Sentence Embedding SOTA

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICR-R	Avg.
		Uns	upervised	Models				
GloVe (avg.) †	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT-flow 1	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT-whitening 1	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT ±	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CT-BERT 1	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
ConSERT-BERT	64.64	78.49	69.07	79.72	75.95	73.97	67.31	72.74
DiffCSE-BERT	72.28	84.43	76.47	83.90	80.54	80.59	71.23	78.49
SimCSE-BERT	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
LLaMA2-7B *	50.66	73.32	62.76	67.00	70.98	63.28	67.40	65.06
		Su	pervised M	1 odels				
InferSent-GloVe †	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
USE †	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
ConSERT-BERT	74.07	83.93	77.05	83.66	78.76	81.36	76.77	79.37
CoSENT-BERT *	71.35	77.52	75.05	79.68	76.05	78.99	71.19	75.69
SBERT †	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SimCSE-BERT	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.57
SimCSE-LLaMA2-7B *	78.39	89.95	84.80	88.50	86.04	87.86	81.11	85.24
AnglE-BERT AnglE-LLaMA2-7B	75.09 79.00	85.56 90.56	80.66 85.79	86.44 89.43	82.47 87.00	85.16 88.97	81.23 80.94	82.37 85.96

• report the Spearman's correlation ho imes 100 (an example to remove redundancy)

¹Xianming Li and Jing Li. AnglE-optimized Text Embeddings. 2023. arXiv: 2309.12871 [ct_CL]. (🗄) (🛓) (🛬)

Sentence Embedding

Jianguo Lu

November 9, 2023

4	< D	• •	3	• •	3	•	-2	୬୯୯
		No	vemb	er Q	-202	22		2/22

Sentence Embedding

2 LLM and Pooling strategies

LLMs and Biases

Sentence Embedding

2

< □ > < □ > < □ > < □ > < □ >

Before Pre-trained Language Models

• Doc2Vec dereived from Word2Vec²³

• Stanford Sentiment Treebank dataset. : 8544 sentences for training.

Model	Error rate	Error rate
	(Positive/	(Fine-
	Negative)	grained)
Naïve Bayes	18.2 %	59.0%
(Socher et al., 2013b)		
SVMs (Socher et al., 2013b)	20.6%	59.3%
Bigram Naïve Bayes	16.9%	58.1%
(Socher et al., 2013b)		
Word Vector Averaging	19.9%	67.3%
(Socher et al., 2013b)		
Recursive Neural Network	17.6%	56.8%
(Socher et al., 2013b)		
Matrix Vector-RNN	17.1%	55.6%
(Socher et al., 2013b)		
Recursive Neural Tensor Network	14.6%	54.3%
(Socher et al., 2013b)		
Paragraph Vector	12.2%	51.3%

²Quoc V Le and Tomas Mikolov. "Distributed Representations of Sentences and Documents.". In: *ICML*, vol. 14, 2014, pp. 1188–1196.

³Andrew M Dai, Christopher Olah, and Quoc V Le. "Document embedding with paragraph vectors". In: arXiv preprint arXiv:1507.07998 (2015).

Before Pre-trained Language Models

• 10,000 IMDB data. Learn the word vectors and paragraph vectors using 75,000 training documents

Model	Error rate
BoW (bnc) (Maas et al., 2011)	12.20 %
BoW (b Δ t'c) (Maas et al., 2011)	11.77%
LDA (Maas et al., 2011)	32.58%
Full+BoW (Maas et al., 2011)	11.67%
Full+Unlabeled+BoW (Maas et al., 2011)	11.11%
WRRBM (Dahl et al., 2012)	12.58%
WRRBM + BoW (bnc) (Dahl et al., 2012)	10.77%
MNB-uni (Wang & Manning, 2012)	16.45%
MNB-bi (Wang & Manning, 2012)	13.41%
SVM-uni (Wang & Manning, 2012)	13.05%
SVM-bi (Wang & Manning, 2012)	10.84%
NBSVM-uni (Wang & Manning, 2012)	11.71%
NBSVM-bi (Wang & Manning, 2012)	8.78%
Paragraph Vector	7.42%

- The baseline includes NB and bigram NB
- Trained on small data
- LLMs use entire wiki or entire web.
- Are LLMs better if training data size are similar?

イロト イポト イヨト イヨト

doc2ve

Two versions paragraph vectors (PV)

- PV-DM (Distributed Memory)
 - analogous to Word2Vec CBOW.
 - The doc-vectors are obtained by training a neural network on the synthetic task of predicting a center word based an average of both context word-vectors and the full document's doc-vector.
- PV-DBOW (Distributed Bag of Words)
 - analogous to Word2Vec SG.

イロト イポト イヨト イヨト

Before LLMs

```
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word tokenize
data = ["I love machine learning. Its awesome.",
       "I love coding in python".
       "I love building chatbots",
        "they chat amagingly well"
tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for
    i, d in enumerate(data)]
max_epochs = 100
vec size = 20
alpha = 0.025
model = Doc2Vec(size=vec_size,
                alpha=alpha,
                min alpha=0.00025,
                min count=1,
               dm = 1)
```

model.build_vocab(tagged_data)

7/22

doc2ve

イロト イヨト イヨト イヨト

BERT and Pooling

Figure is from⁴. red color indicates better result

- There are several pooling strategies, e.g., [CLS], last layer.
- The consensus is L1+L12 for BERT
 - Question: How about LLAMA and other LLMs?
 - Is it true for classification tasks?

Frequency bias

2D embedding from BERT-base-uncased, BERT-based-cased, ROBERTA-base

Figure is from⁵. the darker the color, the higher the token frequency.

• Observation: rare words and frequent words are hard to compare

LLMs and Biases

sub-word bias

yellow represents subword and red represents the token contains capital letters.

• subwords and words with capital letters are different

イロン イロン イヨン イヨン

Anisotropy

- the learned embeddings occupy a narrow cone in the vector space
- the average of cos similarity is large

$$Anisotropy = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{i \neq j} cos(x_i, x_j)$$
(1)

Density plots of cosine similarities between sentence pairs in the STS-B test set. higher ratings indicate a higher degree of similarity.

 6 Xianming Li and Jing Li. AnglE-optimized Text Embeddings. 2023. arXiv: 2309.12871 [cg:Cb]. (\ge) (\ge) (\ge) (\bigcirc) () (\bigcirc) ()) () () ()) () ()) () ())() ())() ())() ())() ())() ())() ())() ())() ())() () () ())())())() ())() ())() ())() ())() ())() ())() ())())())() ())() ())() ())() ())() ())())() ())())())() ())(())())())(())())(()

12/22

Whitening Matrix Transformation

- transforms a vector of random variables with a known covariance matrix into a set of new variables whose covariance is the identity matrix.
- Let x_i be a set of vector representations. The goal is to transform x_i into \tilde{x}_i so that the mean is zero and covariance is identity matrix
- Mean

$$\boldsymbol{\mu} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i \tag{2}$$

Covariance matrix:

$$\boldsymbol{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu})^\top (\boldsymbol{x}_i - \boldsymbol{\mu})$$
(3)

• The transformation is done by:

$$\tilde{\mathbf{x}}_i = (\mathbf{x}_i - \boldsymbol{\mu}) \boldsymbol{W}$$
 (4)

Where \boldsymbol{W} is obtained from SVD:

$$W = U\sqrt{\Lambda^{-1}}$$

$$\Sigma = U\Lambda U^{\top}$$
Sentence Embedding
November 9, 2023
13/22

Whitening Algorithm⁷⁸

$$\tilde{\mathbf{x}}_i = (\mathbf{x}_i - \boldsymbol{\mu}) \mathbf{W}$$
 (7)

Algorithm 1 Whitening-k Workflow

Input: Existing embeddings $\{x_i\}_{i=1}^N$ and reserved dimensionality k

1: compute
$$\mu$$
 and Σ of $\{x_i\}_{i=1}^N$

2: compute
$$U, \Lambda, U^T = \text{SVD}(\Sigma)$$

3: compute $W = (U\sqrt{\Lambda^{-1}})[:,:k]$

4: for
$$i = 1, 2, \dots, N$$
 do

5:
$$\widetilde{x}_i = (x_i - \mu)W$$

6: end for

Output: Transformed embeddings $\{\widetilde{x}_i\}_{i=1}^N$

⁷ Jianlin Su et al. "Whitening sentence representations for better semantics and faster retrieval". In: arXiv preprint arXiv:2103.15316 (2021).

⁸ Junjie Huang et al. "Whiteningbert: An easy unsupervised sentence embedding approach". In: arXiv preprint arXiv:2104.01767 (2021).

Code and result

```
def compute_kernel_bias(vecs):
    mu = vecs.mean(axis=0, keepdims=True)
    cov = np.cov(vecs.T)
    u, s, vh = np.linalg.svd(cov)
    W = np.dot(u, np.diag(1 / np.sqrt(s)))
    return W, -mu
```

	STS-B	STS-12	STS-13	STS-14	STS-15	STS-16	SICK-R	
Published in (Reimers and Gurevych, 2019)								
Avg. GloVe embeddings	58.02	55.14	70.66	59.73	68.25	63.66	53.76	
Avg. BERT embeddings	46.35	38.78	57.98	57.98	63.15	61.06	58.40	
BERT CLS-vector	16.50	20.16	30.01	20.09	36.88	38.03	42.63	
	Pu	blished in (Li et al., 202	0)				
BERT _{base} -first-last-avg	59.04	57.84	61.95	62.48	70.95	69.81	63.75	
BERT _{base} -flow (NLI)	58.56	59.54	64.69	64.66	72.92	71.84	65.44	
BERT _{base} -flow (target)	70.72	63.48	72.14	68.42	73.77	75.37	63.11	
· · ·		Our imple	mentation					
BERT _{base} -first-last-avg	59.04	57.86	61.97	62.49	70.96	69.76	63.75	
BERT _{base} -whitening (NLI)	68.19(†)	61.69(†)	65.70(†)	66.02(^)	75.11(†)	73.11(†)	63.6(↓)	
BERT _{base} -whitening-256 (NLI)	67.51(†)	61.46(^)	66.71()	66.17(†)	74.82()	72.10())	64.9(↓)	
BERT _{base} -whitening (target)	71.34(†)	63.62()	73.02()	69.23 (†)	74.52(†)	72.15(60.6(↓)	
BERT _{base} -whitening-256 (target)	71.43(†)	63.89 (†)	73.76 (†)	69.08(†)	74.59(†)	74.40(↓)	62.2(
	Pu	blished in (Li et al., 202	0)				
BERT _{large} -first-last-avg	59.56	57.68	61.37	61.02	68.04	70.32	60.22	
BERT _{large} -flow (NLI)	68.09	61.72	66.05	66.34	74.87	74.47	64.62	
BERT _{large} -flow (target)	72.26	65.20	73.39	69.42	74.92	77.63	62.50	
		Our imple	mentation					
BERT _{large} -first-last-avg	59.59	57.73	61.17	61.18	68.07	70.25	60.34	
BERT _{large} -whitening (NLI)	68.54(†)	62.54(†)	67.31(†)	67.12(†)	75.00(^)	76.29(†)	62.4(
BERT _{large} -whitening-384 (NLI)	68.60(†)	62.28(†)	67.88(†)	67.01(†)	75.49 (†)	75.46(†)	63.8()	<.≣

Sentence Embedding

November 9, 2023

15/22

Impact of dimensions

⁹ Jianlin Su et al. "Whitening sentence representations for better semantics and faster retrieval". In: arXiv preprint arXiv:2103.15316 (2021).

Hyper-parameters in whitening

normally, whitening is

$$\tilde{\mathbf{x}}_i = (\mathbf{x}_i - \boldsymbol{\mu}) \boldsymbol{U} \boldsymbol{\Lambda}^{-1/2} \tag{8}$$

(9)

We can add two parameters β and γ :

$$\tilde{\mathbf{x}}_i = (\mathbf{x}_i - \boldsymbol{\beta}\boldsymbol{\mu}) \boldsymbol{U} \boldsymbol{\Lambda}^{-\boldsymbol{\gamma}/2} \tag{10}$$

Where

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i \tag{11}$$

$$\boldsymbol{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\beta}\boldsymbol{\mu})^\top (\boldsymbol{x}_i - \boldsymbol{\beta}\boldsymbol{\mu})$$
(12)

Sentence Embedding

$$= \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top}$$
(13)

•	Þ	• 7	•	(Ē	Þ	4	Ð	Þ	- E	500	
			No	ovem	ber	9,	202	3		17 / 22	

Embedding for classification tasks

- Recent papers are evaluated on STS tasks
- SBERT has evaluation on classification tasks
- Observation : improvements are are not as pronouced as in STS tasks
- Whether new methods work on classification tasks?
- Whether LLM embeddings are better than NB + feature selection?

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	Avg.
Avg. GloVe embeddings	77.25	78.30	91.17	87.85	80.18	83.0	72.87	81.52
Avg. fast-text embeddings	77.96	79.23	91.68	87.81	82.15	83.6	74.49	82.42
Avg. BERT embeddings	78.66	86.25	94.37	88.66	84.40	92.8	69.45	84.94
BERT CLS-vector	78.68	84.85	94.21	88.23	84.13	91.4	71.13	84.66
InferSent - GloVe	81.57	86.54	92.50	90.38	84.18	88.2	75.77	85.59
Universal Sentence Encoder	80.09	85.19	93.98	86.70	86.38	93.2	70.14	85.10
SBERT-NLI-base	83.64	89.43	94.39	89.86	88.96	89.6	76.00	87.41
SBERT-NLI-large	84.88	90.07	94.52	90.33	90.66	87.4	75.94	87.69

From¹⁰

18/22

Classification data from SentEval

- MR: Sentiment prediction for movie reviews snippets on a five start scale (Pang and Lee, 2005).
- CR: Sentiment prediction of customer product reviews (Hu and Liu, 2004).
- SUBJ: Subjectivity prediction of sentences from movie reviews and plot summaries (Pang and Lee, 2004).
- MPQA: Phrase level opinion polarity classification from newswire (Wiebe et al., 2005).
- SST: Stanford Sentiment Treebank with binary labels (Socher et al., 2013).
- TREC: Fine grained question-type classification from TREC (Li and Roth, 2002).
- MRPC: Microsoft Research Paraphrase Corpus from parallel news sources (Dolan et al., 2004)

(日) (四) (日) (日) (日)

Ablation Study

- Definition: Systematically evaluate the contribution or importance of different parts of a system, typically by removing or altering them one at a time and observing the resulting effects.
- Used often in ML

イロト イポト イヨト イヨト

4.4 ABLATION STUDY

To gain a deeper understanding of AnglE, we conducted an ablation study examining different objectives and their effects. The results in table $\boxed{4}$ indicate that AnglE shows improved performance with all three objectives. In particular, we observe that AnglE experiences a greater drop in performance without the angle objective than without the in-batch negative (ibn) objective. This suggests that angle optimization is more important than ibn in improving text embedding. Additionally, we find that using the angle objective alone yields performance close to that of using the cosine objective alone, demonstrating the effectiveness of angle optimization. We also evaluated five different pooling strategies and found that the "cls" strategy performed the best. Finally, we compared the ibn with/without identical sentence pair (ISP) detection and found that ibn without ISP detection has about 0.18% performance drop than with. This indicates that ibn with ISP detection is effective.

Model	Spearman's Correlation	Tabl				
	Dbjective	vise				
AnglE-BERT-all	86.26	LLa				
- w/o ibn	86.00	7B I				
- w/o angle	85.30					
only cosine	85.28					
only ibn	72.48					
only angle	85.15					
Pool	ing Strategy					
cls	86.26					
cls-last-avg	85.81					
last-avg	84.15					
1	PO PC Sentenc	e Embedding				

Table 5: Results of unsupervised and LLM supervised models on the STS-B test set. For ChatGPT, LLaMA, and ChatGLM, we use the gpt-turbo-3.5, 7B LLaMA2, and 6B ChatGLM, respectively.

Model	Spearman's
Unsupervised	Models
SimCSE-BERT	76.85
ConSERT-BERT	73.97
DiffCSE-BERT	80.59
LLM-supervise	d Models
Nove	ember 9, 2023

Embedded citation (Citation 'Embedding')

22 / 22

イロト イポト イヨト イヨト