
Language modelling

February 8, 2021

1 / 31

Overview

2 / 31

“You are uniformly charming!” cried he, with a smile of associating and now
and then I bowed and they perceived a chaise and four to wish for.

–Random sentence generated from a Jane Austen trigram model
Materials of this lecture slides are from the following book, not our IIR book.
Chapter 3: N-gram Language Models, Speech and Language Processing.
Daniel Jurafsky, James H. Martin. 2019.

3 / 31

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Probabilistic Language Models

What is Language Model (LM): model that assigns a probability to a
sequence of words
Applications

Machine Translation:

P(high winds tonite) > P(large winds tonite) (1)
Spell Correction

The office is about fifteen minuets from my house (2)

P(about fifteen minutes from) > P(about fifteen minuets from) (3)
Speech Recognition

P(I saw a van) ≫ P(eyes awe ofan) (4)
Text summarization, question-answering, ...

4 / 31

Probabilistic Language Modeling

Goal: compute the probability of a sentence or sequence of words:

P(S) = P(w1,w2,w3,w4,w5, . . . ,wn) (5)

Related task: probability of an upcoming word:

P(w5|w1,w2,w3,w4) (6)

A model that computes either P(S) or P(wn|w1,w2, . . . ,wn−1)
is called a language model.
Better: the grammar
But language model or LM is standard

5 / 31

How to compute P(S)

How to compute this joint probability:

P(its,water, is, so, transparent, that)

Intuition: let’s rely on the Chain Rule of Probability

6 / 31

The chain rule

Conditional probabilities
P(A,B) = P(A and B) = P(A)P(B|A) = P(B)P(A|B) (7)

More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) (8)

The Chain Rule in General
P(x1, x2, x3, . . . , xn) = P(x1)P(x2|x1)P(x3|x1, x2) . . .P(xn|x1, , xn−1)

For a sentence:

P(w1w2 . . .wn) =
n∏

i=1
P(wi|w1w2 . . .wi−1)

P(its water is so transparent) = P(its)
× P(water|its)
× P(is|its water)
× P(so|its water is)
× P(transparent|its water is so) (9)

7 / 31

How to estimate these probabilities

Count and divide?

P(the|its water is so transparent that) (10)

=
count(its water is so transparent that the)

count(its water is so transparent that) (11)

Too many possible sentences
Not enough data for estimating

8 / 31

language model

predict the probability of a sequence of words.
n-gram language model:

p(w1,w2, . . . ,wT) =
∏

i
p(wi|wi−1, . . . ,wi−n+1) (12)

Derived using chain rule and Markov assumption.

p(wt|wt−n+1, . . . ,wt−1) =
Count(wt−n+1, . . . ,wt)

Count(wt−n+1, . . . ,wt−1)
(13)

The problem of this approach: scarcity of data

9 / 31

Markov assumption

Simplifying assumption:

P(the|its water is so transparent that) ≈ P(the|that)

Or maybe

P(the|its water is so transparent that) ≈ P(the|transparent that)

Markov assumption

P(w1w2 . . .wn) ≈
∏

i
P(wi|wi−k . . .wi−1)

In other words, we approximate each component in the product

P(wi|w1w2 . . .wi−1) ≈
∏

i
P(wi|wi−k . . .wi−1)

10 / 31

Simplest case: the unigram model

P(w1w2 . . .wn) ≈
∏

i
P(wi)

Some automatically generated sentences from a unigram model:
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most,
dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, ’m, july, bullish
that, or, limited, the

11 / 31

bigram model

P(w1w2 . . .wn) ≈
∏

i
P(wi|wi−1)

Some automatically generated sentences from a bigram model:

texaco ro s e one i n t h i s i s s u e i s pu r su ing growth
i n a b o i l e r house s a i d mr . g u r r i a mexico ’ s motion
c o n t r o l p ropo sa l w i thout pe rm i s s i on from f i v e
hundred f i f t y f i v e yen

o u t s i d e new car pa rk ing l o t o f the agreement
reached

t h i s would be a r eco rd november

12 / 31

n-gram models

We can extend to trigrams, 4-grams, 5-grams
In general this is an insufficient model of language
because language has long-distance dependencies:
“The computer which I had just put into the machine room on the fifth
floor crashed.”
But we can often get away with N-gram models

13 / 31

Estimating bigram probabilities

The Maximum Likelihood Estimate

P(wi|wi−1) =
count(wi−1,wi)

count(wi−1)

< s > I am Sam < /s >
< s > Sam I am < /s >
< s > I do not like green eggs and ham < /s >

P(I| < s >) = 2
3 P(am|I) = 2

3 P(Sam|am) = 1
2 P(< /s > |Sam) = 1

2

14 / 31

More examples: Berkeley Restaurant Project sentences

Example sentences

can you t e l l me about any good cantonese r e s t a u r a n t s c l o s e by

mid p r i c e d t h a i food i s what ’im l o o k i n g f o r

t e l l me about chez p a n i s s e

can you g i v e me a l i s t i n g o f the k inds o f food that a re a v a i l a b l e ’

im l o o k i n g f o r a good p l a c e to eat b r e a k f a s t

when i s c a f f e v enez i a open dur ing the day

15 / 31

Raw bigram counts

Out of 9222 sentences

16 / 31

Normalized bigram

unigram:

normalized by the unigram:

e.g., i want=827/2533=0.33

17 / 31

Bigram estimates of sentence probability

P(< s > I want english food < /s >)

= P(I| < s >)

× P(want|I)
× P(english|want)
× P(food|english)
× P(< /s > |food)
= .000031

P(i| < s >) = .25
P(english|want) = .0011
P(chinese|want) = .0065

P(to|want) = .66
P(eat|to) = .28

P(food|to) = 0
P(want|spend) = 0

18 / 31

Practical issues

We do everything in log space
Avoid underflow
also adding is faster than multiplying

log(p1 × p2) = log(p1) + log(p2)

19 / 31

Google n-gram

s e r v e as the incoming 92
s e r v e as the i n cuba to r 99
s e r v e as the independent 794
s e r v e as the index 223
s e r v e as the i n d i c a t i o n 72
s e r v e as the i n d i c a t o r 120
s e r v e as the i n d i c a t o r s 45
s e r v e as the i n d i s p e n s a b l e 111
s e r v e as the i n d i s p e n s i b l e 40
s e r v e as the i n d i v i d u a l 234

google book ngram: http://ngrams.googlelabs.com/
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-
you.html

20 / 31

Perplexity

The Shannon Game:
How well can we predict the next word?

I always order pizza with cheese and mushrooms 0.1
pepperoni 0.1

anchovies 0.01
…

fried rice 0.0001
…

and 1e-100

The 33rd President of the US was
I saw a

Unigrams won’t work for this task.
A better model of a text is one which assigns a higher probability to the
word that actually occurs

21 / 31

Perplexity

The best language model is one that best predicts an unseen test set
(Gives the highest P(sentence))
Perplexity is the inverse probability of the test set, normalized by the
number of words:

PP(S) = P(w1w2 . . .wN)
− 1

N =
N
√

1
P(w1w2 . . .wN)

Chain rule:

PP(S) =
N

√√√√ N∏
i=1

1
P(wi|w1w2 . . .wi−1)

For bigrams:

PP(S) =
N

√√√√ N∏
i=1

1
P(wi|wi−1)

22 / 31

The Shannon Game intuition for perplexity

How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
Let’s suppose a sentence consisting of random digits
What is the perplexity of this sentence according to a model that assign
P=1/10 to each digit?

PP(S) = P(w1w2 . . .wN)
− 1

N

=

[(
1
10

)N
]− 1

N

=

(
1
10

)−1

= 10 (14)

23 / 31

How hard is recognizing (30,000) names at Microsoft.
Perplexity = 30,000

If a system has to recognize
Operator (1 in 4)
Sales (1 in 4)
Technical Support (1 in 4)
30,000 names (1 in 120,000 each)
Perplexity is 53

(
1
4

30k
×

1
4

30k
×

1
4

30k
×

1
120k

30k
)

−1
120k (15)

= (4 ∗ 4 ∗ 4 ∗ 120000)1/4 (16)
≈ 53 (17)

Perplexity is weighted equivalent branching factor

24 / 31

Lower perplexity = better model

Training 38 million words, test 1.5 million words, WSJ

Unigram Bigram Trigram
Perplexity 962 170 109

25 / 31

Approximating Shakespeare

26 / 31

Shakespeare as corpus

N=884,647 tokens, V=29,066
Shakespeare produced 300,000 bigram types out of V2= 844 million
possible bigrams.
So 99.96% of the possible bigrams were never seen (have zero entries in
the table)
Quadrigrams worse: What’s coming out looks like Shakespeare because it
is Shakespeare

27 / 31

The wall street journal is not shakespeare

28 / 31

Using language models (LMs) for IR

1 LM = language model
2 We view the document as a generative model that generates the query.
3 What we need to do:

Define the precise generative model we want to use
Estimate parameters (different parameters for each document’s model)
Smooth to avoid zeros
Apply to query and find document most likely to have generated the query
Present most likely document(s) to user

4 Note that 3 is similar to what we did in Naive Bayes.

29 / 31

Zeros and Smoothing

Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

Test set
… denied the offer
… denied the loan

P(offer|denied the) = 0

30 / 31

Takeaways

Daniel Jurafsky & James H. Martin, N-gram Language Models, book
chapter.
IIR, Chapter 12, p218-264.

31 / 31

https://web.stanford.edu/~jurafsky/slp3/3.pdf

