Near Duplicate Detection
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Duplicate documents

* The web is full of duplicated content
— About 30% are duplicates

* Duplicates need to be removed for
— Crawling
—Indexing
— Statistical studies

 Strict duplicate detection = exact match
—Not as common

* But many, many cases of near duplicates

— E.g., Last modified date the only difference between two copies of
a page

— Other minor difference such as web master, logo, ...



Other applications

* Many Web-mining problems can be expressed as finding
“similar” sets:

1. Topic classification--Pages with similar words, Mirror web sites,
Similar news articles

2. Recommendation systems--NetFlix users with similar tastes in
movies.

3. movies with similar sets of fans.
4. Images of related things.

5. Community in online social networks

6. Plagiarism



Algorithms for finding similarities

* Edit distance

— Distance between A and B is defined as the minimal number of
operations to edit A into B

— Mathematically elegant
— Many applications (like auto-correction of spelling)

— Not efficient

* Shingling



Techniques for Similar Documents

Docu-
ment

Shingling : convert documents, emails, etc., to sets.

Minhashing : convert large sets to short signatures,
while preserving similarity.

The set

of terms

of length &

that appear

in the document

| B

Signatures
short integer
vectors that
represent the
sets, and
reflect their
similarity

Candidate
pairs :

those pairs
of signatures
that we need
to test for
similarity.

From Anand
Rajaraman (anand @ kosmix
dt com), Jeffrey D. Ullman
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Shingles

* Ak -shingle (or k -gram) for a document is a sequence of k terms that
appears in the document.

* Example:
— aroseis aroseis arose —
aroseisa
rose is a rose
IS a rose is
aroseisa
rose is a rose
The set of shingles is {a rose is a, rose is a rose, is a rose is, a rose is a}

* Note that “a rose is a rose” is repeated twice, but only appear once in the set
— Option: regard shingles as a bag, and count “a rose is a” twice.

* Represent a doc by its set of k-shingles.

* Documents that have lots of shingles in common have similar text, even if
the text appears in different order.

* Careful: you must pick k large enough.
— If k=1, most documents overlap a lot.



Jaccard similarity

Jaccard(C;,C;) =

—aroseis aroseis arose

= {arose is a, rose is a rose, is a
rose is, a rose is a}

— A rose is a rose thatis it

= {a rose is a, rose is a rose, is a
rose that, a rose that is, rose
that is it}

2 in intersection.

/ In union.

Jaccard similarity
= 2/7

Is a rose
is

Is a rose
that

A rose
that is

aroseis
a

rose that
is it




The size is the problem

* The shingle set can be very large

* There are many documents (many shingle sets) to
compare

— Billions of documents and shingles

* Problems:

—Memory: When the shingle sets are so large or so many that they
cannot fit in main memory.

—Time: Or, when there are so many sets that comparing all pairs of
sets takes too much time.

— Or both.



Shingles + Set Intersection

« Computing exact set intersection of shingles between all
pairs of documents is expensive/intractable

— Approximate using a cleverly chosen subset of shingles from each
(a sketch)

* Estimate (size_of intersection / size_of union) based on
a short sketch

Doc I —> [Shingle set AJ—> Sketch A |
<5 A

| DOE —> [Shingle set BJ—> Sketch B

Jaccard

10



Set Similarity of sets C; , C,

C,NC,

Jaccard(C,,C;) =
C, UC,

¢ View sets as columns of a matrix A; one row for each element in the
universe. a; = 1 indicates presence of shingle i in set (document) ]

e Example C, G

Jaccard(C1,C2) =
2/5=0.4

O, OFFO
P, OFr O
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Key Observation

* For columns C,, C,, four types of rows

C, C.
A 1 1
B 1 0
C 0 1
D 0 0

* Overload notation: A = # of rows of type A

* Claim
A

Jaccard(C,,C.) =
7 A+B+C
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Estimating Jaccard similarity

e Randomly permute rows
¢ Hash h(C) = index of first row with 1 in column G
® Property

P [ h(C,) = h(C,) ] = Jaccard(C,.C, )

e \Why?
—Both are A/(A+B+C)
— Look down columns C;, C, until first non-Type-D row
—-h(G) = h(C;) <> type A row

O
[y

@)
N

0 1
1 O
1 1
0 O
1 1
0 1
0 O
0 O
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Representing documents and shingles

* To compress long shingles, we
can hash them to (say) 4 bytes.

* Represent a doc by the set of
hash values of its k-shingles.

* Represent the documents as a
matrix

— 4 documents
— 7 shingles in total
— Column is a document
— Each row is a shingle
* In real application the matrix is

sparse—there are many empty
cells

doc1

doc2

doc3

Doc4

Shingle 1

1

Shingle 2

1

Shingle 3

Shingle 4

Shingle 5

Shingle 6

Shingle 7
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Repeat the previous process

Input matrix

1114 |3 1 0 1 0
3112 (|4 1 0 0 1
117 0 1 0 1
6|3 ||6 0 1 0 1
2116 |]1 0 1 0 1
S 117 ||2 1 0 1 0
4115 (|5 1 0 1 0

Signature matrix M
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More Hashings produce better result

Input matrix

1114 (|3 1 0 1 0
3112 (|4 1 0 0 1
7111 l7 0 1 0 1
6 (|3 ||6 0 1 0 1
2116 |]1 0 1 0 1
S117 |]|2 1 0 1 0
4 115 |I5 1 0 1 0

Signature matrix M

2 2 |1
_—
2 4 |1
O P o e
1 1 |2
Similarities:
1-3 2-4 1-2 34
Col/Col|0.75 0.75 O 0
Sig/Sig|0.67 1.00 O 0
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Sketch of a document

* Create a “sketch vector” (of size ~200) for each
document

—Documents that share = t (say 80%) corresponding
vector elements are near duplicates

— For doc D, sketchp[ i ] is as follows:

— Let f map all shingles in the universe to 0..2™ (e.g., f =
fingerprinting)

— Let &; be a random permutation on 0..2™
— Pick MIN {r(f(s))} over all shingles sin D
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How to detect similar pairs

* Exhaustive comparison is prohibitive
* Hashing the signature into buckets

* |f two documents are found in the same bucket, then they
are probability similar
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1-(1-s")P

1.0 -

0.8 A

0.4 1

Probability being detected

0.2 1

0.0 A

— r=5, b=20
—— r=5, b=40
— r=10, b=20

0.0 0.2 0.4 0.6 0.8
Jacard similarity S

1.0
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