Link Analysis and spam

Slides adapted from

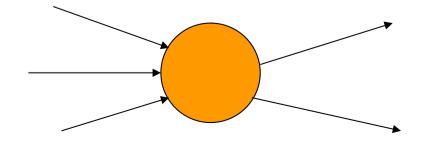
- Information Retrieval and Web Search, Stanford University, Christopher Manning and Prabhakar Raghavan
- CS345A: Data Mining. Stanford University, Anand Rajaraman, Jeffrey D. Ullman

Query processing

- Relevance: retrieve all pages meeting the query, and order them with relevance (based on e.g., vector space model)
- Popularity: order pages by their link popularity
- Combination: merge the results using popularity and relevance

Query-independent ordering

- First generation: using link counts as simple measures of popularity.
- Two basic suggestions:
 - Undirected_popularity:
 - page score = the number of in-links plus the number of out-links (3+2=5).
 - Directed_popularity:
 - Score of a page = number of its in-links (3).

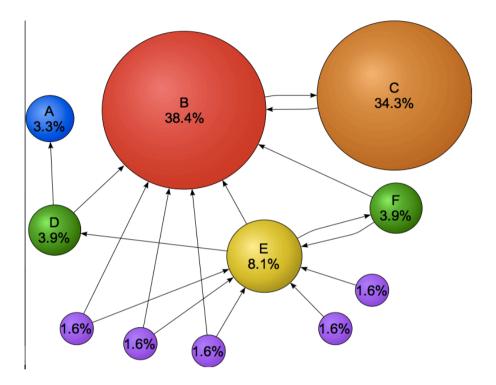


Voting by in-links

- The importance of a page can not be decided only by the internal features of the page
- The 'quality' can be judged from links pointing to the page
- Link is an implicit endorsement
- Link may convey different meanings
 - May be criticism, paid ad
 - In aggregate, it is a collective endorsement.

Pagerank

- in-links are not equal, because
 - Web pages are not equally
 "important". A vote from an
 important page weighs more than
 a less important page (if same
 number of votes are casted)
 - A vote weighs more if the page gives only few votes (links)
- In order the decide the pagerank value of B, you need to have the value of C.
- It is a recursive question!
- Originated from studies in citation-network



Picture from Wikipedia.com

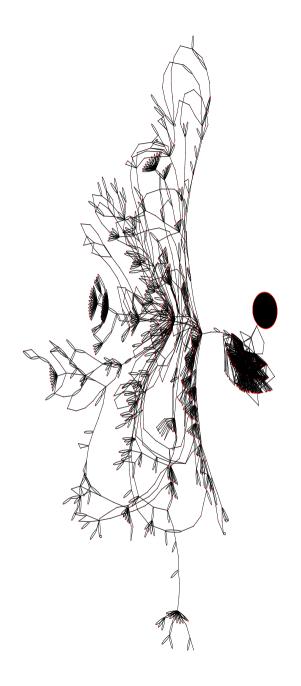
An example web graph

Obtained by a random walk of 10000 steps on the University of Notre Dame web

Original graph is from

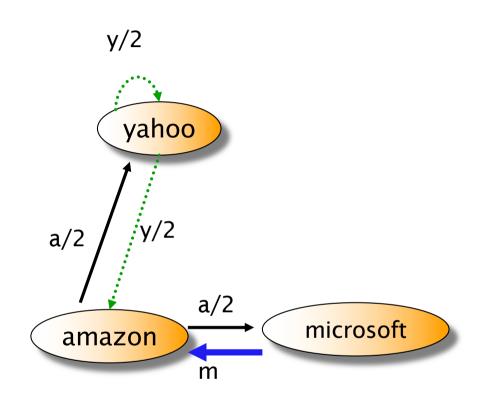
http://snap.stanford.edu/data/index.ht ml

Note the spammed page

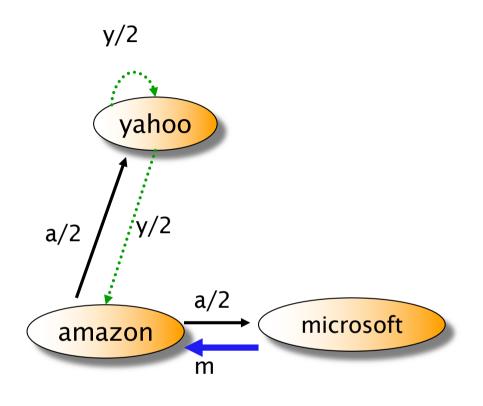


Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has N outlinks, each link gets x/N votes
- Page P's own importance is the sum of the votes on its inlinks



Simple flow model



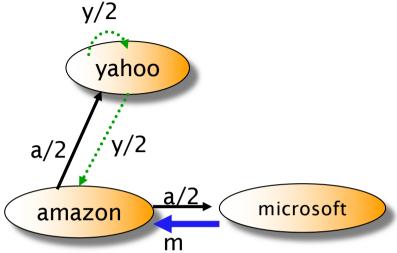
• There are three web pages

- Yahoo gives out two votes, each worth y/2
- Amazon gives out two votes, each worth a/2
- Microsoft gives out one vote

Solving the flow equation

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large graphs
- Again, scalability is key in computer science.

Matrix formulation



$$\begin{pmatrix} y \\ a \\ m \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} y \\ a \\ m \end{pmatrix}$$

r=Mr

$$r_{i} = \sum_{j=1}^{N} M_{ij} r_{j}$$

$$r_{1} = 0.5r_{1} + 0.5r_{2} + 0r_{3}$$

- Matrix M has one row and one column for each web page
- Suppose page j has n outlinks
 - If j -> i, then Mij=1/n
 - else Mij=0
- M is a *column* stochastic matrix
 - Columns sum to 1
 - Usually rows sum to 1
- Suppose r is a vector with one entry per web page
- r_i is the importance score of page i
- Call it the rank vector

Matrix formulation

	У	а	m
У	1/2	1/2	0
а	1/2		1
m		1/2	

$$\begin{pmatrix} y \\ a \\ m \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} y \\ a \\ m \end{pmatrix}$$

r=Mr

Power Iteration method

Initialize:
$$r_0 = (1/N \dots 1/N)^T$$

Iterate: $r_{k+1} = Mr_k$
stop when $|r_{k+1} - r_k|_1 < \varepsilon$
 $|x|_1 = \sum_{1 \le i \le N} |x_i|$ is the L_1 norm

- There are many methods to find r.
- Power method is the most simple one
- It is known to be slow compared with other methods
- Yet Google uses this because
 - It is simple
 - It saves space
 - Empirically it converges quickly (~ 50 iterations)

Power iteration method

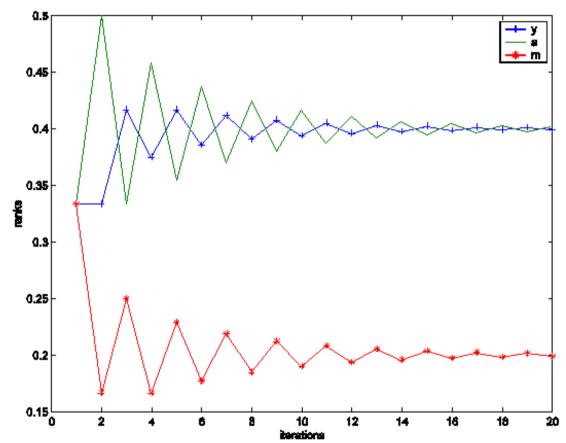
$$\begin{pmatrix} y \\ a \\ m \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} y \\ a \\ m \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 1/2 \\ 1/6 \end{pmatrix}, \begin{pmatrix} 5/12 \\ 1/3 \\ 1/4 \end{pmatrix}, \begin{pmatrix} 3/8 \\ 11/24 \\ 1/6 \end{pmatrix}, \dots \begin{pmatrix} 2/5 \\ 2/5 \\ 1/5 \end{pmatrix}$$

Initially, (y a m)=(1/3 1/3 1/3)
$$1/2^* 1/3 + 1^* 1/3 = 1/2$$

The matlab program

The rank values fluctuate, then reach a steady state

M=[1/2,1/2,0; 1/2,0,0; 0,1/2,1];r=[1/3;1/3;1/3] interval=1:20; for i=interval x(i)=r(1);y(i)=r(2);z(i)=r(3);r=M*r end;



Plot (interval, x, '+-', interval, y,'-', interval, z,'*-');

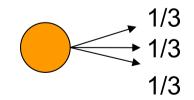
Questions to be answered

- Will the iteration converge? Or continue infinitely?
- When will it converge?
- When it converges, is there an intuitive interpretation for the values of r?
- Will it converge to one vector, or multiple vectors?
- If it converges, how many steps does it take?

Random Walk Interpretation

- Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t

-p(t) is a probability distribution on pages



The stationary distribution

• Where is the surfer at time t+1?

- Follows a link uniformly at random

p(t+1) = M p(t)

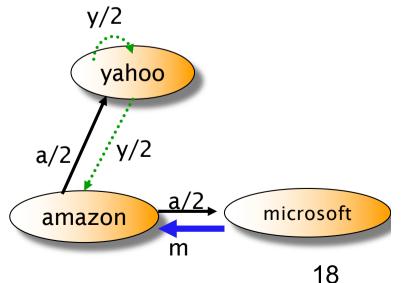
• Suppose the random walk reaches a state such that

p(t+1) = M p(t) = p(t)

- Then p(t) is called a stationary distribution for the random walk
- Our rank vector r satisfies Mr=r
- So it is a stationary distribution for the random surfer
- The limiting r is an eigenvector of M
 - v is an eigenvector of M if Mv= λ v
- r is also the principal eigenvector
 - The associated eigenvalue is the largest

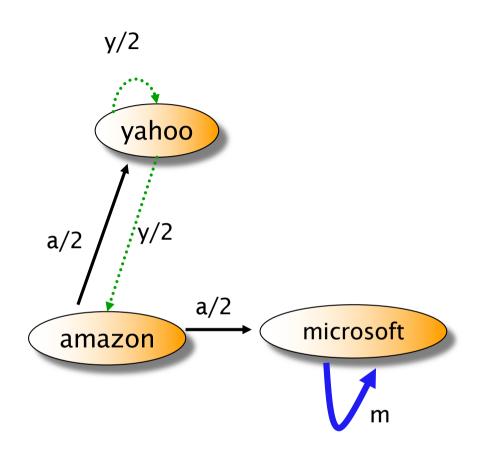
Existence and Uniqueness

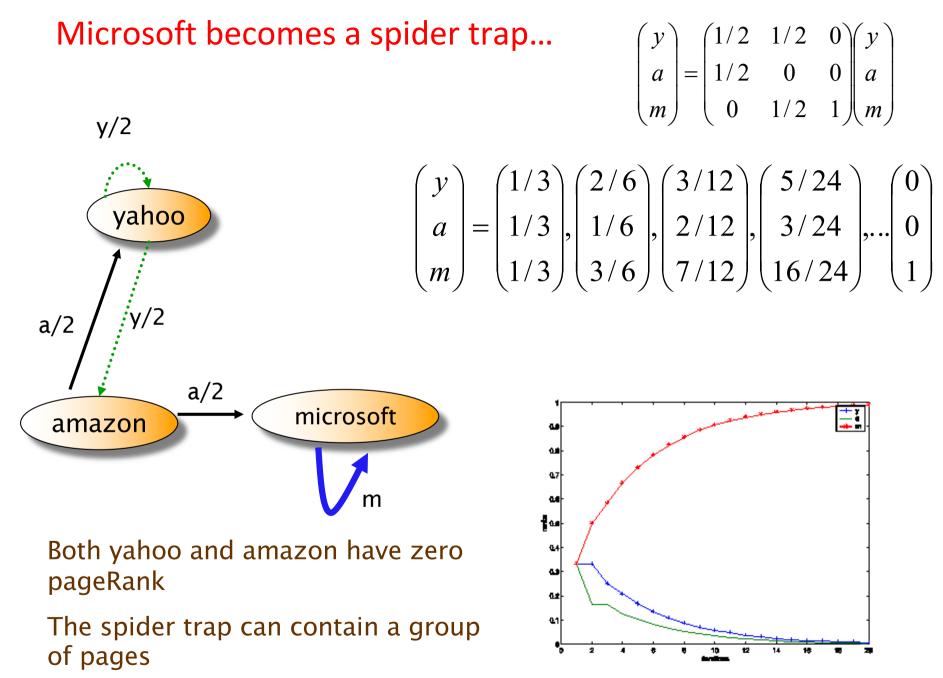
- A central result from the theory of random walks (aka Markov processes):
 - For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.
- Strongly connected
- Aperiodic: return to state i can occur any time
 - Bipartite graph is periodic with period 2.



Spider trap

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

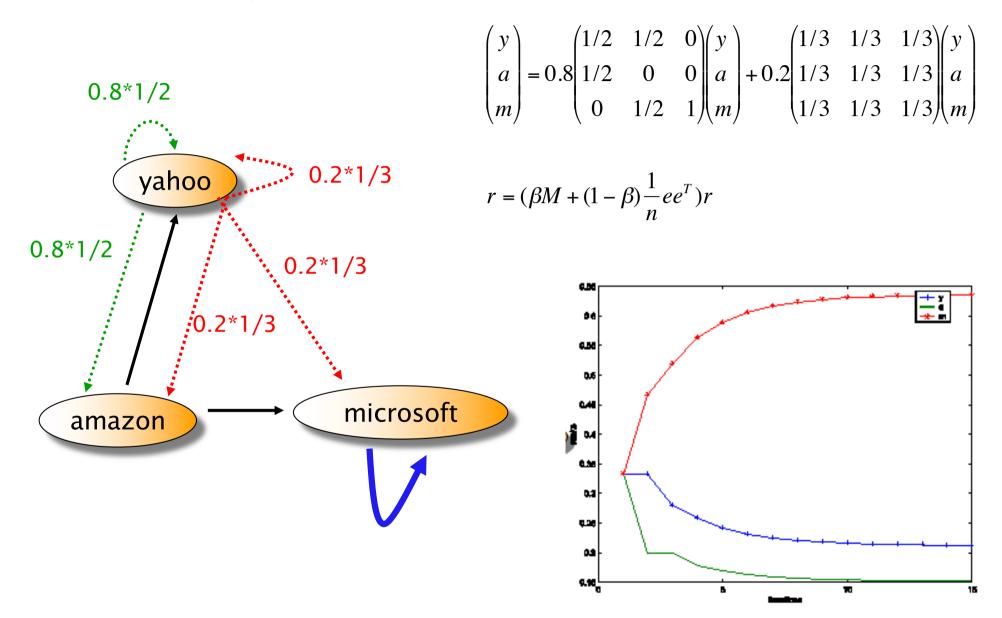




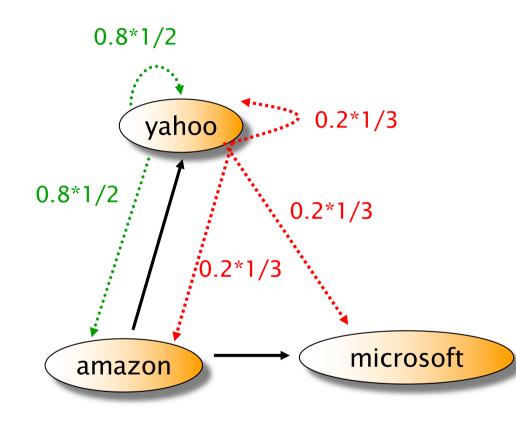
Random teleporting

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability b, follow a link at random
 - With probability 1-b, jump to some page uniformly at random
 - Common values for b are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports (beta=0.8)

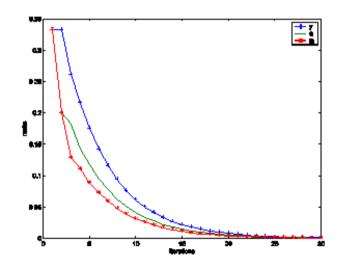


Dead end



$\begin{pmatrix} y \\ a \\ m \end{pmatrix} = 0.8$	$ \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} $	1/2 0 1/2	$ \begin{array}{c} 0\\0\\0\\ 0 \end{array} \begin{pmatrix} y\\a\\m \end{array} $	$\left(+ 0.2 \right)$	$ \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} $	1/3 1/3 1/3	1/3 1/3 1/3	$ \begin{pmatrix} y \\ a \\ m \end{pmatrix} $	n
$\begin{pmatrix} y \\ a \\ m \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	/3 /3 /3	(0.33 0.2 0.2	³),(0.262 0.182 0.123	22 22 89),	(0.21 0.14 (0.11	.60 31 11	,	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$

y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 1/15



Dealing with dead-ends

• Teleport

- Follow random teleport links with probability 1.0 from dead-ends

- Adjust matrix accordingly

	(1/2	1/2	0		(1/3	1/3	1/3
0.8	1/2	0	0	+0.2	1/3	1/3	1/3
	0	1/2	0)		(1/3	1/3	1/3)

⇒0.8	(1/2	1/2	1/3		(1/3	1/3	1/3
⇒0.8	1/2	0	1/3	+0.2	1/3	1/3	1/3
	0	1/2	1/3		(1/3	1/3	1/3)

• Prune and propagate

- Preprocess the graph to eliminate dead-ends
- Might require multiple passes
- Compute page rank on reduced graph
- Approximate values for dead ends by propagating values from reduced graph

Summarize PageRank

- Derived from Markov chain
- Importance (prestige, authority) of the page is the probability to reach the page in random walk
- Power method is used to calculate the probability
- when it is Ergodic Markov chain
 - It converges
 - It converges to a unique value
 - It converges quickly
 - Need to deal with non-Ergodic Markov chain in practice
 - Random teleporting makes the states (pages) connected
 - Dead end page makes the matrix no longer stochastic

Simple Pagerank in java

http://introcs.cs.princeton.edu/java/16pagerank/

- Using Matlab or Octave
 - Using power iteration
 - Calculate the eigenvector

Pagerank: Issues and Variants

• How realistic is the random surfer model?

- What if we modeled the back button?
- Surfer behavior sharply skewed towards short paths
- Search engines, bookmarks & directories make jumps non-random.

• Biased Surfer Models

- Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
- Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

For citation network in academic papers

- Citation network is mostly acyclic
- Readers may surf both down stream and upstream (follow cited and citing papers)
- Author and other data may also play a role

Graph embedding and random walk

- Most graph embedding algorithms are based on random walk
 - E.g., DeepWalk, Node2Vec
 - Create random walk paths.
 - Treat path as 'text', then run word embedding algorithms on the 'text'
- The difference is about how to control the random walk
- Random walk path need to be long (e.g., 100 steps)

- Note that PageRank restarts around 10.

The reality

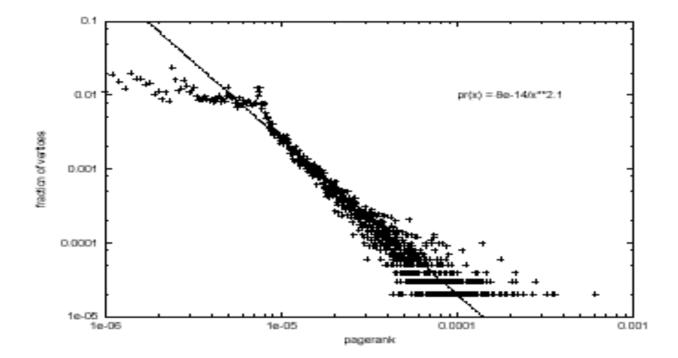
- Pagerank is used in google, but is hardly the full story of ranking
 - Many sophisticated features are used
 - Some address specific query classes
 - Machine learned ranking heavily used
- Pagerank still very useful for things like crawl policy

Topic Specific Pagerank

- Goal pageRank values that depend on query *topic*
 - Query "random walk" most probably in academia
- Topic-specific ranking: use a random surfer who teleports, with say 10% probability, using the following rule:
 - Selects a topic
 - say, one of the 16 top level ODP (Open Directory Project) categories based on a query & user -specific distribution over the categories
 - Teleport to a page uniformly at random within the chosen topic
- For topic-specific query, it is hard to implement: can't compute PageRank at query time

PageRank in real world

• Log Plot of PageRank Distribution of Brown Domain (*.brown.edu)



G.Pandurangan, P.Raghavan, E.Upfal," Using PageRank to characterize Webstructure", COCOON 2002

Google's secret list (from searchengineland.com)

- Eric Schmidt, Sept 16, 2010
 - Presence of search term in HTML title tag
 - Use of bold around search term
 - Use of header tags around search term
 - Presence of search term in anchor text leading to page
 - <u>PageRank</u> of a page
 - PageRank / authority of an entire domain
 - Speed of web site
 - ...

There are 200 variables in google algorithm

- At PubCon, Matt Cutts mentioned that there were over 200 variables in the Google Algorithm
- Domain
 - Age of Domain
 - History of domain
 - KWs in domain name
 - Sub domain or root domain?
 - TLD of Domain
 - IP address of domain
 - Location of IP address / Server
- Architecture
 - HTML structure
 - Use of Headers tags
 - URL path
 - Use of external CSS / JS files
- Content
 - Keyword density of page
 - Keyword in Title Tag
 - Keyword in Meta Description (Not Meta Keywords)
 - Keyword in KW in header tags (H1, H2 etc)
 - Keyword in body text
 - Freshness of Content
- Per Inbound Link
 - Quality of website/page linking in
 - Age of website /page
 - Relevancy of page's content
 - Location of link (Footer, Navigation, Body text)
 - Anchor text if link
 - Title attribute of link
 - Alt tag of images linking
 - Country specific TLD domain
 - Authority TLD (.edu, .gov)
 - Location of server
 - Authority Link (CNN, BBC, etc)

- Cluster of Links - Uniqueness of Class C address.
- Internal Cross Linking
 - No. of internal links to page
 - Location of link on page
 - Anchor text of FIRST text link (Bruce Clay's point at PubCon)
- Penalties
 - Over Optimisation
 - Purchasing Links
 - Selling Links
 - Comment Spamming
 - Cloaking
 - Hidden Text
 - Duplicate Content
 - Keyword stuffing
 - Manual penalties
 - Sandbox effect (Probably the same as age of domain)
- Miscellaneous
 - JavaScript Links
 - No Follow Links
- Pending
 - Performance / Load of a website
 - Speed of JS
- Misconceptions
 - XML Sitemap (Aids the crawler but doesn't help rankings)
 - PageRank (General Indicator of page's performance)

Web search, SEO, Spam

Slides adapted from

 Information Retrieval and Web Search, Stanford University, Christopher Manning and Prabhakar Raghavan

CS345A, Winter 2009: Data Mining. Stanford University,
 Anand Rajaraman, Jeffrey D. Ullman

Spam (SEO)

- Spamming = any deliberate action solely in order to boost a web page's position in search engine results, incommensurate with page's real value
- Spam = web pages that are the result of spamming
- This is a very broad definition
- SEO (search engine optimization) industry might disagree!
- Approximately 10-15% of web pages are spam

• Spamming also happens in online social networks

Motivation for SEO and/or SPAM

- You have a page that will generate lots of revenue for you if people visit it.
 - Commercial, political, religious, lobbies
- Therefore, you would like to direct visitors to this page.
- One way of doing this: get your page ranked highly in search results.
- How can I get my page ranked highly?
 - Contractors (Search Engine Optimizers) for lobbies, companies
 - Web masters
 - Hosting services

Spamming techs

Boosting techniques

- Techniques for achieving high relevance/importance for a web page
- Term (content) spamming
 - Manipulating the text of web pages in order to appear relevant to queries
- Link spamming
 - Creating link structures that boost page rank or hubs and authorities scores

• Hiding techniques

- Techniques to hide the use of boosting
 - From humans and web crawlers

Term Spamming

Repetition

- of one or a few specific terms
- Goal is to subvert TF/IDF ranking schemes, so that the ranking is increased
- First generation engines relied heavily on *tf/idf*
- e.g. The top-ranked pages for the query maui resort were the ones containing the most maui's and resort's
- Often, the repetitions would be in the same color as the background of the web page
 - Repeated terms got indexed by crawlers
 - But not visible to humans on browsers

• Dumping

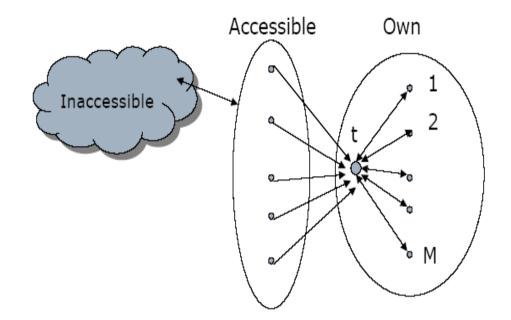
- of a large number of unrelated terms
- e.g., copy entire dictionaries, so that the page is matched no matter what is the query

Term spam target

- Body of web page
- Title
- URL
- HTML meta tags
- Anchor text

Link spam

- Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., web log comments pages
 - spammer can post links to his pages
 - Own pages
 - Completely controlled by spammer
- May span multiple domain names



Link farm

- Create lots of links pointing to the page you want to promote
- Put these links on pages with high (or at least non-zero) PageRank
 - Newly registered domains (domain flooding)
 - A set of pages that all point to each other to boost each other's PageRank (mutual admiration society)
 - Pay somebody to put your link on their highly ranked page
 - Leave comments that include the link on blogs

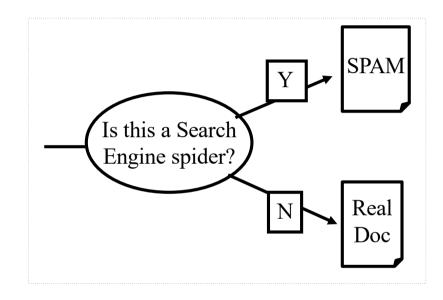
Hiding techniques

- Content hiding
 - Use same color for text and page background
 - Stylesheet tricks

— ...

• Cloaking

- Return different page to crawlers and browsers
- Serve fake content to search engine spider
- DNS cloaking: Switch IP address.
 Impersonate



Detecting spam

• Term spamming

- Analyze text using statistical methods e.g., Naïve Bayes classifiers
- Similar to email spam filtering
- Also useful: detecting approximate duplicate pages
- Link spamming
 - Open research area
 - One approach: TrustRank

The war against spam

- Quality signals Prefer authoritative pages based on:
 - Votes from authors (linkage signals)
 - Votes from users (usage signals)
- Policing of URL submissions
 - Anti robot test
- Limits on meta-keywords
- Robust link analysis
 - Ignore statistically implausible linkage (or text)
 - Use link analysis to detect spammers (guilt by association)

- Spam recognition by machine learning
 - Training set based on known spam
- Family friendly filters
 - Linguistic analysis, general classification techniques, etc.
 - For images: flesh tone detectors, source text analysis, etc.
- Editorial intervention
 - Blacklists
 - Top queries audited
 - Complaints addressed
 - Suspect pattern detection