f"’ D's
from query neighbors

Vector Search November 15, 2023 21/28

HNSW

Problem 1: Accuracy

Problem : The search is approximate and the found node may not be the closest as the

algorithm may be stuck in a local minima.

Solution : The search accuracy can be improved by using several entry points.

e e — e 1, 30

22/28

Problem 2: Speed

spend a lot of iterations traversing the graph to arrive at the right node.
@ Recall the skiplist algorithm
@ There are layers of links

o Upper layers have longer jumps

looking for 11...

(entry lager)

layer 3

layer 2
layer 1
layer © — D — [:‘ —> % —> — D —

start 3 end

e e — e 1, 30 Sy

Hierarchical NSW

Upper layers have less nodes/less degrees/less dense

@ Layer 0 have all the nodes

@ include a node in the graph at layer L with a probability

@ The first layer allows us to traverse longer distances at each iteration
o In last layer, each iteration will tend to capture shorter distances.

entry point
4 laye?)

layer 2 (ent

_ -

e e — e 1, 30 2

HNSW

Search process

@ Search starts from the top layer where the distance is longer
@ go to the next layer if the NSW algorithm finds the closest neighbor in that layer.
entry point

nearest neighboy

query vector

e e — e 1, 30 oY

HNSW

insert vector
at layer 1

with M = 3
layer 1 and ©
find 3 links

as more vertices are
inserted, more links can be added
- up to My for layer 1, and
Maro for layer ©

Mok = 3
Mpaxo = 5

e e — e 1, 30 o

cality Sensitive Hashing
Outline

© Locality Sensitive Hashing

e T — e 1, 302 SV

Locality Sensitive Hashing

LSH

signature

a

@ What is the signature?

bucket(match

@ How to obtain the signature?

Vector Search

signature

> a and b == candidate pair

28 /28

	Vector search examples
	Inverted File Index (IVF)
	HNSW
	Locality Sensitive Hashing

