LSI (Latent Semantic Indexing)

September 12, 2023

Overview

Overview

Matrix and Vectors

Eigenvalues and Eigenvectors

(ロ)、(型)、(E)、(E)、 E) の(()

Matrix Decomposition

LSI: Latent Semantic Indexing

- ▶ TF-IDF matrix is the basis for computing the similarity between documents.
- Can we transform this matrix, so that we get a better measure of similarity between documents (and words)?

	Antony&Cleopatra	JuliusCaesar	TheTempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

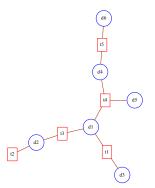
The Problem With Term-doc (Doc-Term) Matrix

Example from the IR book.

Let $C =$

	d1	d2	d3	d4	d5	d6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

- This is a standard term-document matrix. We use a non-weighted matrix here to simplify the example.
- d2 and d3 have zero similarity
- Even though then contain semantically similar words



(日) (四) (日) (日) (日)

Problem with vector space model

Synonym

- Different terms may have identical or similar meanings (weaker: words indicating the same topic).
- No associations between words are made in the vector space representation.

Term-document matrices are very large

- But the number of topics that people talk about is small (in some sense)
- Clothes, movies, politics, …
- Can we represent the term-document space by a lower dimensional latent space?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview of LSI (Latent Semantic Indexing)

- Decompose the term-document matrix into a product of matrices.
- Use Singular value decomposition (SVD).
- $A = U\Sigma V^T$ (where A = term-document matrix)
- We will then use the SVD to compute a new, improved term-document matrix A'.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We'll get better similarity values out of A' (compared to A).
- Using SVD for this purpose is called latent semantic indexing or LSI.

Vector and Matrix Notations

Length If $v = (v_1, v_2, \dots, v_n)$ is a vector, its length |v| is defined as

$$|\mathbf{v}| = \sqrt{\sum_{1}^{n} \mathbf{v}_{i}^{2}} \tag{1}$$

Inner product

Given two vectors $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$. The inner product of x and y is

$$x \cdot y = \sum_{1}^{n} x_i y_i \tag{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Orthonormal Vectors

Orthogonal vector

- Two vectors are orthogonal to each other if their inner product equals zero.
- In two dimensional space, this is equivalent to saying that the vectors are perpendicular, or that the only angle between them is a 90 angle.

For example, the vectors [2, 1,-2, 4] and [3,-6, 4, 2] are orthogonal because

$$(2, 1, -2, 4) \cdot (3, -6, 4, 2) = 2 \times 3 + 1 \times (-6) - 2 \times 4 + 4 \times 2 = 0$$
(3)

Normal vector

A normal vector (or unit vector) is a vector of length 1.

Any vector with an initial length greater than 0 can be normalized by dividing each component in it by the vector's length.

Orthonormal Vectors

Orthogonal and normal vectors

Identity Matrix I

The identity matrix (denoted as I) is a square matrix with entries on the diagonal equal to 1 and all other entries equal zero.

(ロ)、(型)、(E)、(E)、 E) の(()

A matrix A is orthogonal if $AA^T = A^T A = I$.

Eigenvalues and Eigenvectors

Given an $m \times m$ square matrix S. An eigenvector v is a nonzero vector that satisfies the equation

$$Sv = \lambda v$$
 (4)

 λ is a scalar, called an eigenvalue.

 $S = \left(\begin{array}{rrr} 3 & 2 \\ 2 & 6 \end{array}\right)$

$$\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 7 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
(5)

Normalized solution:

$$\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix} = 7 \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$$
(6)

- Intuition: v is unchanged by S (except for scaling)
- Example: stationary distribution of a Markov chain
- There are at most m distinct solutions. can be complex even though S is real.

Matrix action

- The plot shows some color coded points on the unit circle.
- Move your mouse over the plot to see what happens when the matrix hits the points on the unit circle.
- You can see that the matrix stretches and rotates the unit circle-that's Matrix Action.

$$M = \begin{pmatrix} 1 & 3 \\ -3 & 2 \end{pmatrix}$$

• e.g., $M \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

(view the animation using PDFReader.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Matrix action-Strecher

- When you look at that action you can see why it's natural to call a diagonal matrix a "stretcher" matrix.
- The diagonal matrix stretches in the x direction by a factor of "a" and in the y direction by a factor of "b".
- You can verify this by hand using the column way to multiply a matrix times a vector:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$M = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

• e.g., $M \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$

Another example for eigenvectors

$$\begin{split} S &= \begin{pmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \text{its eigenvalues are 30, 20, 1, and the corresponding eigenvectors are} \\ v_1 &= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ Sv_1 &= \lambda_1 v_1 \\ Sv_2 &= \lambda_2 v_2 \\ Sv_3 &= \lambda_3 v_3 \end{split}$$

$$S(v_1, v_2, v_3) = (\lambda_1 v_1, \lambda_2 v_2, \lambda_3 v_3) = (v_1, v_2, v_3) \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$
$$SU = U\Sigma$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

 $S = U \Sigma U^{-1}$

Find solutions for eigenvalues and eigen vectors

$$Sv = \lambda v$$
 (7)

$$(S - \lambda I)v = 0 \tag{8}$$

$$\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} - \lambda I = \begin{pmatrix} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{pmatrix}$$
(9)

The determinant is set 0, i.e.,

$$(3-\lambda)(6-\lambda)-4=0$$

There are two solutions:

$$\lambda = 7, \lambda = 2$$

For the principal eigenvalue 7, the corresponding eigenvector can be solved from

$$\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 7 \begin{pmatrix} x \\ y \end{pmatrix}$$
(10)

The normalized principal eigenvector is $\begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}$ The eigenvector corresponding to eigenvalue 2 is $\begin{pmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{pmatrix}$.

For an $n \times n$ matrix, there are n eigenvectors. Let U is an $n \times n$ matrix consists of n column eigenvectors. U is orthonormal, i.e.,

$$UU^T = U^T U = I$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

For example,

$$U = \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{pmatrix}.$$

$$UU^{T} = \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{pmatrix} \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Finding eigen pairs by power iteration

- Recall the 'power method' for PageRank–calculate the principal eigenvector for stochastic matrix.
- the method can be extended for other eigenvectors
- when the principal eigenvector is obtained, modify the matrix so that in the new matrix, the principle eigenvector is the second eigenvector

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

More details can be found in MMD.

$$M = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}$$

Iteration 1: $\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$
Iteration 2: $\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 0.530 \\ 0.848 \end{pmatrix} = \begin{pmatrix} 3.286 \\ 6.148 \end{pmatrix}$
Iteration 3: $\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 0.471 \\ 0.882 \end{pmatrix} = \begin{pmatrix} \dots \\ \dots \end{pmatrix}$

Eigenvalues and eigenvectors for column stochastic matrix

Recall the PageRank algorithm Mr = r.

$$\left(\begin{array}{cc} .5 & .2\\ .5 & .8 \end{array}\right) - \lambda I = \left(\begin{array}{cc} .5 - \lambda & .2\\ .5 & .8 - \lambda \end{array}\right)$$

The determinant is set 0, i.e.,

$$(.5-\lambda)(.8-\lambda)-.1=0$$

There are two solutions:

$$\lambda = 1, \lambda = 0.3$$

For the principal eigenvalue 1, the corresponding eigenvector can be solved from

$$\begin{pmatrix} 0.5 & 0.2 \\ 0.5 & 0.8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
(11)
The normalized principal eigenvector is $\begin{pmatrix} 2/\sqrt{29} \\ 5/\sqrt{29} \end{pmatrix}$

Singular value decomposition

Given an $m \times n$ matrix A,

$$A = U \Sigma V^T$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example:

- U: document-to-concept similarity matrix
- V: term-to-concept similarity matrix
- Σ: its diagonal elements: "strength" of each concept

Eigen diagonal decomposition

Matrix diagonalization theorem

Let S be a square $(n \times n)$ real-valued square matrix with *n* linearly independent eigenvectors there is an eigen decomposition

$$S = U\Sigma U^{-1} \tag{12}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Columns of U are the eigenvectors of S;

Diagonal elements of Σ are eigenvalues of S

$$S(v_{1}, v_{2}, v_{3}) = (\lambda_{1}v_{1}, \lambda_{2}v_{2}, \lambda_{3}v_{3}) = (v_{1}, v_{2}, v_{3}) \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix}$$
(13)
$$SU = U\Sigma$$
$$S = U\Sigma U^{-1}$$

Symmetric Eigen Decomposition

Perron-Frobenius Theorem

If S is symmetric non-negative matrix, there is an unique eigen decomposition

$$S = U\Sigma U^T \tag{14}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

U is orthogonal;

- eigenvalues are non-negative;
- ▶ $U^{-1} = U^T$
- Columns of U are normalized eigenvectors
- Columns are orthogonal.
- (everything is real number)

Singular Value Decomposition

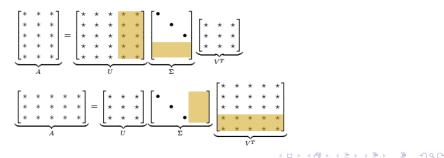
THEOREM [Press+92]

Always possible to decompose matrix A into

$$A = U\Sigma V^{T}, \tag{15}$$

where

- $A: m \times n; U: m \times r; \Sigma: r \times r; V: n \times r;$
- U, V: column orthonormal (ie., columns are unit vectors, orthogonal to each other)
- $U^T U = I; V^T V = I$ (I: identity matrix)
- Σ: singular are positive, and sorted in decreasing order



SVD Interpretation: documents, terms and concepts

How to compute U, V, Σ ? Note that U and V are orthonormal, so $UU^T = I$, $VV^T = I$.

$$A = U\Sigma V^{T}$$

$$A^{T} = (U\Sigma V^{T})^{T} = V\Sigma^{T}U^{T}$$

$$A^{T}A = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T} = V\Sigma^{2}V^{T}$$

$$A^{T}AV = V\Sigma^{2}V^{T}V$$
$$A^{T}AV = V\Sigma^{2}$$

V is the eigenvectors of $A^T A$, Σ is the square root of the eigenvalues. Similarly,

$$AA^{T} = U\Sigma V^{T} V\Sigma^{T} U^{T} = U\Sigma\Sigma^{T} U^{T} = U\Sigma^{2} U^{T}$$
$$(AA^{T})U = U\Sigma^{2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Why $r \times r$?

- decided by the 'rank' r of the matrix A.
- there are r number of non-zero eigenvalues.

Documents, Terms, and Concepts

• Q: if A is the document-to-term matrix, what is $A^T A$?

- term-to-term ([m × m]) similarity matrix
- \blacktriangleright Q: AA^T ?
- document-to-document ([n × n]) similarity matrix

(2	0	8	6	0			
	1	6	0	1	7			
A =	5	0	7	4	0			
	7	0	8	5	0			
	0	10	0	0	7)		
	1	104	8		90	108	0	
		8	87		9	12	109	
$AA^T =$		90	9		90	111	0	
		108	12		111	138	0	
		0	109		0	0	149)
	ĺ	79	6		107	68	7	Ì
_	1	6	136		0	6	112	
$A^T A =$		107	0		177	116	0	
		68	6		116	78	7	
	(7	112		0	7	98	Ϊ

Term-doc Matrix

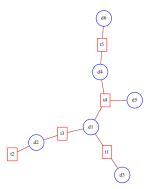
Example from the IR book.

Let	C =

	d1	d2	d3	d4	d5	d6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

- This is a standard term-document matrix. We use a non-weighted matrix here to simplify the example.
- Use Matlab to calculate the decomposition

 $[U,\ S,\ V]{=}\mathsf{svd}(C)$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

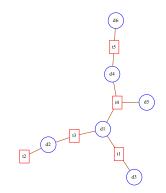
$$C * C'$$
 and $C^T * C$

term-term similarity:

$$C * C^{T} = \begin{pmatrix} 2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

doc-doc similarity:

$$C^{T} * C = \begin{pmatrix} 3 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$



 $C = U \Sigma V^T$

$C = \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
U =
$\left(\begin{array}{cccc} 0.44 & -0.29 & -0.56 & 0.57 & -0.24 \\ 0.12 & -0.33 & 0.58 & -0.00 & -0.72 \end{array}\right)$
0.12 - 0.53 - 0.00 - 0.72 0.47 - 0.51 - 0.36 - 0.00 - 0.61
$\begin{pmatrix} 0.16 & 0.16 & 0.11 & 0.12 \\ 0.26 & 0.64 & 0.41 & 0.57 & 0.08 \end{pmatrix}$
$\Sigma =$
0 1.59 0 0 0
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
$V^T =$
(0.74 - 0.28 - 0.27 - 0.00 0.52 - 0.00 (3)
0.27 -0.52 0.74 0.00 -0.28 0.00
0.20 - 0.18 - 0.44 0.57 - 0.62 0.00
0.44 0.62 0.20 0.00 -0.18 -0.57
0.32 0.21 -0.12 -0.57 -0.40 0.57
0.12 0.40 0.32 0.57 0.21 0.57 /

$C = U \Sigma V^T$

	/ 0.4403	-0.2962	-0.5695	0.5774	-0.2464	١
	0.1293	-0.3315	0.5870	-0.0000	-0.7272	
U =	0.4755	-0.5111	-0.5695 0.5870 0.3677 -0.1549 0.4146	-0.0000	0.6144	
	0.7030	0.3506	-0.1549	-0.5774	-0.1598	
	0.2627	0.6467	0.4146	0.5774	0.0866)

- one row per term
- one column per 'concept'. at most there are min(M,N) of columns. M is the number of terms and N is the number of documents.
- This is an orthonormal matrix:
 - Row vectors have unit length.
 - Any two distinct row vectors are orthogonal to each other.
- Think of the dimensions as "semantic" dimensions that capture distinct topics like politics, sports, economics.
- Each number u_{ij} in the matrix indicates how strongly related term i is to the topic represented by semantic dimension j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Σ in $C = U \Sigma V^T$

$$\Sigma = \left(\begin{array}{cccccc} 2.1625 & 0 & 0 & 0 & 0 \\ 0 & 1.5944 & 0 & 0 & 0 \\ 0 & 0 & 1.2753 & 0 & 0 \\ 0 & 0 & 0 & 1.0000 & 0 \\ 0 & 0 & 0 & 0 & 0.3939 \end{array} \right)$$

This is a square, diagonal matrix of dimensionality $min(M, N) \times min(M, N)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- The diagonal consists of the singular values of C.
- The magnitude of the singular value measures the importance of the corresponding semantic dimension.
- We will make use of this by omitting unimportant dimensions.

V^T in $C = U \Sigma V^T$

	/ 0.7486	-0.2865	-0.2797	-0.0000	0.5285	-0.0000 \
V^{T} –			0.7486		-0.2865	0.0000
	0.2036	-0.1858	-0.4466	0.5774	-0.6255	0.0000
			0.2036			-0.5774
	0.3251	0.2199	-0.1215	-0.5774	-0.4056	0.5774
	0.1215	0.4056	0.3251	0.5774	0.2199	0.5774 /

One column per document,

- one row per min(M,N) where M is the number of terms and N is the number of documents.
- This is an orthonormal matrix: (i) Column vectors have unit length. (ii) Any two distinct column vectors are orthogonal to each other.
- These are again the semantic dimensions from the term matrix U that capture distinct topics like politics, sports, economics.
- Each number v_{ij} in the matrix indicates how strongly related document i is to the topic represented by semantic dimension j.

Summary of LSI

- We have decomposed the term-document matrix C into a product of three matrices.
- The term matrix U: consists of one (row) vector for each term
- The document matrix V^T : consists of one (column) vector for each document

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The singular value matrix Σ: diagonal matrix with singular values, reflecting importance of each dimension
- Next: Why are we doing this?

Dimensionality reduction

- ▶ Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the 'details'.
- These details may
 - be noise— in that case, reduced LSI is a better representation because it is less noisy

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- make things dissimilar that should be similar–again reduced LSI is a better representation because it represents similarity better.
- Analogy for "fewer details is better"
 - Image of a bright red flower
 - Image of a black and white flower
 - Omitting color makes is easier to see similarity

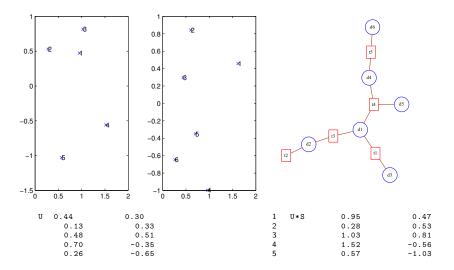
Reduce the dimensionality to 2

we only zero out singular values in Σ. This has the effect of setting the corresponding dimensions in U and V T to zero when computing the product C = UΣV^T.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

U	1	1	2	3	4	5	
ship	-0.4	44 –	0.30	0.00	0.00	0.00	
boat	-0.1	13 –	0.33	0.00	0.00	0.00	
ocear	n -0.4	48 –	0.51	0.00	0.00	0.00	
wood	-0.7	70	0.35	0.00	0.00	0.00	
tree	-0.2	26	0.65	0.00	0.00	0.00	
Σ_2	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00	-	
2	0.00	1.59	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^T	d_1		d2	d ₃	d_4	d_5	d_6
1	-0.75	-0.	28 –	0.20	-0.45	-0.33	-0.12
2	-0.29	-0.	53 –	0.19	0.63	0.22	0.41
3	0.00	0.	00	0.00	0.00	0.00	0.00
4	0.00	0.	00	0.00	0.00	0.00	0.00
5	0.00	0.	00	0.00	0.00	0.00	0.00

2D visualization



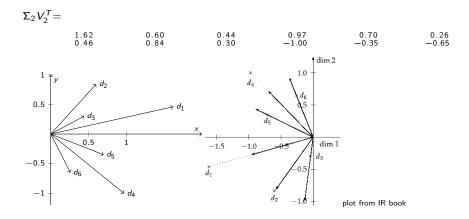
C vs. C2

- We can view C2 as a two-dimensional representation of the matrix.
- We have performed a dimensionality reduction to two dimensions.
- Similarity of d2 and d3 in the original space: 0.
- Similarity of d2 and d3 in the reduced space:

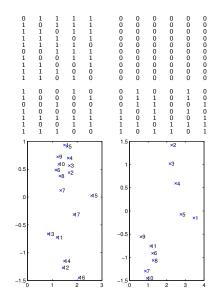
 $0.52*0.28+0.36*0.16+0.72*0.36+0.12*0.20+-0.39*-0.08\approx 0.52$

С	d_1	<i>d</i> ₂	d ₃	d4	d_5	d_6		
ship	1	0	1	0	0	0		
boat	0	1	0	0	0	0		
ocean	1	1	0	0	0	0		
wood	1	0	0	1	1	0		
tree	0	0	0	1	0	1		
C ₂	d_1	L	d_2		d_3	d_4	d_5	d_6
ship	0.85	5	0.52		0.28	0.13	0.21	-0.08
boat	0.36	5	0.36		0.16	-0.20	-0.02	-0.18
ocean	1.01	L	0.72		0.36	-0.04	0.16	-0.21
wood	0.97	7	0.12		0.20	1.03	0.62	0.41
tree	0.12	2 -	-0.39	_	0.08	0.90	0.41	0.49

cosine distance in 2 dimensions



Example for 2D plot



$$\lambda_1 = 6.48, \lambda_2 = 3.17, \lambda_3 = 2.83, \ldots$$

Listing 1: Matlab code

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ののの

Summary

- Standard vector space: Synonyms contribute nothing to document similarity.
- LSI takes documents that are semantically similar, representing them in shorter vectors
- It is proven that word2vec is an implicit matrix factorization.
- Omer Levy and Yoav Goldberg. 2014b. Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems, pages 2177–2185.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

SVD and Eigen Decomposition

The singular value decomposition and the eigen decomposition are closely related.

- The left-singular vectors of M are eigenvectors of MM^T.
- ▶ The right-singular vectors of M are eigenvectors of $M^T M$.
- The non-zero singular values of M (found on the diagonal entries of Σ) are the square roots of the non-zero eigenvalues of both M^TM and MM^T.

Reading: IIR Chapter 18.