Word Embedding: word2vec

Jianguo Lu

October 21, 2024

1/78

Overview

Introduction

gensim word2vec

t-SNE

2/78

Word embedding

» A set of language modeling and feature learning techniques in natural
language processing (NLP)

» Words are mapped to short and dense vectors of real numbers.

» Coined by Yoshua Bengio in 2003

» Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model.
Journal of machine learning research, 3(Feb):1137-1155, 2003
» Popularized by word2vec
» Tomas Mikolov, llya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositionality.
In NIPS, pages 3111-3119, 2013

» Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013
> Related terms:
» Distributional semantic model (in computational linguistics)
> Distributed representation

3/78

Why word embedding?

» Useful by itself (e.g., calculating the most similar words)
» Essential for semantic search
» For downstream NLP tasks (e.g., classification)

» Starting point for other embeddings, e.g., graph embedding, molecule
embedding, drug embedding, ...

4/78

Why called "embedding”

» In math, embedding is an injective map from one mathematical structure
to another that preserves certain properties or structures.

P distinct words are mapped to distinct vectors
x)=fly) = x=y
» in CS, embedding is often a map from from high-dimensional data into a
lower-dimensional, continuous vector space.
» placing the sentence in a geometric space where relationships between

sentences (or words) can be meaningfully represented by distances or
directions.

» Requirement for good word/sentence embedding:

> similar sentences (in meaning) will have similar embeddings
> while dissimilar sentences will have more distant embeddings.

5/78

why called "distributed” representation

» the information (semantic, syntactic, etc.) about an a word (or sentence)
is distributed across many dimensions of a vector,

» with each dimension capturing different aspects of the meaning.

» in contrast to one-dimensional (local) representations.
local [0, 0, 1, 0, 0]
distributed [0.25, 0.1, -0.5, 0.7, 0.3],

6/78

Distributional representation

Harris, Z. (1954)
“words that are used and occur in the same contexts tend to purport similar
meanings.”

Firth, J.R. (1957)

“a word is characterized by the company it keeps”.

» Derived from the semantic theory of language usage
» You can get a lot of value by representing a word by means of its neighbors

» One of the most successful ideas of modern statistical NLP
[.. [government | debt | problems | turning [into | banking [crises [as [has | happened
[... | saying [that | Europe | needs [unified | banking [regulation | to | replace | the [hc

7/78

Examples of word embedding results

spain \
Italy \Madrid
Rome

Germany

walked Berlin
,. Turkey \
. Ankara
O ’ swam Russia
[} - ctcawamgcw
walking] Ccanada

Japan ——— ko

Vietnam ————— Hanoi
China ————————— Beijing

Male-Female Verb tense Country-Capital

Answer analogical questions, e.g

Man : Woman = King :?

The answer will be Queen.

8/78

Dimensions of representation

MAN

WOMAN

/ / AUNT

UNCLE
QUEEN

KING

frnas

9/78

Vector representation

Vector representation of words is not new:

» Vector space model (TFIDF etc).
> LDA (Latent Dirichlet Allocation, for topic modelling)
> David M Blei, Andrew Y Ng, and Michael | Jordan. Latent dirichlet

allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003

» SVD, PCA, PPMI +SVD

» LSA Latent Semantic Analysis
» Word2Vec, GloVe

|

Some approaches are correlated. e.g., word2vec and SVD+PPMI are
mathematically related (almost equivalent).

» Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization.
In Advances in neural information processing systems, pages 2177-2185,
2014

10/78

Beyond word embedding: document/sentence/paragraph embedding

‘e ® Areas of Computer Science
® Athletic Sports
® Species
® Albums
® Films

AL ™

&

» Visualization of Wikipedia paragraph vectors using t-SNE.

» From Quoc V Le and Tomas Mikolov. Distributed representations of
sentences and documents.

In ICML, volume 14, pages 1188-1196, 2014

11/78

Contextual embedding

» Non-contextual
» Embedding of a word is unique regardless of its context
> e.g. embeddings of ‘bank’ in the following two sentences are the same

government debt problems turning into banking crises
We sat on the river bank, watching the water flow

> Also called static embedding
> Approaches for static embedding: Word2Vec, Glove
» Contextual Embedding

> Also called dynamic embedding

» Embedding of a word is generated dynamically depending on the context of
the word

» Examples: BERT, LLAMA, LLAMA, ChatGPT ...

12/78

Network embedding

(b) DeepWalk () LINE(2nd)

Figure: From Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and

Qiaozhu Mei. Line: Large-scale information network embedding.
In WWW, pages 1067-1077. ACM, 2015

» Visualization of the co-author network.

» The authors are mapped to the 2-D space using the t-SNE package with
learned embeddings as input.

» Color of a node indicates the community of the author.

» Red: “data Mining,” blue: “machine learning,” green: “computer vision."

13/78

More representative works for network embedding

» DeepWalk: Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk:
Online learning of social representations.
In SIGKDD, pages 701-710. ACM, 2014

» Node2Vec: Aditya Grover and Jure Leskovec. node2vec: Scalable feature

learning for networks.
In SIGKDD, pages 855-864. ACM, 2016

» Graph Convolution Networks

14/78

Network embedding for 6M authors

From KDD 2017 Tutorial, By Tang et al.

«O>» A Fr «=)r» «=)»

1PN G4
15/78

0 Computer Science

Mathematics
Physics
Economics
Biology
Chemistry

Medicine

16/78

Paper (linked data) embedding

» Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. Linked
document embedding for classification.
In CIKM, pages 115-124. ACM, 2016

» Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang.

Network representation learning with rich text information.
In IJCAI, pages 2111-2117, 2015

» Soumyajit Ganguly and Vikram Pudi. Paper2vec: Combining graph and
text information for scientific paper representation.
2017

» Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding
through large-scale heterogeneous text networks.
In SIGKDD, pages 1165-1174. ACM, 2015

17/78

Meaning of a word

Definition: Meaning(Webster dictionary)

» the thing one intends to convey especially by language

18/78

Meaning from WordNet

» Semantically oriented dictionary

» similar to a thesaurus, with richer structure

» 155,287 English words, 117,659 synonyms

» nltk in python (and other languages) support WordNet

>>>from nltk.corpus import wordnet as wn
>>> wn.synsets('car’)[0].lemma_names()
[u'car’, u’auto’, u’'automobile’, u'machine’, u’'motorcar’]

>>> wn.synsets('car’)[1].lemma_names()
[u'car’, u’'railcar’, u'railway_car’', u'railroad_car’]

>>> wn.synsets(’'car’)[2].lemma_names()
[u'car’, u’gondola’]

>>> wn.synsets('car’)[3].lemma_names()
[u'car’, u’'elevator_car’]
>>>

19/78

It is similar to a dictionary

car noun

\ kar , dialectal also okr , kyar \

Definition of Car (Entry 1 of 2)

1 : a vehicle moving on wheels: such as

a archaic : CARRIAGE, CHARIOT

b : a vehicle designed to move on rails (as of a railroad)

The train has 20 cars.

c : AUTOMOBILE

traveled to Boston by car

2 : the passenger compartment of an elevator

3 : the part of an airship or balloon that carries the passeng

20/78

WordNet has synonyms, hypernyms, etc.

>>> panda=wn.synset('panda.n.01")

>>> hyper=lambda s:s.hypernyms()

>>> list (panda.closure(hyper))
[Synset('procyonid.n.01"), Synset('carnivore.n.01"),
Synset('placental.n.01"), Synset('mammal.n.01"),
Synset('vertebrate.n.01'), Synset('chordate.n.01"),
Synset(’animal.n.01"), Synset('organism.n.01"),
Synset(’'living_thing.n.01"), Synset('whole.n.02"),
Synset('object.n.01"), Synset('physical_entity.n.01"),
Synset('entity.n.01")]

21/78

Problems with WordNet

» Miss subtle differences,
> e.g., synonyms: adept, expert, good, practiced, proficient, skillful?

» Miss new words. Impossible to keep up to date especially in online social
networks such as Twitter:

> e.g. looook, 100k, helloooo, ninja
» Subjective
» Requires human labor to create and adapt

» Hard to compute accurate word similarity
> How to give a real number between 0 to 1 to measure the similarity?

22/78

Similar words from word2vec

>>> model. most_similar('car’, topn=29)

[("vehicle’, 0.7560694813728333), ('truck’, 0.6907597184181213),
('cars’, 0.6613855361938477), ('bicycle’, 0.660092830657959)
('vehicles', 0.6555454730987549), ('door’', 0.6354320645332336)
("ship’', 0.6315749883651733), ('trailer’, 0.6131559610366821),
(

(

"seat’, 0.6075621843338013), ('aircrafts’, 0.6072666049003601),
"driving ', 0.6065176129341125),

» Training data is dblp_title.txt.

» What is better is the muiti-dimensional representation

23/78

Compare with the similarity from WordNet

synonym of ’'good’

S: (adj) full, good

S: (adj) estimable, good, honorable, respectable

S: (adj) beneficial , good

S: (adj) good, just, upright

S: (adj) adept, expert, good, practiced, proficient, skillful
S: (adj) dear, good, near

S: (adj) good, right, ripe

(adv) well, good

(adv) thoroughly, soundly, good
(n) good, goodness

(n) commodity, trade good, good

24/78

“one-hot"” representation

» It is a localist representation
» words are regarded as atomic symbols

» This is a vector with one 1 and a lot of zeroes

Hotel” =[000000000010000]
Conference’ =[00100000000000 0]
Windsor’ =[00000010000000 0] (1)

Problems:

» Dimensionality of the vector will be the size of vocabulary. e.g. 13 M for
Google 1T.

> Hotel” Conference = 0

25/78

How to make neighbours represent words?

» Answer: With a co-occurrence matrix X
» 2 options: full document vs windows
»> Word - document cooccurrence matrix will give general topics (all sports
terms will have similar entries) leading to Latent Semantic Analysis.

» Instead: Window around each word to captures both syntactic (POS) and
semantic information

[... | government [debt [problems [turning [into [banking [crises [as [has [happened

26/78

Word-word Co-occurrence matrix

» Co-occurrence can be interpreted as an indicator of semantic proximity of

words.
» colab link

Silence is the language of God, all else is poor translation.
Rumi (1207,1273)

counts ‘ silence is the language of God
silince 0 1 0 0 0 0
is 1 0 1 0 0 0

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual
information, and lexicography.
Computational linguistics, 16(1):22-29, 1990

27/78

https://colab.research.google.com/drive/12t7LEkN2txH2CcAYSIJtnmxp8kDXsfnC#scrollTo=cFecMDRbWUtG

Basic idea of learning neural network word embeddings

a model that aims to predict between a center word w; and context words in
terms of word vectors

p(context|w:) = . ..
which has a loss function, e.g.,

J =1 — p(context|w)

» Look at many positions t in a big language corpus

» Keep adjusting the vector representations of words to minimize this loss

28/78

Main idea of word2vec

Predict between every word and its context words!
Two algorithms

» Skip-grams (SG): Predict context words given target (position
independent)

» Continuous Bag of Words (CBOW): Predict target word from
bag-of-words context

Two (moderately efficient) training methods
» Hierarchical softmax

» Negative sampling

The winner combination: SG+NS, i.e., SGNS.

29/78

word2vec (Skip-gram) as an optimization problem

» For each word t =1,..., T, predict surrounding words in a window of
“radius” m of every word.

» Objective function: Maximize the probability of any context word given
the current center word:

0) = H H P(weij|we; 0) (2)

t=1 —m<j<mAj#0

» Negative log likelihood:

J0)=-= Z > log(P(wesjws; 0)) (3)
t—l —m<j<mAj#0
0 represents all variables we will optimize

» Skip-gram uses softmax for P(w;|wy):

exp(th i V|//v,-)

57 exp(ven - Vi) *)

P(w; | we) =

30/78

Idea 1: Reduce the dimensionality

Singular Value Decomposition (SVD)
X=UzV" (5)

The columns of U contain the eigenvectors of xxT .
The columns of V contain the eigenvectors of XT* .

¥ is diagonal matrix. Diagonal values are eigenvalues of XXT or XTX.

VVvYyVvVy

Computational cost in SVD scales quadratically for d X n matrix: O(nd2)
(when d < n)

» Not possible for large number of words or document.

31/78

Idea 2: Learn low-dimensional vectors directly

» Learning representations by back-propagating errors. (Rumelhnrt, Hinton,
Williams 1986)

» A Neural Probabilistic Language Model (Bengio et al., 2003)

> Natural Language Processing (Almost) from Scratch (Collobert et al.,
2011)

> Efficient Estimation of Word Representations in Vector Space (Mikolov et
al., 2013)

> GloVe: Global Vectors for Word Representation (Pennington et al., 2014)

32/78

Idea 2

» Predict surrounding words of every word(word2rec)

> Update the weight every time two words co-occur
» The same co-occurrence pair (w;, wj) may appear many times
> It is not efficient to update the weight multiple times

» Capture co-occurrence counts directly (Glove)

» They are fast and can incorporate a new sentence/document or add a
word to the vocabulary.

33/78

Word2vec has a lot of algorithms and hyper parameters

» 94 Hyperparameters
» 4 +Word Representation Algorithms

> PPMI (Sparse and Explicit) SVD(PPMI)
> SGNS
> GloVe

» 8+ Benchmarks (6 Word Similarity Tasks, 2 Analogy Tasks)
Text pre-processing

» lower-casing (yes)

» stemming. (e.g., query vs. queries) (yes)

» Bigrams/phrases

34/78

WordSim-353 Relatedness

0.7
0.65

o
o

0.55

o
wn

0.45

Spearman’s Correlation

I
IS

0.35
0.3

PPMI (Sparse Vectors) SGNS (Embeddings)
(From slides by Omer Levy et al.)
» PPMI vs SGNS
» Hyperparameters often have stronger effects than algorithms
» Hyperparameters often have stronger effects than more data

» Prior superiority claims were not accurate

1PN G4
35/78

o
~

0.65

)
> 9 wn 9
G wna o

o
S
iS

Spearman’s Correlation

0.35

o
w

WordSim-353 Relatedness

PPMI (Sparse Vectors)

SGNS (Embeddings)

1PN G4
36/78

word2vec implementations

» Mikolov's original code in C

» Gensim word2vec in Python

> DL4J in java https://deeplearningdj.org/
> ..

37/78

https://deeplearning4j.org/

word2vec in C

» Original site at Google (has deadlinks):
https://code.google.com/archive/p/word2vec/

» Mirror at GitHub: https://github.com/svn2github/word2vec
» Detailed comments:
https://github.com/chrisjmccormick/word2vec_commented

38/78

https://code.google.com/archive/p/word2vec/
https://github.com/svn2github/word2vec
https://github.com/chrisjmccormick/word2vec_commented

Run the code

$ make
$./demo—word.sh
$./distance vectors.bin

Enter word or sentence (EXIT to break): cat

Word: cat Position in vocabulary: 2601

Word Cosine distance
meow 0.621209
cats 0.568651
feline 0.550209
caracal 0.542168
dog 0.538465

» vectors.bin is the vector representation of the words

» Other scripts for demo, e.g., ./demo-phrases.sh

39/78

gensim implementation for word2vec

Open source Python lib for NLP

Focus on topic modelling, latent semantic modelling.
Developed by Radim Rehurek

PhD in 2011: https://radimrehurek.com/phd_rehurek.pdf

Benefits of using Gensim implementation:

» come with other embedding lib such as LDA and LSI.
» Python has handy plot lib

vvyvyyVyYyy

» Install gensim

pip install —upgrade gensim

40/78

https://radimrehurek.com/phd_rehurek.pdf

Starter code

from gensim.models import Word2Vec
from sklearn.decomposition import PCA
from matplotlib import pyplot

define training data

sentences = [['this’, "is', "the', ’'first’', ’'sentence’', 'for', 'word2vec'],
["this’, "is', 'the’', 'second’', ’'sentence'],
['yet’, "another’', 'sentence'],
['one’, 'more’, ’'sentence'],
['and’, "the’', 'final', ’'sentence']]
train model
model = Word2Vec(sentences, min_count=1)

fit a 2d PCA model to the vectors
X = model [model.wv.vocab]
pca = PCA(n_components=2)
result = pca.fit_transform(X)
create a scatter plot of the projection
pyplot.scatter(result[:, 0], result[:, 1])
words = list (model.wv.vocab)
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()

41/78

What is the 'model’?

>>> model ['first ']

array ([0.14996897, —0.20207308, 0.3628332 , 0.48634875, —0.9683252
—0.56452739, 0.49738097, —0.24710093, 0.90575856, 1.16950583,
0.12466316, —0.23972373, 0.22282168, —0.12682317, —0.44225532,
—0.09795734, 0.39110288, —0.40137786, 0.27168629, —0.10275133,
—0.02124002, 0.30650523, —0.11591583, —0.46616486, —0.51625609,
—0.1998333 , —0.0062433 , —0.43187553, —0.39892 , —0.36950222,

» The length of the array is dictated by the hyper-parameter size
» Normally a few hundred

» The default is 100 in Gensim implementation.

» Note that it is not normalized (to 1).

42/78

Visualization using PCA

0.02 4
@nd
& gl
ina
0.014
et
i dhe
geconare
0.00
gvord2vec
éne dirst
_0.014 ‘%nother ghis
gentence
—0.02 A
—0.02 —0.01 0.00 0.01 0.02

43/78

Logging the process

import logging
logging . basicConfig (format='%(asctime)s : %(levelname)s : %(message)s’, level=logging.INFO)

Jianguos—MBP: mycode Jlanguolu$ 2017—11—-05 09:41:26,372 : INFO : collecting all words and their counts

2017—-11-05
2017—-11-05
2017—11-05
2017—11-05
2017—-11-05
2017—-11-05
2017—11-05
2017—11—-05
2017—-11-05
2017—11-05
2017—11-05

09:41:
09:41:
09:41
09:41
09:41
09:41
09:41
09:41
09:41
09:41:
09:41:

26,372
26,372

126,372
126,372
126,372
126,373
126,373
126,373
126,373

26,373
26,373

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

. PROGRESS: at sentence #0, processed 0 words, keeping 0 word types

collected 14 word types from a corpus of 22 raw words and 5 sentences
Loading a fresh vocabulary

min_count=1 retains 14 unique words (100% of original 14, drops 0)
min_count=1 leaves 22 word corpus (100% of original 22, drops 0)
deleting the raw counts dictionary of 14 items

sample=0.001 downsamples 14 most—common words

downsampling leaves estimated 2 word corpus (12.7% of prior 22)
estimated required memory for 14 words and 100 dimensions: 18200 bytes
resetting layer weights

training model with 3 workers on 14 vocabulary and 100 features,

using sg=0 hs=0 sample=0.001 negative=5 window=5
2017—11-05 09:41:26,373

matching count from corpus used for vocabulary survey
2017—11-05 09:41:26,383
20171105 09:41:26,384
2017—11-05 09:41:26,384
2017—11-05 09:41:26,384

292473 effective words/s

INFO

INFO
INFO
INFO
INFO

expecting 5 sentences,

worker thread finished; awaiting finish of 2 more threads
worker thread finished; awaiting finish of 1 more threads
worker thread finished; awaiting finish of 0 more threads
training on 22000 raw words (2811 effective words) took 0.0s,

44/78

Hyper-parameter 1: Subsampling

Each word w; in the training set is discarded with probability computed by the

formula
P(w,-):l—,/ﬁ (6)

> f(w;) is the frequency of the word (divided by the corpus size), t is the
pre-chosen threshold value.

» The default one in Gensim is t=0.001.
» Mikolov suggests t=0.00001.
» Frequent words have higher probability being discarded.

2017—11-05 13:32:05,470 : INFO :
2017—11-05 13:32:05,471 : INFO :

sample=0 downsamples 0 most—common words
downsampling leaves estimated 22 word corpus (100.0% of prior 22)

45/78

Read from a file and SIGMOD data

import gensim

PATH="/Users/jianguolu/data/’

txtfile= open(PATH+ sigmod_title.txt ', 'r")
sentences=[line.lower().strip().split(’ ') for line in txtfile.readlines()]
model = gensim.models.Word2Vec(sentences, min_count=2, iter=5)
test="query’

print 'words similar to \''+ test + '\’':\t'+ str(model. most_similar(test))

words similar to 'query':

[("with’, 0.9999337196350098), ('in’', 0.9999307990074158),
('and’, 0.9999281764030457), ('for’', 0.9999271631240845),
('queries’, 0.9999268054962158), (’'a’, 0.9999261498451233),
("based’, 0.9999228715896606), ('databases’', 0.9999176263809204),
('using’, 0.9999162554740906), ('efficient’, 0.9999145269393921)]

Similar words run another time:

words similar to 'query':

[("queries’, 0.9999304413795471), ('with', 0.9999302625656128),
('a’, 0.9999301433563232), ('and’, 0.9999282360076904),

("for’, 0.999927818775177), ('in', 0.9999264478683472),
(’'based’, 0.9999209046363831), ('databases’, 0.999919056892395),
('using’, 0.9999158382415771), ('to’, 0.9999111294746399)]

» The result is not good
> Similarities are close to one. (why?)
» Outputs vary from run to run (why?)

46/78

Hyper-parameter 2: learning rate alpha

model = gensim.models.Word2Vec(sentencelList, alpha=0.3,iter=5)

words similar to 'query’:

[('reducing’, 0.5237733125686646), ('analytic', 0.5013805627822876),
('algebra’, 0.49189162254333496), ('plans’, 0.46947455406188965),
("numeric’, 0.46216636896133423), ('portable’, 0.44664353132247925),
('natural’, 0.43257734179496765), ('output’, 0.42668044567108154),
('recursive’, 0.41990211606025696), ('class’', 0.41709235310554504),
('mapreduce’, 0.4162992537021637), ('expressions’, 0.4108825922012329),

» Result improves, still not good.

» Learning rate decreases during the training process (code in C):

alpha = starting_alpha*(1—word_count_actual/(real)(iter*train_words+1));
if (alpha < starting_alpha % 0.0001) alpha=starting_alpha*0.0001;

47/78

Hyper-parameter 3: iteration or epochs

model = gensim.models.Word2Vec(sentences, min_count=2, iter=>50)
print str(model. most_similar(' query’))

Jianguos—MBP: mycode jianguolu$ python w2v_sigmod. py
[('xquery', 0.6625971794128418),

('question’, 0.6376067399978638),

("queries’, 0.6186379194259644),

('natural’, 0.6147118806838989),

('progressive’, 0.6094042658805847),

('recursive’', 0.603917121887207),

('grouping’', 0.6024632453918457),

('lazy ', 0.5983935594558716),
('rate’, 0.596043586730957),
('update’, 0.5865614414215088)]

» lteration is 50 now. The default is 5.

48/78

Embedding produced by CBOW

.ara\lel
17.51 . ey

15.0 A
tegi
@rotestes Qe"‘Pﬁgrauensm

ducing

cursive :
12.5 4 @ chriaues & '}‘EWrizonta\ st @cvlus

@y, pipehw .”a'mw;wpendg‘cy @sponse
10.0 o . ﬁ(ﬂple @perators
. A progressive

. f arql owered
R @ b ® o<k

757 @ o o
5.0 1
2.5 1

0.0 @l

49 /78

Embedding produced by SG

model = gensim.models.Word2Vec(sentences, sg=1, iter=50)

151 @i @roses
@ P—
@eets
10
@« (bolstic ve
efetching jpelined
L4 hﬁmlng dition L4
rdinalitysample
5 e (4 .e" ‘onstramt
.é‘ﬁ'“mmanes @empressing
@s
erIeS&p‘ymg .enerator
Eiﬁggﬁrﬁfﬁ%’ﬁs
rators@pproximation
0 T ‘query
uer
oo, Gluery
: @
@rtimization buret
égma
—-54 timizers
@atural
_10 4
T T T T T T T
-15 -10 =5 0 5 10 15

50/78

Hyper-parameter 4. min-count

» min_count: ignore all words with total frequency lower than this.
» words similar to 'query’ when min_count=2:
» should decrease min_count when training data is small.

[('xquery’, 0.63210129737854), ('lazy’, 0.6053866147994995), ('queries’,
0.5886513590812683), ('natural’, 0.5693424940109253), ('operators’,
0.5228461027145386), (‘update’, 0.5184661746025085), (*analytic’,
0.5158869028091431),

51/78

Visualization using t-SNE
» min_count =1

» note 'mapreduce’ and 'scalable’ (and 'workload’) are close. 'join’ and
'joins’ are close.
22
"ap'ed&ealable
20 @orkload
'ep '\eets
@nalvtic fiows

18 A ducing

‘veragmg gatic
L6 .pgem.ene;::or

O B s Lt
[&) @erizontal
141 il
ek e .nerators
i
ﬁwmw _
12 stogram @ mming
red
eries preSSIOnS @orer @<emple
P ol
10 A @ rroimate e
8 .

52/78

Visualization using t-SNE

Introduced by van der Maaten and Hinton in 2008.
https://lvdmaaten.github.io/tsne/

» t-Distributed Stochastic Neighbor Embedding (t-SNE)

» Dimensionality reduction

» Particularly well suited for the visualization of high-dimensional datasets.
» Scalability is a problem

» A good tutorial: https://distill.pub/2016/misread-tsne/

53/78

https://lvdmaaten.github.io/tsne/
https://distill.pub/2016/misread-tsne/

Starter code for t-SNE

import numpy as np
from sklearn.manifold import TSNE

voc= list (model.wv.vocab)
words=model. most_similar('query’, topn=50);
j=voc.index('query")

tmodel = TSNE(n_components=2)
np.set_printoptions(suppress=True)
V2=tmodel. fit_transform (X)
pyplot.scatter(V2[j,0],V2[j,1])
pyplot.annotate('query ', xy=(V2[j, 0], V2[j, 1]), fontsize=10)
for i, word in enumerate(words):
j=voc.index(word[0])
pyplot.scatter(V2[j,0],V2[j,1])
pyplot.annotate(word[0], xy=(V2[j, 0], V2[j, 1]), fontsize=5)
pyplot.savefig('../538_2017/fig/w2v_sigmodl.eps', format='eps', dpi=300)
pyplot.show()

54/78

Parameters: perplexity

» The perplexity is related to the number of nearest neighbors that is used in
other manifold learning algorithms.

» Larger datasets usually require a larger perplexity.
» Normally between 5 and 50.
» The perplexity should be smaller than the number of points

LY v .

.l_-*..;’. . l. ry

el : g

. 4 ¢ A

i -
“w
-
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

From https://distill.pub/2016/misread-tsne/

55/78

https://distill.pub/2016/misread-tsne/

Cluster size/ Distance between nodes

» Expands dense clusters and contracts sparse ones

» Adapts 'distance’ to regional density variation

' R ®
-
- '}_"
" -
* ; *
~ ¢
. .
M £
-
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

56/78

Distance between clusters

» Distance between clusters increases with perplexity

- N sﬁ N
, S, W
5 I v st N
: &%
4 o
L L
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

B

Perplexity: 100
Step: 5,000

57/78

Parameters of TSNE

v

learning_rate : float, optional (default: 200.0)
Usually in the range [10.0, 1000.0].

If the learning rate is too high, the data may look like a ‘ball’ with any
point approximately equidistant from its nearest neighbours.

If the learning rate is too low, most points may look compressed in a dense
cloud with few outliers.

If the cost function gets stuck in a bad local minimum, increasing the
learning rate may help.

58/78

DBLP data

5M papers.

Jianguos—MBP:data jianguolu$ wc dblp_title.txt
5459997 38065969 288463929 dblp_title.txt

words S|m||ar to 'query':

[("queries’, 0. 8232043385505676) ("queries.’, 0.738012433052063),
('xquery’, 0.6668544411659241), ('join’', 0.6446130275726318),
('queries: ', 0.62788987159729), ('sparql’, 0.6264554858207703),
('xpath’, 0.61639404296875), ('top—k', 0.6126927137374878),
('joins', 0.6064221858978271), ('question’, 0.6060419678688049)]

2017—11—-05 16:10:03,033 : INFO : min_count=20 retains 50427 unique words
(5% of original 941273, drops 890846)
2017—11—05 16:10:03,033 : INFO : min_count=20 leaves 36199226 word corpus
(95% of original 38066117, drops 1866891)
2017—11—05 16:10:03,143 : INFO : deleting the raw counts dictionary of 941273 items
2017—11—05 16:10:03,194 : INFO : sample=0.001 downsamples 23 most—common words
2017—11—05 16:10:03,194 : INFO : downsampling leaves estimated 27252367 word corpus
(75.3% of prior 36199226)
2017—11—05 16:10:03,194 : INFO : estimated required memory for 50427 words and
100 dimensions: 65555100 bytes
2017—11—05 16:10:03,360 : INFO : resetting layer weights
2017—11—05 16:10:03,908 : INFO : training model with 3 workers on 50427
vocabulary and 100 features, using sg=0 hs=0 sample=0.001 negative=5 window=5

50/78

Most similar words for 'testing’

words similar to 'testing':
[("tests', 0.7413559556007385), ('test’', 0.7291274070739746)

"verification', 0.6510030031204224), ('checking’', 0.5999650359153748),

(
('debugging’, 0.5819920301437378), ('atpg', 0.5567741394042969),
('verifying ', 0.5524342060089111), ('validation', 0.5462774038314819),
('bist’, 0.5320253673553467), ('certification', 0.5001979470252991)]

ATPG:

» Acronym for Automatic Test Pattern Generation.

> An electronic design automation method/technology used to find an input

(or test) sequence.

60/78

Most similar words to 'testing’
» trained using CBOW. Min-count=20

34 @ssting
‘\aintenance

‘ep\oyment @rar

€98 pment
@aanosis @nvlation @estabiliiet

‘Strumentallon

@it

14 @agnostics
@ebug @7°

safety fj"s{lﬁﬁﬁ{'!ster

0 - (ertification ‘gﬁ? ers

(@ompaction

(@onitoring
structuring icing
rioritization ‘
@ @bfuscation

(@ebugging

(@easurement

—1 A (@enchmarking (@sfactoring

lidating

wecker

@roving
2 ingating
-2

. rifying
assessnfent lidation

@hecking

valuation

34 @hsis

‘veckers @

T T T
- - 1 n 1 -

T
-

61/78

Most similar words to 'testing’

trained using SG. Min-count=>5. Analogy is not as good as CBOW.

factoring
o @
‘ade.]zz‘wmit

@hrormance

@nisec ncolic
.{,Wwp\aceablhw .‘:tm‘ &
’rchestr ftebox (V' @ssertion
) Jackbox
1- o O gy OO gy
o duarization @eanraom . Ztion checkers
@@hfuscations
‘i\onwﬁngo‘stuverer ggs @ @ tes
isof
[@fsm
" sl i o bugging
@BsPect ‘eccg;i\aﬂg @cerang .te bug
0- s an nstam IS @ tation
ca Hi25IReh
L4 7 merp the nhtion @&sh
i
i ity
vm
rRctor ® sPst - goracles @sters
r@stin
-11 nvoca @> .cats.oeclallzers. @it h
Sgenes mulatio @B
glnpolnt @ Ors.ﬂycmony @:lenium
[o

@dar! .uterplanwebuS micropipelines
oo
o

b

!:ar‘ﬁ‘e"‘ﬁés
t
tns\ iveness %st" ‘ecompl’eSSOTS
T

SBiro
stabmty
halRYbe

-1 N

1

62/78

Most similar words to 'queries’
» Same as before. Top 200 most similar words
> Note the close pairs (query, queries), (join, joins), (database, databases)
» there are clusters of research areas, e.g., (rdf, sparql, xpath, xml,

semistructured)
@O sisneing
21 "ipFEt words
@ bion jeclickthrough ‘gw[‘ (geyword
9985t'°"umdocn%yaphras.ng @swers
igititext mi"g
i eebase
1 ‘ut aindh ‘mcegnet ‘kh@ry
N @einitional rewritings
rbose)
qclarke & [& ’ @ncRine
Itext
oS . knowledgebges ."de’s@ﬁ:ﬂ é’raqu.% e
Fame ueryin
rbalizing ..pe raph @-erving féry)
O n 'J,gd;s ‘emam factoriss h ,ucw,
gex cspatont tmapped to i?‘f €58 aterialization
@& @ @3%our @S g
artint ca
.\ult\gam.n .sml.| " [4 &a?hbaassees @'
o sl ms:.m‘s ,wﬁi‘s
usan w | . .quuerles
-1 W . ; o -
‘nn.: ematron ycube s
i fi t
L gl “S"“a e .‘“'eganf.,o.ns
@chemas@e @
name o m ‘uom @odb
w og @uestin@F20on! I
&rpt 63/78
-7 4 ARkt amuterioin @aqaiiadfs

Perplexity changes from 1 to 200. Initialized with PCA.

@mery

@

.?lm(luven

.m

64 /78

Generate animation

» Generate animated gif

P Latex can also generate animated pdf

» Use animation to show the impact of hyper parameters in t-SNE,
word2vec, doc2vec, node2vec

P epochs, learning rate, min-count, subsampling,

\usepackage{animate}

\animategraphics[autoplay, loop, width=4.5in]{12}{w2v_dblp_sg}{1}{49}

65/78

For 10,000 ICSE paper titles

>>> model = gensim.models.Word2Vec(sentencelist, sg=1, min_count=2, iter=5)
>>> print str(model. most_similar('testing'))

[("real—time’, 0.9850457310676575),

"specification’, 0.9829429388046265),

"integration', 0.9796831607818604),

"verification’, 0.9785716533660889), ('driven’, 0.9782571792602539),
"methodology ', 0.9776937961578369), ('uml’, 0.9774887561798096),
"supporting ', 0.9769802093505859), ('building’, 0.9768860936164856),
"object—oriented ', 0.976362943649292)]

A~~~ A~~~

More iterations:

print str(model. most_similar('testing’))
[("regression’, 0.4438987374305725),
("whitebox ', 0.41747477650642395),
('test’, 0.4116712212562561),

('c/ct+', 0.404751181602478),
("model—based ", 0.4015043377876282),
("understand’, 0.40125858783721924),
("prioritization’, 0.3982316851615906),
('

('
(

mutation’, 0.39046815037727356),
verification', 0.38797491788864136),
'feedback—directed ', 0.37813204526901245)]

66/78

Run in parallel

model = Word2Vec(sentences, workers=4)

The workers parameter has only effect if you have Cython installed.

67/78

Summary of Parameters of Word2Vec

VVVVVYVYVVVYVYY

size=100,
alpha=0.025,
min_alpha=0.0001,
window=D5,
min_count=5,
max_vocab_size=None,
sample=0.001,
seed=1,

iter=>,

workers=3,

sg=0,

negative=5,

68/78

Parameters-negative sampling

In Negative sampling, the objective function is:

K
log (Vi Vi) + > Buopy(w) [l0g o(—Vuw, - Vi,)] (7)
k=1
» negative=b5 means that k=5 in the above equation.
> P,(w) is a parameter.
» Simple case: P,(w) is the unigram distribution U(w)

> Better to raise to the 3/4rd power (i.e., U(w)**

69/78

Softmax vs. Negative Sampling

-
Jsoftmax = Z Z lOg P(Wt+j | Wf)

=1 —c<j<c,j#0
exp(Vu, - Vi,

P |) = g e)

EFl exp(Vuw, - ij)

K

log o(Vw, - Vu,) + Z B po(w) [108 0(—Vug - Vi,)]
k=1

(10)

70/78

Why epoch is normally above 57

It is related with window size.

. | government | debt [problems | turning | into [banking | crises | as [has [happened

71/78

Memory

» word2vec model parameters are stored as matrices (NumPy arrays).

» Each array is #vocabulary (controlled by mincount parameter) times #size
(size parameter) of floats (single precision aka 4 bytes).

10° words x 2 x 100 dimensions x 4 x 3 ~ 229MB (11)

Each word need two vectors.

72/78

Save the model for later use

P large corpus may take long time to train a model.

> dblp_title.txt takes minutes on Macbook Pro.

> MAS titles take a few hours on a big server.

» Time depends on hyper-parameters, e.g., epochs, min-count, learning rate,
subsampling etc.

P better train once

P also good for others to replicate your experiment

model.save (' /tmp/mymodel ")
new_model = gensim.models.Word2Vec. load (' /tmp/mymodel ")

73/78

Test on other data sources (e.g.NLTK)

>>> from gensim.models import Word2Vec

>>> from nltk.corpus import brown, movie_reviews, treebank
>>> b = Word2Vec(brown.sents ())

>>> mr = Word2Vec(movie_reviews.sents())

>>> t = Word2Vec(treebank.sents())

>>> b.most_similar('money’', topn=5)
[('pay’', 0.6832243204116821), ('ready’, 0.6152011156082153), ('try', 0.584539294

>>> model.wv.doesnt_match (['testing’', 'verification’, ’'software’, 'windsor’, ’en

"windsor’

74/78

Evaluation using standard test sets

model . accuracy (' /tmp/questlonsfwords txt ")

2014—02—01 22:14:28,387 : INFO : family: 88.9% (304/342)

2014—02—01 22:29:24,006 : INFO : graml—adjective—to—adverb: 32.4% (263/812)
2014—02—01 22:36:26,528 : INFO : gram2—opposite: 50.3% (191/380)
2014—02—01 23:00:52,406 : INFO : gram3—comparative: 91.7% (1222/1332)
2014—02—01 23:13:48,243 : INFO : gram4—superlative: 87.9% (617/702)
2014—02—01 23:29:52,268 : INFO : gramb5—present—participle: 79.4% (691/870)
2014—02—01 23:57:04,965 : INFO : gram7—past—tense: 67.1% (995/1482)
2014—02—02 00:15:18,525 : INFO : gram8—plural: 89.6% (889/992)

2014—02—02 00:28:18,140 : INFO : gram9—plural—verbs: 68.7% (482/702)
2014—02—02 00:28:18,140 : INFO : total: 74.3% (5654/7614)

75/78

References |

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research,
3(Feb):1137-1155, 2003.

David M Blei, Andrew Y Ng, and Michael | Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual
information, and lexicography. Computational linguistics, 16(1):22-29, 1990.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In SIGKDD, pages 855-864. ACM, 2016.

Soumyajit Ganguly and Vikram Pudi. Paper2vec: Combining graph and text
information for scientific paper representation. 2017.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems, pages
2177-2185, 2014.

Quoc V Le and Tomas Mikolov. Distributed representations of sentences and
documents. In ICML, volume 14, pages 1188-1196, 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

76/ 78

References 1l

Tomas Mikolov, llya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In NIPS, pages 3111-3119, 2013.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In SIGKDD, pages 701-710. ACM, 2014.

Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In SIGKDD, pages
1165-1174. ACM, 2015.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
Line: Large-scale information network embedding. In WWW, pages
1067-1077. ACM, 2015.

Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. Linked document
embedding for classification. In CIKM, pages 115-124. ACM, 2016.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang.
Network representation learning with rich text information. In /JCAI, pages
2111-2117, 2015.

77/78

Temporary page!

IATEX was unable to guess the total number of pages correctly. As there wa
some unprocessed data that should have been added to the final page this

extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will go aw
because IATEX now knows how many pages to expect for this document.

	anm0:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

