Feature Selection

October 30, 2023

In text classification, feature selection is typically used to achieve two objectives:

- Reduce the size of the feature set
 - in order to optimize the use of computing resources and to
- Remove noise from the data
 - in order to optimize the classification performance.

Common feature selection methods for both supervised and unsupervised applications

- Stop-word removal
 - we determine the common words in the documents which are not specific or discriminatory to the different classes.
- Stemming, different forms of the same word are consolidated into a single word.
 - singular, plural and different tenses are consolidated into a single word.
- Features are often scored and ranked using some feature weighting scheme that reflects the importance of the feature for a given task
- These methods are not specific to the case of the classification problem,
- Often used in a variety of unsupervised applications such as clustering and indexing.

Feature selection

- How to represent documents for text classification?
- Option 1: represent documents with all the terms (recall the term-document matrix)
 - Very high-dimensional space, with each dimension corresponding to a term.
 - Many dimensions correspond to rare words.
 - Rare words can mislead the classifier.
 - Rare misleading features are called noise features.
 - Very common words may not be good as well.
- Eliminating noise features from the representation increases efficiency and effectiveness of text classification.
- Eliminating features is called feature selection.

Example for a noise feature

- Let's say we're doing text classification for the class China.
- Suppose a rare term, say ARACHNOCENTRIC, has no information about *China* ...
- ...but all instances of ARACHNOCENTRIC happen to occur in *China* documents in our training set.
- Then we may learn a classifier that incorrectly interprets ARACHNOCENTRIC as evidence for the class *China*.
- Such an incorrect generalization from an accidental property of the training set is called overfitting.
- Feature selection reduces overfitting and improves the accuracy of the classifier.

Basic feature selection algorithm

SelectFeatures(\mathbb{D}, c, k)

- 1 $V \leftarrow \text{ExtractVocabulary}(\mathbb{D})$
- 2 $L \leftarrow []$
- 3 for each $t \in V$
- 4 do $A(t, c) \leftarrow \text{COMPUTEFEATUREUTILITY}(\mathbb{D}, t, c)$
- 5 APPEND $(L, \langle A(t, c), t \rangle)$
- 6 return FEATURESWITHLARGESTVALUES(L, k)

Basic feature selection algorithm

SelectFeatures(\mathbb{D}, c, k)

- 1 $V \leftarrow \text{ExtractVocabulary}(\mathbb{D})$
- 2 $L \leftarrow []$
- 3 for each $t \in V$
- 4 do $A(t, c) \leftarrow \text{COMPUTEFEATUREUTILITY}(\mathbb{D}, t, c)$
- 5 APPEND $(L, \langle A(t, c), t \rangle)$
- 6 return FEATURESWITHLARGESTVALUES(L, k)

How do we compute A, the feature utility?

Different feature selection methods

- A feature selection method is mainly defined by the feature utility measure it employs
- Feature utility measures:
 - Frequency select the most frequent terms
 - Mutual information select the terms with the highest mutual information
 - Mutual information is also called information gain in this context.
 - Chi-square (see book)
- Yiming Yang and Jan O Pedersen. A comparative study on feature selection in text categorization. In *ICML*, volume 97, pages 412–420, 1997
- Monica Rogati and Yiming Yang. High-performing feature selection for text classification.
 In Proceedings of the eleventh international conference on Information and knowledge management, pages 659–661. ACM, 2002
- David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection for text categorization research. The Journal of Machine Learning Research, 5:361–397, 2004

Feature functions

- These functions capture the intuition that the best terms for *c_i* are the ones distributed most differently in the sets of positive and negative examples of *c_i*.
- interpretations of this principle vary across different functions.
- χ^2 and MI: measure how the results of an observation differ (i.e. are independent) from the results expected according to an initial hypothesis

Mutual information

- Compute the feature utility A(t, c) as the mutual information (MI) of term t and class c.
- MI tells us "how much information" the term contains about the class and vice versa.
- For example, if a term's occurrence is independent of the class (same proportion of docs within/without class contain the term), then MI is 0.
- Starting point: PMI (point-wise mutual information)

PMI

Definition of PMI

$$PMI(t,c) = \log \frac{N_{tc}}{\hat{N}_{tc}}$$
(1)

- N_{tc}: observed count of term t in class c.
- \hat{N}_{tc} : expected count if t is random.
- When $\hat{N}_{tc} = N_{tc}$, t is independent of c, hence MI=0.
- How to estimate \hat{N}_{tc} ?
- By the MLE estimator,

$$\hat{N}_{tc} = \frac{N_t N_c}{N} \tag{2}$$

- N_t: total count of term t (document frequency of t)
- N_c: documents in class c.
- N: total number of documents.

• Definition:

$$I(U; C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

Based on maximum likelihood estimates, the formula we actually use is:

$$I(U; C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_1 \cdot N_{.1}} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_0 \cdot N_{.1}} \\ + \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_1 \cdot N_{.0}} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_0 \cdot N_{.0}}$$

- N_{xy} denote the number of docs that
 - N_{10} : contain $t (e_t = 1)$ and are not in $c (e_c = 0)$;
 - N_{11} : contain $t(e_t = 1)$ and are in $c(e_c = 1)$;
 - N_{01} : do not contain $t(e_t = 0)$ and are in $c(e_c = 1)$;
 - N_{00} : do not contain $t(e_t = 0)$ and are not in $c(e_c = 0)$;

•
$$N = N_{00} + N_{01} + N_{10} + N_{11}$$

	Observed				Expected
	poultry	not poultry	SUM	poultry	no poultry
export	49	27652	27701	6.56	27694.43
no export	141	774106	774247	183.43	774063.56
sum	190	801758	801948		

For 'poultry' class,

$$ex\hat{port} = \frac{190 * 27701}{801948} \approx 6.56$$
 (3)

mutual information intermediate data:

	P(tc)	Obs/Expected	
		7.466090337	
11	6.11012E-05	2.900352965	0.000177215
		0.768656296	
10	0.000175822	-0.379589451	-6.67401E-05
-		0.998467671	
01	0.034481039	-0.002212379	-7.62851E-05
		1.000054824	
00	0.965282038	7.90916E-05	7.63457E-05
sum			0.000110536

How to compute MI values (2)

• Alternative way of understanding MI:

$$I(U; C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{N(U = e_t, C = e_c)}{E(U = e_t, C = e_c)}$$

• $N(U=e_t, C=e_c)$ is the count of documents with values e_t and e_c .

• $E(U=e_t, C=e_c)$ is the expected count of documents with values e_t and e_c if we assume that the two random variables are independent.

MI example for poultry/EXPORT in Reuters

$$e_{c} = e_{poultry} = 1 \qquad e_{c} = e_{poultry} = 0$$

$$e_{t} = e_{\text{EXPORT}} = 1 \qquad \boxed{\begin{array}{c} N_{11} = 49 & N_{10} = 27,652 \\ N_{01} = 141 & N_{00} = 774,106 \end{array}}$$
Plug these values into formula:

Plug these values into formula:

$$\begin{split} I(U;C) &= \frac{49}{801,948} \log_2 \frac{801,948 \cdot 49}{(49+27,652)(49+141)} \\ &+ \frac{141}{801,948} \log_2 \frac{801,948 \cdot 141}{(141+774,106)(49+141)} \\ &+ \frac{27,652}{801,948} \log_2 \frac{801,948 \cdot 27,652}{(49+27,652)(27,652+774,106)} \\ &+ \frac{774,106}{801,948} \log_2 \frac{801,948 \cdot 774,106}{(141+774,106)(27,652+774,106)} \\ &\approx 0.000105 \end{split}$$

MI feature selection on Reuters

Class: sports

term	MI		term	MI
COFFEE	0.0111	1	SOCCER	0.0681
BAGS	0.0042		CUP	0.0515
GROWERS	0.0025		MATCH	0.0441
KG	0.0019		MATCHES	0.0408
COLOMBIA	0.0018		PLAYED	0.0388
BRAZIL	0.0016		LEAGUE	0.0386
EXPORT	0.0014		BEAT	0.0301
EXPORTERS	0.0013		GAME	0.0299
EXPORTS	0.0013		GAMES	0.0284
CROP	0.0012		TEAM	0.0264

$$\chi^{2} = \sum_{e_{t} \in 0,1} \sum_{e_{c} \in 0,1} \frac{(N_{e_{t}e_{c}} - E_{e_{t}e_{c}})^{2}}{E_{e_{t}e_{c}}}$$
(4)

	Observed				Expected
	poultry	not poultry	SUM	poultry	no poultry
export	49	27652	27701	6.56	27694.43
no export	141	774106	774247	183.43	774063.56
sum	190	801758	801948		

*chi*² for term *export* and class *poultry*:

$$\chi^{2} = \frac{(49 - 6.56)^{2}}{6.56} + \frac{(141 - 183)^{2}}{183} + \dots$$
(5)
$$\approx 274.4 + 9.8 + \dots$$
(6)
$$= 284.2$$
(7)

observed - expected

	poultry	no poultry
export	42.43699342	(42.44)
not export	(42.43699342)	42.44
square/expected		
	poultry	no poultry
export	poultry 274.40143308	no poultry 0.06502744
export not export	poultry 274.40143308 9.81753122	no poultry 0.06502744 0.00232655

Naive Bayes: Effect of feature selection

binomial = Bernoulli Naive Bayes

Feature selection for Naive Bayes

- In general, feature selection is necessary for Naive Bayes to get decent performance.
- Also true for many other learning methods in text classification: you need feature selection for optimal performance.

Exercise

- Compute the "export"/POULTRY contingency table for the "Kyoto"/JAPAN in the collection given below.
- Make up a contingency table for which MI is 0 that is, term and class are independent of each other.

"export"/POULTRY table:

$$\begin{array}{c|c} e_c = e_{poultry} = 1 & e_c = e_{poultry} = 0 \\ e_t = e_{\text{EXPORT}} = 1 & \hline N_{11} = 49 & N_{10} = 27,652 \\ e_t = e_{\text{EXPORT}} = 0 & \hline N_{01} = 141 & N_{00} = 774,106 \end{array}$$

Collection:

	docID	words in document	in <i>c</i> = Japan?
training set	1	Kyoto Osaka Taiwan	yes
	2	Japan Kyoto	yes
	3	Taipei Taiwan	no
	4	Macao Taiwan Shanghai	no
	5	London	no

Feature Transformation Methods: Supervised LSI

- Feature selection: reduce the dimensionality of the data by picking from the original set of attributes,
- Feature transformation: create a new (and smaller) set of features as a function of the original set of features.
- Typical examples of feature transformation methods
 - Latent Semantic Indexing (LSI), and its probabilistic variant PLSA .
- LSI method transforms the text space of a few hundred thousand word features to a new axis system
- Principal Component Analysis techniques are used to determine the axis-system which retains the greatest level of information about the variations in the underlying attribute values.
- Disadvantage: unsupervised, blind to the underlying class distribution.

- Reading: P251-P265. IIR
- References:
 - [LYRL04] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection for text categorization research. *The Journal of Machine Learning Research*, 5:361–397, 2004.
 - [RY02] Monica Rogati and Yiming Yang. High-performing feature selection for text classification. In Proceedings of the eleventh international conference on Information and knowledge management, pages 659–661. ACM, 2002.
 - [YP97] Yiming Yang and Jan O Pedersen. A comparative study on feature selection in text categorization. In *ICML*, volume 97, pages 412–420, 1997.