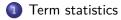

#### Text statistics

September 12, 2023


(Chapter 5.1 IIR)

#### Overview





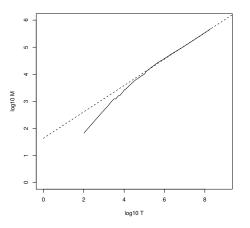
## Outline





## The Reuters collection

| symbol | statistic                                           | value       |
|--------|-----------------------------------------------------|-------------|
| N      | documents                                           | 800,000     |
| L      | avg. $\#$ word tokens per document                  | 200         |
| М      | word types                                          | 400,000     |
|        | avg. # bytes per word token (incl. spaces/punct.)   | 6           |
|        | avg. # bytes per word token (without spaces/punct.) | 4.5         |
|        | avg. $\#$ bytes per word type                       | 7.5         |
| Т      | non-positional postings                             | 100,000,000 |


#### How big is the term vocabulary?

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least  $70^{20} \approx 10^{37}$  different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps' law:

$$M = kT^b \tag{1}$$

- *M* is the size of the vocabulary, *T* is the number of tokens in the collection.
- Typical values for the parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5.
- Heaps' law is linear in log-log space.
  - It is the simplest possible relationship between collection size and vocabulary size in log-log space.
  - Empirical law

#### Heaps' law for Reuters

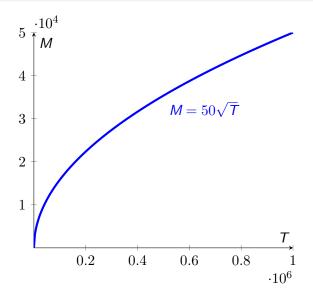


Vocabulary size M as a function of collection size T (number of tokens)

$$M = kT^b \tag{2}$$

the best least squares fit for Reuters-RCV1.

$$\log_{10} M = 0.49 * \log_{10} T + 1.64$$
 (3)


In other words,

$$M = 10^{1.64} T^{0.49} \tag{4}$$

$$k = 10^{1.64} \approx 44 \tag{5}$$

$$b = 0.49$$
 (6)

## Heaps' law without loglog scale



## Empirical fit for Reuters

• Example: for the first 1,000,020 tokens Heaps' law predicts 38,323 terms:

 $44 \times 1,000,020^{0.49} \approx 38,323$ 

- The actual number is 38,365 terms, very close to the prediction.
- Empirical observation: fit is good in general.

#### Exercise

- What is the effect of including spelling errors vs. automatically correcting spelling errors on Heaps' law?
- Ompute vocabulary size M
  - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
  - Assume a search engine indexes a total of 20,000,000,000  $(2 \times 10^{10})$  pages, containing 200 tokens on average per page
  - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

## Outline

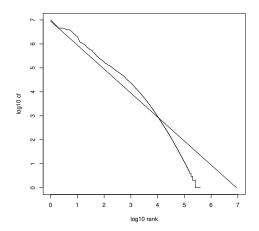




## Zipf's law

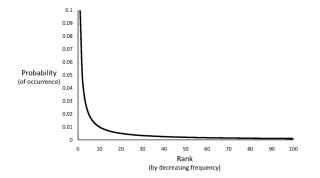
- Now we have characterized the growth of the vocabulary in collections.
- We also want to know how many frequent vs. infrequent terms we should expect in a collection.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The *i*<sup>th</sup> most frequent term has frequency cf<sub>*i*</sub> proportional to 1/i.

$$\mathrm{cf}_i \propto \frac{1}{i}$$
 (7)

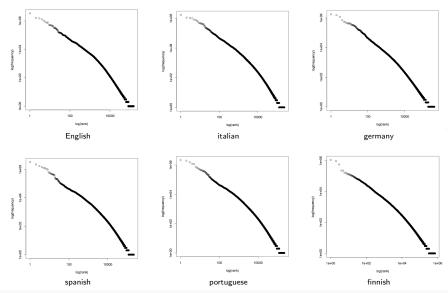

• cf<sub>*i*</sub> is collection frequency: the number of occurrences of the term *t<sub>i</sub>* in the collection.

#### Zipf's law

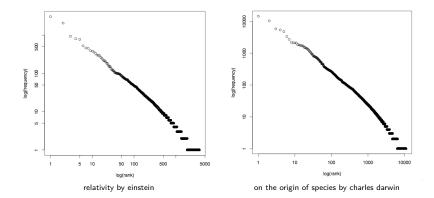
$$\mathrm{cf}_i \propto \frac{1}{i}$$
 (8)


- If the most frequent term (*the*) occurs  $cf_1$  times, then the second most frequent term (*of*) has half as many occurrences  $cf_2 = \frac{1}{2}cf_1$  ...
- ...and the third most frequent term (and) has a third as many occurrences  $cf_3 = \frac{1}{3}cf_1$  etc.
- Equivalent:  $cf_i = ci^k$  and  $\log cf_i = \log c + k \log i$  (for k = -1)
- Example of a power law

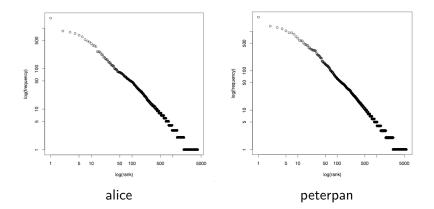
### Zipf's law for Reuters

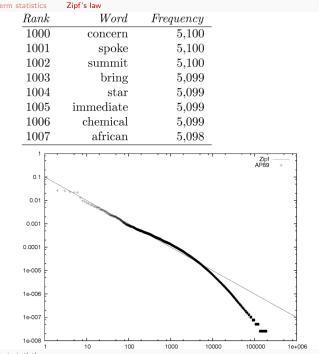



Fit is not great. What is important is the key insight: Few frequent terms, many rare terms.


## Zipf's law if not log-loged




# Zipf's law in different languages (parliament documents)




## Zipf's law in scientific writing



#### Zipf's law for kid's books





Zipf's law Term statistics

| 11 5 | latistics | Zipi si   | Idw |             |         |       |         |    |           |         |
|------|-----------|-----------|-----|-------------|---------|-------|---------|----|-----------|---------|
|      | Word      | Freq.     | r   | $P_{r}(\%)$ | $r.P_r$ | Word  | Freq    | r  | $P_r(\%)$ | $r.P_r$ |
|      | the       | 2,420,778 | 1   | 6.49        | 0.065   | has   | 136,007 | 26 | 0.37      | 0.095   |
|      | of        | 1,045,733 | 2   | 2.80        | 0.056   | are   | 130,322 | 27 | 0.35      | 0.094   |
|      | to        | 968,882   | 3   | 2.60        | 0.078   | not   | 127,493 | 28 | 0.34      | 0.096   |
|      | a         | 892,429   | 4   | 2.39        | 0.096   | who   | 116,364 | 29 | 0.31      | 0.090   |
|      | and       | 865,644   | 5   | 2.32        | 0.120   | they  | 111,024 | 30 | 0.30      | 0.089   |
|      | in        | 847,825   | 6   | 2.27        | 0.140   | its   | 111,021 | 31 | 0.30      | 0.092   |
|      | said      | 504,593   | 7   | 1.35        | 0.095   | had   | 103,943 | 32 | 0.28      | 0.089   |
|      | for       | 363,865   | 8   | 0.98        | 0.078   | will  | 102,949 | 33 | 0.28      | 0.091   |
|      | that      | 347,072   | 9   | 0.93        | 0.084   | would | 99,503  | 34 | 0.27      | 0.091   |
|      | was       | 293,027   | 10  | 0.79        | 0.079   | about | 92,983  | 35 | 0.25      | 0.087   |
|      | on        | 291,947   | 11  | 0.78        | 0.086   | i     | 92,005  | 36 | 0.25      | 0.089   |
|      | he        | 250,919   | 12  | 0.67        | 0.081   | been  | 88,786  | 37 | 0.24      | 0.088   |
|      | is        | 245,843   | 13  | 0.65        | 0.086   | this  | 87,286  | 38 | 0.23      | 0.089   |
|      | with      | 223,846   | 14  | 0.60        | 0.084   | their | 84,638  | 39 | 0.23      | 0.089   |
|      | at        | 210,064   | 15  | 0.56        | 0.085   | new   | 83,449  | 40 | 0.22      | 0.090   |
|      | by        | 209,586   | 16  | 0.56        | 0.090   | or    | 81,796  | 41 | 0.22      | 0.090   |
|      | it        | 195,621   | 17  | 0.52        | 0.089   | which | 80,385  | 42 | 0.22      | 0.091   |
|      | from      | 189,451   | 18  | 0.51        | 0.091   | we    | 80,245  | 43 | 0.22      | 0.093   |
|      | as        | 181,714   | 19  | 0.49        | 0.093   | more  | 76,388  | 44 | 0.21      | 0.090   |
|      | be        | 157,300   | 20  | 0.42        | 0.084   | after | 75,165  | 45 | 0.20      | 0.091   |
|      |           |           |     |             |         |       |         |    |           |         |

0.41 0.087

0.40 0.092

0.38 0.092

us 0.41 0.090 percent

up

one 0.38 0.094 people 72,045 46

71,956 47

71,082 48

70,266 49

68,988 50

| 0.19 | 0.089 |
|------|-------|
| 0.19 | 0.091 |
| 0.19 | 0.092 |
| 0.19 | 0.092 |
| 0.19 | 0.093 |
|      |       |

were

have

his

but

an

153,913 21

149,749 23

140,880 25

152,576 22

142,285 24

## Zipf's law is a type of power law

- degree distribution of
  - the web,
  - online social networks,
  - citation networks
  - software networks
- wealth distribution
- there are variants of the power law, such as Mandelbrot law.