February 8, 2021

1/31

Overview

2/31

“You are uniformly charming!” cried he, with a smile of associating and now
and then | bowed and they perceived a chaise and four to wish for.

—Random sentence generated from a Jane Austen trigram model

Materials of this lecture slides are from the following book, not our IIR book.
Chapter 3: N-gram Language Models, Speech and Language Processing.
Daniel Jurafsky, James H. Martin. 2019.

3/31

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Probabilistic Language Models

o What is Language Model (LM): model that assigns a probability to a
sequence of words
o Applications
o Machine Translation:

P(high winds tonite) > P(large winds tonite)

o Spell Correction

The office is about fifteen minuets from my house

P(about fifteen minutes from) > P(about fifteen minuets from)

o Speech Recognition

P(I saw a van) > P(eyes awe ofan)

o Text summarization, question-answering, ...

1)

(2

®3)

4)

4/31

Probabilistic Language Modeling

@ Goal: compute the probability of a sentence or sequence of words:

P(S) = P(w1, wa, w3, wa, Ws, . .., W) (5)
o Related task: probability of an upcoming word:
P(ws|wi, wa, ws, ws) (6)
@ A model that computes either P(S) or P(wp|wi, wo, ..., wh_1)

is called a language model.

Better: the grammar

But language model or LM is standard

5/31

How to compute P(S)

@ How to compute this joint probability:
P(its, water, is, so, transparent, that)

@ Intuition: let's rely on the Chain Rule of Probability

6 /31

The chain rule

o Conditional probabilities
P(A, B) = P(A and B) = P(A)P(B|A) = P(B)P(A|B) (M
More variables:
P(A, B, C,D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C) (8)
The Chain Rule in General

©

[

P(x1, X2, X3, ..., Xn) = P(x1)P(x2|x1)P(x3|x1, x2) . . . P(Xn|X1, , Xn—1)

@ For a sentence:

P(W1W2 - Wn) = H P(W,"W1W2 . W,;l)
i=1

P(its water is so transparent) = P(its)
x P(waterl|its)
x P(is|its water)
x P(sol|its water is)

x P(transparent|its water is so) (9)

7/31

How to estimate these probabilities

@ Count and divide?

P(thelits water is so transparent that)

__ count(its water is so transparent that the)

count(its water is so transparent that)

@ Too many possible sentences

o Not enough data for estimating

(10)
(11)

8 /31

language model

predict the probability of a sequence of words.

@ n-gram language model:

p(wi, wo, ..., wr) = [[p(Wilwi-1, ..., wi ni1) (12)
@ Derived using chain rule and Markov assumption.

Count(We—ni1, .-, We)
_ 1) = 13
P(We| We—nt1, - o o We—1) Count(We—mizr -~ Wit) (13)

The problem of this approach: scarcity of data

9/31

Markov assumption

o Simplifying assumption:
P(the|its water is so transparent that) ~ P(the|that)
@ Or maybe
P(the|its water is so transparent that) ~ P(the|transparent that)

@ Markov assumption

P(W1W2 . W,,) ~ H P(W,'|W,',k . W,',].)

In other words, we approximate each component in the product

P(W,‘|W1W2 e W,',l) ~ H P(W,‘|W,'_k. .. W,;l)

10 /31

Simplest case: the unigram model

Plwiws ... wp) = H P(w;)

Some automatically generated sentences from a unigram model:

o fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most,
dollars, quarter, in, is, mass

o thrift, did, eighty, said, hard, 'm, july, bullish
@ that, or, limited, the

11/31

bigram model

P(wiws ... wp)

~ H P(W,"W,',l)

Some automatically generated sentences from a bigram model:

texaco rose one in this
in a boiler house said
control proposal without
hundred fifty five yen
outside new car parking
reached

this would be a record

issue is pursuing growth
mr. gurria mexico 's motion
permission from five

lot of the agreement

november

12 /31

n-gram models

o We can extend to trigrams, 4-grams, 5-grams
@ In general this is an insufficient model of language

@ because language has long-distance dependencies:
“The computer which | had just put into the machine room on the fifth
floor crashed.”

@ But we can often get away with N-gram models

13 /31

Estimating bigram probabilities

The Maximum Likelihood Estimate

P(wilwi-1) =
(wilwi-1) count(w;i—1)

@ <s>lam Sam < /s>
0 <s>Samlam < /s>
@ < s> | do not like green eggs and ham < /s >
P(ll<s>)=2% Plam|l)=3% P(Sam|am) = }

count(wi—1, w;)

P(< /s> |Sam) =}

14 /31

More examples: Berkeley Restaurant Project sentences

o Example sentences
can you tell me about any good cantonese restaurants close by
mid priced thai food is what 'im looking for

tell me about chez panisse
can you give me a listing of the kinds of food that are availa
im looking for a good place to eat breakfast

when is caffe venezia open during the day

15 /31

Raw bigram counts

Out of 9222 sentences

[i | want | to | eat | chinese | food | Iunch | spend |
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 510 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend | 0 1 0 0 0 0 0

16 / 31

Normalized bigram
unigram:
i want | to eat chinese | food lunch | spend
2533 | 927 2417 | 746 | 158 1093 | 341 278
normalized by the unigram:
| H i ‘ want| to eat ‘ chinese ‘ food ‘ lunch | spend |
1 0.002 03310 0.0036| 0 0 0 0.00079
want | 0.0022 |0 0.66 | 0.0011 | 0.0065 | 0.0065 |0.0054|0.0011
to 0.00083 | 0 0.0017 [0.28 | 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 (0 0.021 | 0.0027]0.056 |0
chinese | 0.0063 | 0 0 0 0 0.52 |0.0063|0
food || 0.014 |0 0.014 |0 0.00092 | 0.0037 | 0 0
lunch | 0.0059 |0 0 0 0 0.0029 |0 0
spend || 0.0036 |0 0.0036 |0 0 0 0 0

e.g., i want==827/2533=0.33

17 /31

Bigram estimates of sentence probability

P(< s> I want english food < /s >)
= P(l| <s>)

x P(want]|[)

x P(english|want)

x P(food|english)

x P(< /s> |food)

= .000031

P(il <s>)=
P(english|want) =
P(chinese|want) =
P(to|want) =
P(eat|to) =
P(food|to) =

P(want|spend) =

.25
.001
.0065
.66

18 /31

Practical issues

We do everything in log space
@ Avoid underflow

@ also adding is faster than multiplying

log(p1 x p2) = log(p1) + log(p2)

19/31

Google n-gram

serve as the incoming 92

serve as the incubator 99
serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

google book ngram: http://ngrams.googlelabs.com/
http://googleresearch.blogspot.com /2006 /08/all-our-n-gram-are-belong-to-
you.html

20 /31

Perplexity

The Shannon Game:
@ How well can we predict the next word?
o | always order pizza with cheese and mushrooms 0.1

pepperoni 0.1

anchovies 0.01
fried rice 0.0001

and 1e-100

The 33rd President of the US was
Il sawa

@ Unigrams won't work for this task.

@ A better model of a text is one which assigns a higher probability to the
word that actually occurs

21 /31

Perplexity

@ The best language model is one that best predicts an unseen test set
(Gives the highest P(sentence))

@ Perplexity is the inverse probability of the test set, normalized by the
number of words:

N 1

_1
PP(S):P(W1W2WN) N= m

@ Chain rule:

N 1

PP(S) = H P(wilwiws . .. wi_1)

i=1

o For bigrams:

22 /31

The Shannon Game intuition for perplexity

@ How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
o Let's suppose a sentence consisting of random digits

o What is the perplexity of this sentence according to a model that assign
P=1/10 to each digit?

PP(S) = P(wiws ... wy) ™ W
-]
()
=10 (14)

23 /31

@ How hard is recognizing (30,000) names at Microsoft.
o Perplexity = 30,000

o If a system has to recognize
e Operator (1 in 4)

o Sales (1in 4)
o Technical Support (1 in 4)
e 30,000 names (1 in 120,000 each)
o Perplexity is 53
130k 130k 130k 1 30k _
I -V Rt - (15)
4 4 4 120k
= (4 * 4 % 4+ 120000)/* (16)
~ 53 (17)

@ Perplexity is weighted equivalent branching factor

24 /31

Lower perplexity = better model

@ Training 38 million words, test 1.5 million words, WSJ

‘Unigram Bigram Trigram
Perplexity ‘ 962 170 109

25 /31

Approximating Shakespeare

Unigram
To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like
Bigram
What means, sir. I confess she? then all sorts, he is trim, captain.
‘Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
‘What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
Trigram
Sweet prince, Falstaff shall die. Harry of Monmouth'’s grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
Quadrigram
King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’
‘Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, 'tis a noble Lepidus.

26 /31

Shakespeare as corpus

o N=884,647 tokens, V=29,066

@ Shakespeare produced 300,000 bigram types out of V2= 844 million
possible bigrams.

@ S0 99.96% of the possible bigrams were never seen (have zero entries in
the table)

@ Quadrigrams worse: What's coming out looks like Shakespeare because it
is Shakespeare

27 /31

The wall street journal is not shakespeare

Unigram
Months the my and issue of year foreign new exchange’s september were recession ex-
change new endorsed a acquire to six executives

Bigram
Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor
would seem to complete the major central planners one point five percent of U. S. E. has
already old M. X. corporation of living on information such as more frequently fishing to

keen her
Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three
percent of the rates of interest stores as Mexico and Brazil on market conditions

28 /31

Using language models (LMs) for IR

@ LM = language model

@ We view the document as a generative model that generates the query.
© What we need to do:

Define the precise generative model we want to use

Estimate parameters (different parameters for each document’s model)
Smooth to avoid zeros

Apply to query and find document most likely to have generated the query
Present most likely document(s) to user

© 6 ¢ o

@ Note that 3 is similar to what we did in Naive Bayes.

29 /31

Zeros and Smoothing

@ Training set:

o .. denied the allegations
o .. denied the reports
o .. denied the claims
o .. denied the request

o Test set

o .. denied the offer
o .. denied the loan

o P(offer|denied the) = 0

30 /31

Takeaways

o Daniel Jurafsky & James H. Martin, N-gram Language Models, book
chapter.

o IIR, Chapter 12, p218-264.

31/31

https://web.stanford.edu/~jurafsky/slp3/3.pdf

