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The Reuters collection

symbol statistic value
N documents 800,000
L avg. # word tokens per document 200
M word types 400,000

avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per word type 7.5

T non-positional postings 100,000,000
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How big is the term vocabulary?
That is, how many distinct words are there?
Can we assume there is an upper bound?
Not really: At least 7020 ≈ 1037 different words of length 20.
The vocabulary will keep growing with collection size.
Heaps’ law:

M = kTb (1)

M is the size of the vocabulary, T is the number of tokens in
the collection.
Typical values for the parameters k and b are: 30 ≤ k ≤ 100
and b ≈ 0.5.
Heaps’ law is linear in log-log space.

It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
Empirical law
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Heaps’ law for Reuters
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Vocabulary size M as a function of
collection size T (number of tokens)

M = kTb (2)

the best least squares fit for
Reuters-RCV1.

log10 M = 0.49 ∗ log10 T + 1.64 (3)

In other words,

M = 101.64T0.49 (4)
k = 101.64 ≈ 44 (5)
b = 0.49 (6)
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Heaps’ law without loglog scale
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Empirical fit for Reuters

Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44× 1,000,0200.49 ≈ 38,323

The actual number is 38,365 terms, very close to the
prediction.
Empirical observation: fit is good in general.
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Exercise

1 What is the effect of including spelling errors vs. automatically
correcting spelling errors on Heaps’ law?

2 Compute vocabulary size M
Looking at a collection of web pages, you find that there are
3000 different terms in the first 10,000 tokens and 30,000
different terms in the first 1,000,000 tokens.
Assume a search engine indexes a total of 20,000,000,000
(2× 1010) pages, containing 200 tokens on average per page
What is the size of the vocabulary of the indexed collection as
predicted by Heaps’ law?
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Zipf’s law

Now we have characterized the growth of the vocabulary in
collections.
We also want to know how many frequent vs. infrequent
terms we should expect in a collection.
In natural language, there are a few very frequent terms and
very many very rare terms.
Zipf’s law: The ith most frequent term has frequency cfi
proportional to 1/i.

cfi ∝
1

i (7)

cfi is collection frequency: the number of occurrences of the
term ti in the collection.
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Zipf’s law

cfi ∝
1

i (8)

If the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences
cf2 = 1

2cf1 …
…and the third most frequent term (and) has a third as many
occurrences cf3 = 1

3cf1 etc.
Equivalent: cfi = cik and log cfi = log c + k log i (for k = −1)
Example of a power law
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Zipf’s law for Reuters
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Fit is not great. What
is important is the
key insight: Few fre-
quent terms, many
rare terms.

Text statistics 13 / 20



Term statistics Zipf’s law

Zipf’s law if not log-loged

Text statistics 14 / 20



Term statistics Zipf’s law

Zipf’s law in different languages (parliament documents)

English italian germany

spanish portuguese finnish
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Zipf’s law in scientific writing

relativity by einstein on the origin of species by charles darwin
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Zipf’s law for kid’s books

alice peterpan

Text statistics 17 / 20



Term statistics Zipf’s law

Text statistics 18 / 20



Term statistics Zipf’s law

Text statistics 19 / 20



Term statistics Zipf’s law

Zipf’s law is a type of power law

degree distribution of
the web,
online social networks,
citation networks
software networks

wealth distribution
there are variants of the power law, such as Mandelbrot law.
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