
n-gram Language Modelling

October 23, 2023

1 / 30

“You are uniformly charming!” cried he, with a smile of associating and now
and then I bowed and they perceived a chaise and four to wish for.

–Random sentence generated from a Jane Austen trigram model

Materials of this lecture slides are from the following book, not our IIR book.
Chapter 3: N-gram Language Models, Speech and Language Processing.
Daniel Jurafsky, James H. Martin.

2 / 30

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Probabilistic Language Models

What is Language Model (LM): model that assigns a probability to a
sequence of words

A system that predicts the next word
Applications

Machine Translation:

P(high winds tonite) > P(large winds tonite) (1)
Spell Correction

The office is about fifteen minuets from my house.

P(about fifteen minutes from) > P(about fifteen minuets from)

Speech Recognition
P(I saw a van) ≫ P(eyes awe of an)

Text summarization, question-answering, ...

3 / 30

Languages model definitions

Goal: compute the probability of a sentence or sequence of words:

P(S) = P(w1,w2,w3,w4,w5, . . . ,wn) (2)

Related task: probability of an upcoming word:

P(w5|w1,w2,w3,w4) (3)

A model that computes either P(S) or P(wn|w1,w2, . . . ,wn−1)
is called a language model.
Better: the grammar
But language model or LM is standard

4 / 30

How to compute P(S)

How to compute this joint probability:

P(its,water, is, so, transparent, that)

Intuition: let’s rely on the Chain Rule of Probability

5 / 30

The chain rule

Conditional probabilities
P(A,B) = P(A and B) = P(A)P(B|A) = P(B)P(A|B) (4)

More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) (5)

The Chain Rule in General
P(x1, x2, x3, . . . , xn) = P(x1)P(x2|x1)P(x3|x1, x2) . . .P(xn|x1, , xn−1)

For a sentence:

P(w1w2 . . .wn) =
n∏

i=1
P(wi|w1w2 . . .wi−1)

P(its water is so transparent) = P(its)
× P(water|its)
× P(is|its water)
× P(so|its water is)
× P(transparent|its water is so) (6)

6 / 30

How to estimate these probabilities

Count and divide?

P(the|its water is so transparent that) (7)

=
count(its water is so transparent that the)

count(its water is so transparent that) (8)

Too many possible sentences
Not enough data for estimating

7 / 30

Markov assumption

Simplifying assumption:

P(the|its water is so transparent that) ≈ P(the|that)

Or maybe

P(the|its water is so transparent that) ≈ P(the|transparent that)

Markov assumption

P(w1w2 . . .wn) ≈
∏

i
P(wi|wi−k . . .wi−1)

In other words, we approximate each component in the product

P(wi|w1w2 . . .wi−1) ≈
∏

i
P(wi|wi−k . . .wi−1)

8 / 30

Simplest case: the unigram model

P(w1w2 . . .wn) ≈
∏

i
P(wi)

Some automatically generated sentences from a unigram model:
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most,
dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, ’m, july, bullish
that, or, limited, the

9 / 30

bigram model

P(w1w2 . . .wn) ≈
∏

i
P(wi|wi−1)

Some automatically generated sentences from a bigram model:

texaco ro s e one i n t h i s i s s u e i s pu r su ing growth
i n a b o i l e r house s a i d mr . g u r r i a mexico ’ s motion
c o n t r o l p ropo sa l w i thout pe rm i s s i on from f i v e
hundred f i f t y f i v e yen

o u t s i d e new car pa rk ing l o t o f the agreement
reached

t h i s would be a r eco rd november

10 / 30

n-gram models

We can extend to trigrams, 4-grams, 5-grams
In general this is an insufficient model of language
because language has long-distance dependencies:
“The computer which I had just put into the machine room on the fifth
floor crashed.”
But we can often get away with N-gram models

11 / 30

Estimating bigram probabilities

The Maximum Likelihood Estimate

P(wi|wi−1) =
count(wi−1,wi)

count(wi−1)

< s > I am Sam < /s >
< s > Sam I am < /s >
< s > I do not like green eggs and ham < /s >

P(I| < s >) = 2
3 P(am|I) = 2

3 P(Sam|am) = 1
2 P(< /s > |Sam) = 1

2

12 / 30

More examples: Berkeley Restaurant Project sentences

Example sentences

can you t e l l me about any good cantonese r e s t a u r a n t s c l o s e by

mid p r i c e d t h a i food i s what ’im l o o k i n g f o r

t e l l me about chez p a n i s s e

can you g i v e me a l i s t i n g o f the k inds o f food that a re a v a i l a b l e ’

im l o o k i n g f o r a good p l a c e to eat b r e a k f a s t

when i s c a f f e v enez i a open dur ing the day

13 / 30

Raw bigram counts

Out of 9222 sentences

14 / 30

Normalized bigram

unigram:

normalized by the unigram:

e.g., i want=827/2533=0.33

15 / 30

Bigram estimates of sentence probability

P(< s > I want english food < /s >)

= P(I| < s >)

× P(want|I)
× P(english|want)
× P(food|english)
× P(< /s > |food)
= .000031

P(i| < s >) = .25
P(english|want) = .0011
P(chinese|want) = .0065

P(to|want) = .66
P(eat|to) = .28

P(food|to) = 0
P(want|spend) = 0

16 / 30

Practical issues

We do everything in log space
Avoid underflow
also adding is faster than multiplying

log(p1 × p2) = log(p1) + log(p2)

17 / 30

Google n-gram

s e r v e as the incoming 92
s e r v e as the i n cuba to r 99
s e r v e as the independent 794
s e r v e as the index 223
s e r v e as the i n d i c a t i o n 72
s e r v e as the i n d i c a t o r 120
s e r v e as the i n d i c a t o r s 45
s e r v e as the i n d i s p e n s a b l e 111
s e r v e as the i n d i s p e n s i b l e 40
s e r v e as the i n d i v i d u a l 234

google book ngram: http://ngrams.googlelabs.com/
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-
you.html

18 / 30

Evaluate Language Models: Perplexity

How well can we predict the next word?
I always order pizza with cheese and mushrooms 0.1

pepperoni 0.1
anchovies 0.01

…
fried rice 0.0001

…
and 1e-100

The 33rd President of the US was
I saw a

Unigrams won’t work for this task.
A better model of a text is one which assigns a higher probability to the
word that actually occurs

19 / 30

Perplexity: Definition

Perplexity is the inverse probability of the test set, normalized by the
number of words:

PP(S) = P(w1w2 . . .wN)
− 1

N =
N
√

1
P(w1w2 . . .wN)

20 / 30

Intuition for perplexity: perplexity for uniform random text

How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
Let’s suppose a sentence consisting of random digits
What is the perplexity of this sentence according to a model that assign
P=1/10 to each digit?

PP(S) = P(w1w2 . . .wN)
− 1

N

=

[(
1
10

)N
]− 1

N

=

(
1
10

)−1

= 10 (9)

What is the perplexity of language that is generated uniform randomly with a
vocabulary of 1000?

21 / 30

Intuition for perplexity: perplexity for non-uniform data

You are given a training set of 100 numbers that consists of 91 zeros and 1
each of the other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0
0 0. What is the unigram perplexity?

P(0) = 91
100 (10)

P(1) = 1
100

...

P(0000030000) =
(

91
100

)9 (1
100

)
= 0.004 (11)

0.004− 1
10 = 1.7

22 / 30

Intuition for perplexity: perplexity for non-uniform data

You are given a training set of 100 numbers that consists of 91 zeros and 1
each of the other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0
0 0. What is the unigram perplexity?

P(0) = 91
100 (10)

P(1) = 1
100

...

P(0000030000) =
(

91
100

)9 (1
100

)
= 0.004 (11)

0.004− 1
10 = 1.7

22 / 30

Perplexity for unigram and bigram models

PP(S) = P(w1w2 . . .wN)
− 1

N =
N
√

1
P(w1w2 . . .wN)

Chain rule:

PP(S) =
N

√√√√ N∏
i=1

1
P(wi|w1w2 . . .wi−1)

For bigrams:

PP(S) =
N

√√√√ N∏
i=1

1
P(wi|wi−1)

For unigram

PP(S) =
N

√√√√ N∏
i=1

1
P(wi)

log(PP(S)) =
∑N

i=1 log(P(wi))

N (12)

23 / 30

Perplexity is the geometric mean of probabilities

For unigram model, it is the geometric mean of the unigram probabilities

PP(S) =
N

√√√√ N∏
i=1

1
P(wi)

log(PP(S)) =
∑N

i=1 log(P(wi))

N
For bigram mode, perplexity if the geometric mea of the bigram probabilities

24 / 30

Lower perplexity = better model

Training 38 million words, test 1.5 million words, WSJ

Unigram Bigram Trigram
Perplexity 962 170 109

25 / 30

Generate Shakespeare

Generate n-grams according to their probability

26 / 30

Shakespeare as corpus

N=884,647 tokens, V=29,066
Shakespeare produced 300,000 bigram types out of V2= 844 million
possible bigrams.
So 99.96% of the possible bigrams were never seen (have zero entries in
the table)
Quadrigrams worse: What’s coming out looks like Shakespeare because it
is Shakespeare

27 / 30

The wall street journal is not shakespeare

28 / 30

Zeros and Smoothing

Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

Test set
… denied the offer
… denied the loan

P(offer|denied the) = 0

29 / 30

Readings

Daniel Jurafsky & James H. Martin, N-gram Language Models, book
chapter.
IIR, Chapter 12, p218-264.

30 / 30

https://web.stanford.edu/~jurafsky/slp3/3.pdf

