Feature Selection

September 8, 2024

Why feature selection

In text classification, feature selection is typically used to achieve two objectives:

- Reduce the size of the feature set
 - in order to optimize the use of computing resources and to
- Remove noise from the data
 - in order to optimize the classification performance.

Common feature selection methods for both supervised and unsupervised applications

- Stop-word removal
 - we determine the common words in the documents which are not specific or discriminatory to the different classes.
- Stemming, different forms of the same word are consolidated into a single word.
 - singular, plural and different tenses are consolidated into a single word.
- Features are often scored and ranked using some feature weighting scheme that reflects the importance of the feature for a given task
- These methods are not specific to the case of the classification problem,
- Often used in a variety of unsupervised applications such as clustering and indexing.

Feature selection

- How to represent documents for text classification?
- Option 1: represent documents with all the terms (recall the term-document matrix)
 - Very high-dimensional space, with each dimension corresponding to a term.
 - Many dimensions correspond to rare words.
 - Rare words can mislead the classifier.
 - Rare misleading features are called noise features.
 - Very common words may not be good as well.
- Eliminating noise features from the representation increases efficiency and effectiveness of text classification.
- Eliminating features is called feature selection.

Example for a noise feature

- Let's say we're doing text classification for the class China.
- Suppose a rare term, say ARACHNOCENTRIC, has no information about China...
- ... but all instances of ARACHNOCENTRIC happen to occur in China documents in our training set.
- Then we may learn a classifier that incorrectly interprets ARACHNOCENTRIC as evidence for the class China.
- Such an incorrect generalization from an accidental property of the training set is called overfitting.
- Feature selection reduces overfitting and improves the accuracy of the classifier.

Basic feature selection algorithm

```
SELECTFEATURES(\mathbb{D}, c, k)

1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbb{D})

2 L \leftarrow []

3 for each t \in V

4 do A(t, c) \leftarrow \text{ComputeFeatureUtility}(\mathbb{D}, t, c)

5 APPEND(L, \langle A(t, c), t \rangle)

6 return FeaturesWithLargestValues(L, k)
```

Basic feature selection algorithm

```
SELECTFEATURES(\mathbb{D}, c, k)

1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbb{D})

2 L \leftarrow []

3 for each t \in V

4 do A(t, c) \leftarrow \text{ComputeFeatureUtility}(\mathbb{D}, t, c)

5 APPEND(L, \langle A(t, c), t \rangle)

6 return FeaturesWithLargestValues(L, k)
```

How do we compute A, the feature utility?

Different feature selection methods

- A feature selection method is mainly defined by the feature utility measure it employs
- Feature utility measures:
 - Frequency select the most frequent terms
 - Mutual information select the terms with the highest mutual information
 - Mutual information is also called information gain in this context.
 - Chi-square (see book)
- -
- 0
- 0

Feature functions

- These functions capture the intuition that the best terms for c_i are the ones distributed most differently in the sets of positive and negative examples of c_i.
- interpretations of this principle vary across different functions.
- \bullet χ^2 and MI: measure how the results of an observation differ (i.e. are independent) from the results expected according to an initial hypothesis

Mutual information

- Compute the feature utility A(t,c) as the mutual information (MI) of term t and class c.
- MI tells us "how much information" the term contains about the class and vice versa.
- For example, if a term's occurrence is independent of the class (same proportion of docs within/without class contain the term), then MI is 0.
- Starting point: PMI (point-wise mutual information)

Definition of PMI

$$PMI(t,c) = \log \frac{N_{tc}}{\hat{N}_{tc}} \tag{1}$$

- N_{tc} : observed count of term t in class c.
- \hat{N}_{tc} : expected count if t is random.
- When $\hat{N}_{tc} = N_{tc}$, t is independent of c, hence MI=0.
- How to estimate \hat{N}_{tc} ?
- By the MLE estimator,

$$\hat{N}_{tc} = \frac{N_t N_c}{N} \tag{2}$$

- N_t: total count of term t (document frequency of t)
- N_c: documents in class c.
- N: total number of documents.

Definition:

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

Based on maximum likelihood estimates, the formula we actually use is:

$$I(U; C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_{1.}N_{.1}} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_{0.}N_{.1}} + \frac{N_{10}}{N} \log_2 \frac{NN_{00}}{N_{1.}N_{.0}} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_{0.}N_{.0}}$$

- N_{xy} denote the number of docs that
 - N_{10} : contain t ($e_t = 1$) and are not in c ($e_c = 0$);
 - N_{11} : contain t ($e_t = 1$) and are in c ($e_c = 1$);
 - N_{01} : do not contain t ($e_t = 0$) and are in c ($e_c = 1$);
 - N_{00} : do not contain t ($e_t = 0$) and are not in c ($e_c = 0$);
- \bullet $N = N_{00} + N_{01} + N_{10} + N_{11}$.

	Observed				Expected
	poultry	not poultry	SUM	poultry	no poultry
export	49	27652	27701	6.56	27694.43
no export	141	774106	774247	183.43	774063.56
sum	190	801758	801948		

For 'poultry' class,

$$ex\hat{port} = \frac{190 * 27701}{801948} \approx 6.56 \tag{3}$$

mutual information intermediate data:

	P(tc)	Obs/Expected	
		7.466090337	
11	6.11012E-05	2.900352965	0.000177215
		0.768656296	
10	0.000175822	-0.379589451	-6.67401E-05
		0.998467671	
01	0.034481039	-0.002212379	-7.62851E-05
		1.000054824	
00	0.965282038	7.90916E-05	7.63457E-05
sum			0.000110536

How to compute MI values (2)

• Alternative way of understanding MI:

$$I(U; C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{N(U = e_t, C = e_c)}{E(U = e_t, C = e_c)}$$

- $N(U=e_t, C=e_c)$ is the count of documents with values e_t and e_c .
- $E(U=e_t, C=e_c)$ is the expected count of documents with values e_t and e_c if we assume that the two random variables are independent.

MI example for *poultry*/EXPORT in Reuters

$$e_c = e_{poultry} = 1$$
 $e_c = e_{poultry} = 0$
 $e_t = e_{\text{EXPORT}} = 1$ $N_{11} = 49$ $N_{10} = 27,652$
 $e_t = e_{\text{EXPORT}} = 0$ $N_{01} = 141$ $N_{00} = 774,106$

Plug these values into formula:

$$\begin{split} I(U;C) &= \frac{49}{801,948} \log_2 \frac{801,948 \cdot 49}{(49+27,652)(49+141)} \\ &+ \frac{141}{801,948} \log_2 \frac{801,948 \cdot 141}{(141+774,106)(49+141)} \\ &+ \frac{27,652}{801,948} \log_2 \frac{801,948 \cdot 27,652}{(49+27,652)(27,652+774,106)} \\ &+ \frac{774,106}{801,948} \log_2 \frac{801,948 \cdot 774,106}{(141+774,106)(27,652+774,106)} \\ &\approx \quad 0.000105 \end{split}$$

MI feature selection on Reuters

Class: coffee

term	MI
COFFEE	0.0111
BAGS	0.0042
GROWERS	0.0025
KG	0.0019
COLOMBIA	0.0018
BRAZIL	0.0016
EXPORT	0.0014
EXPORTERS	0.0013
EXPORTS	0.0013
CROP	0.0012

Class: sports

Class. Sports				
term	MI			
SOCCER	0.0681			
CUP	0.0515			
MATCH	0.0441			
MATCHES	0.0408			
PLAYED	0.0388			
LEAGUE	0.0386			
BEAT	0.0301			
GAME	0.0299			
GAMES	0.0284			
TEAM	0.0264			

$$\chi^2$$

$\chi^2 = \sum_{e_t \in 0, 1} \sum_{e_c \in 0, 1} \frac{(N_{e_t e_c} - E_{e_t e_c})^2}{E_{e_t e_c}} $	(4)
---	-----

	Observed				Expected
	poultry	not poultry	SUM	poultry	no poultry
export	49	27652	27701	6.56	27694.43
no export	141	774106	774247	183.43	774063.56
sum	190	801758	801948		

chi² for term export and class poultry:

$$\chi^2 = \frac{(49 - 6.56)^2}{6.56} + \frac{(141 - 183)^2}{183} + \dots$$
 (5)

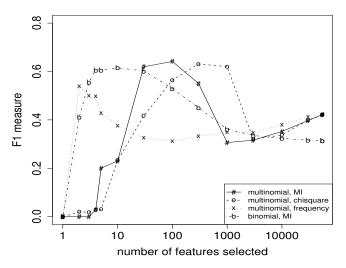
$$\approx 274.4 + 9.8 + \dots \tag{6}$$

$$= 284.2$$
 (7)

observed - expected poultry no poultry 42.43699342 (42.44)export not export (42.43699342) 42.44 square/expected poultry no poultry 274.40143308 0.06502744 export not export 9.81753122 0.00232655 284.28631830 sum

16 / 1

Naive Bayes: Effect of feature selection



multinomial = multinomial Naive Bayes binomial = Bernoulli Naive Bayes

Feature selection for Naive Bayes

- In general, feature selection is necessary for Naive Bayes to get decent performance.
- Also true for many other learning methods in text classification: you need feature selection for optimal performance.

Exercise

- Compute the "export" / POULTRY contingency table for the "Kyoto" / JAPAN in the collection given below.
- Make up a contingency table for which MI is 0 that is, term and class are independent of each other.

"export" / POULTRY table:

$$e_c = e_{poultry} = 1$$
 $e_c = e_{poultry} = 0$
 $e_t = e_{\text{EXPORT}} = 1$ $N_{11} = 49$ $N_{10} = 27,652$
 $e_t = e_{\text{EXPORT}} = 0$ $N_{01} = 141$ $N_{00} = 774,106$

Collection:

	docID	words in document	in $c = Japan?$
training set	1	Kyoto Osaka Taiwan	yes
	2	Japan Kyoto	yes
	3	Taipei Taiwan	no
	4	Macao Taiwan Shanghai	no
	5	London	no

Feature Transformation Methods: Supervised LSI

- Feature selection: reduce the dimensionality of the data by picking from the original set of attributes,
- Feature transformation: create a new (and smaller) set of features as a function of the original set of features.
- Typical examples of feature transformation methods
 - Latent Semantic Indexing (LSI), and its probabilistic variant PLSA .
- LSI method transforms the text space of a few hundred thousand word features to a new axis system
- Principal Component Analysis techniques are used to determine the axis-system which retains the greatest level of information about the variations in the underlying attribute values.
- Disadvantage: unsupervised, blind to the underlying class distribution.

- Reading: P251-P265. IIR
- References: