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Overview

@ Dictionaries
© Wildcard queries
© Edit distance

0 Spelling correction

© Soundex
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Take-away

@ Tolerant retrieval: What to do if there is no exact match
between query term and document term

@ Wildcard queries

@ Spelling correction
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@ Dictionaries
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Dictionaries

Inverted index

For each term t, we store a list of all documents that contain t.

| Brutus | — [1] 2] 4] 11[31[45][173[174]
| Camsar | — [1] 2] 4] 5] 6[16] 57[132] .|
[CapoRNiA | —» [2] 31 ] 54 101 |

——
dictionary postings
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Dictionaries

Dictionaries

@ The dictionary is the data structure for storing the term
vocabulary.

@ Term vocabulary: the data

@ Dictionary: the data structure for storing the term vocabulary
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Dictionaries

Dictionary as array of fixed-width entries

@ For each term, we need to store a couple of items:
e document frequency
e pointer to postings list
o ..
@ Assume for the time being that we can store this information
in a fixed-length entry.

@ Assume that we store these entries in an array.
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Dictionaries Wildcard queries Edit distance Spelling correction Soundex

Dictionary as array of fixed-width entries

term document pointer  to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
space needed: 20 bytes 4 bytes 4 bytes

How do we look up a query term g; in this array at query time?
That is: which data structure do we use to locate the entry (row)
in the array where g; is stored?
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Dictionaries

Data structures for looking up term

@ Two main classes of data structures: hashes and trees

@ Some IR systems use hashes, some use trees.
@ Criteria for when to use hashes vs. trees:

o Is there a fixed number of terms or will it keep growing?

o What are the relative frequencies with which various keys will
be accessed?

e How many terms are we likely to have?
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Hashing

hash
keys function hashes

[#]]

[VE]

V]

15
fig from wikipedia
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Dictionaries

Hashes

@ Each vocabulary term is hashed into an integer, its row
number in the array

At query time: hash query term, locate entry in fixed-width
array
Pros: Lookup in a hash is faster than lookup in a tree.

o Lookup time is constant.
e Cons
e no way to find minor variants (resume vs. résumé)
e no prefix search (all terms starting with automat)
e need to rehash everything periodically if vocabulary keeps
growing
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Dictionaries

Trees

Trees solve the prefix problem (find all terms starting with
automat).

Simplest tree: binary tree

Search is slightly slower than in hashes: O(log M), where M is
the size of the vocabulary.

O(log M) only holds for balanced trees.
Rebalancing binary trees is expensive.
B-trees mitigate the rebalancing problem.

B-tree definition: every internal node has a number of
children in the interval [a, b] where a, b are appropriate
positive integers, e.g., [2,4].
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Dictionaries

Binary tree
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B-tree

@ a generalization of binary search tree

@ allow nodes to have more than 2 children
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© Wildcard queries
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Wildcard queries

Wildcard queries

e mon*: find all docs containing any term beginning with mon

@ Easy with B-tree dictionary: retrieve all terms t in the range:
mon < t < moo
@ *mon: find all docs containing any term ending with mon

e Maintain an additional tree for terms backwards
o Then retrieve all terms t in the range: nom < t < non

@ Result: A set of terms that are matches for wildcard query

@ Then retrieve documents that contain any of these terms
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Wildcard queries

How to handle * in the middle of a term

*

Example: m*n

We could look up m* and *n in the B-tree and intersect the
two term sets.

Expensive

Alternative: permuterm index

@ Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

@ Store each of these rotations in the dictionary, say, in a B-tree

17 / 108



Wildcard queries

Permuterm index

@ For term HELLO: add the
following to the B-tree
where $ is a special symbol

hello$,
ello$h,
llo$he,
lo$hel,
o$hell,
$hello

hello$

hello

lloShe

loShel
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Wildcard queries

Permuterm index

e For HELLO, we've stored: hello$, ello$h, llo$he, lo$hel, o$hell,
$hello

@ Queries

For X, look up X$

For X*, look up $X*

For *X, look up X$*

For *X*, look up X*

For X*Y, look up Y$X*

Example: For hel*o, look up o$hel*

@ Permuterm index would better be called a permuterm tree.

@ But permuterm index is the more common name.
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Wildcard queries

Processing a lookup in the permuterm index

@ Rotate query wildcard to the right
@ Use B-tree lookup as before

@ Problem: Permuterm more than quadruples the size of the
dictionary compared to a regular B-tree. (empirical number)
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Wildcard queries

k-gram indexes

More space-efficient than permuterm index

Enumerate all character k-grams (sequence of k characters)
occurring in a term

2-grams are called bigrams.
e april — ap pr ri il 1%
o April is the cruelest month
o — $a ap pr ri il 1$ $i is s$ $t th he e$ $c cr
ru ue el le es st t$ $m mo on nt h$

$ is a special word boundary symbol.

Maintain an inverted index from bigrams to the terms that
contain the bigram

21 /108



Wildcard queries

why k-gram is more space efficient

@ permuterm of hello

e — hello$, ello$h, 1lo$he, lo$hel, o$hell
@ 2-grams of hello

e — he, el, 11, lo, o$
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Wildcard queries

Postings list in a 3-gram inverted index

etr —J

BEETROOT

METRIC

PETRIFY

RETRIEVAL
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Wildcard queries

k-gram (bigram, trigram, ..) indexes

@ Two different types of inverted indexes:
e Term-document inverted index: for finding documents based
on a query consisting of terms
o k-gram index: for finding terms based on a query consisting of
k-grams
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Wildcard queries

Processing wildcarded terms in a bigram index

@ Query mon* can now be run as:
$m AND mo AND on

Gets us all terms with the prefix mon ..
..but also many “false positives” like MOON.

We must post-filter these terms against query.

Surviving terms are then looked up in the term-document
inverted index.

k-gram index vs. permuterm index

e k-gram index is more space efficient.
e Permuterm index doesn't require post-filtering.
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© Edit distance
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Edit distance

Edit distance

@ The edit distance between string s; and string s is the
minimum number of basic operations that convert s; to ss.
@ Levenshtein distance: The admissible basic operations are

e insert, cost =1

o delete, cost =1

e replace, cost=1

e copy, cost=0

sl s2 operation cost
dog do delete 1
@ Levenshtein distance cat cart insert 1
cat cut replace 1
cat act delete, insert 2
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Edit distance

there are other distance definitions

@ Damerau-Levenshtein distance cat-act: 1

@ includes transposition operation.
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Edit distance

problem definition

@ For two strings

o X of length n

e Y of length m
o D(ij)
the edit distance between X[1..i] and Y[1..j]
score of the best alignment from X][1..i] to Y[L..j]
i.e., the first i characters of X and the first j characters of Y
The edit distance between X and Y is thus D(n,m)
e Properties for D(i,j)

o D(i,0)=i; delete i letters

e D(0,j)=j; insert j letters
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Edit distance

recurrence relation

D(i—1,j—1) 4 d(Xi, Yj); replace or copy
D(i,j) = { D(i—1,j) + 1; insert (1)
D(i,j— 1) + 1; delete

d(x,y) = {0; T x=y )

1; otherwise
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Edit distance

Edit distance using dynamic programming

@ Dynamic programming: A tabular computation of D(n,m)
@ Solving problems by combining solutions to subproblems.

@ Bottom-up

o We compute D(i,j) for small i,

o And compute larger D(i,j) based on previously computed
smaller values

e i.e., compute D(i,j) forall i (0 <i < n)andj(0<j<m)
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Levenshtein distance: Computation




Edit distance

Levenshtein distance: Algorithm

LEVENSHTEINDISTANCE(s], S2)

1

O O oo ~NOOL P~ WwWwDN

—_

for i< 0 to |si|

do m[i,0] =/

for j < 0 to |

do m[oaj] =J

for i< 1 to |si]

do for j < 1 to |

do if 51[1'] = 52[_]]

then mli,j] = min{m[i-1, j]+1, m[i,j-1]+1, m[i-1, j-1]}
else mli,j| = min{m[i1, j+1, m[i, j-1]+1, m[i-1, j-1]4+1}

return m||s{|,|sz|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Edit distance

Levenshtein distance: Algorithm

LEVENSHTEINDISTANCE(s], S2)
1 for i« 0 to |s]
do m[i,0] =/
for j < 0 to |sy|
do m[oaj] =J
for i+ 1 to |s1]
do for j < 1 to |
do if 51[1'] = 52[_]]
then mli,j| = min{mli-1,/]+1, m[i. j- 1]+1 m[i-1,j-1]}
else mli,j| = min{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]4+1}
return m||s{|,|sz|]

SO OV oo ~NOOOL P~ WwN

—_

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Edit distance

Levenshtein distance: Algorithm

LEVENSHTEINDISTANCE(s], S2)

1

SO OV oo ~NOOOL P~ WwN

—_

for i< 0 to |si]|

do m[i,0] =/

for j < 0 to |sy|

do m[oaj] =J

for i+ 1 to |s1]

do for j < 1 to |

do if 51[1'] = 52[_]]

then mii,j] = min{m[i-1, ]+1, m[i,j-1]+1, m[i-1, 1]}
else mli,j| = min{m(i-1, j+1, m[i, jf1]+1, m[i-1, j-1]4+1}

return m||s{|,|sz|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Edit distance

Levenshtein distance: Algorithm

LEVENSHTEINDISTANCE(s], S2)

1

O O oo ~NOOL P~ WwWwDN

—_

for i< 0 to |si|

do m[i,0] =/

for j < 0 to |sy|

do m[oaj] =J

for i+ 1 to |s1]

do for j < 1 to |

do if 51[1'] = 52[_]]

then mli,j] = min{m[i-1, j]+1, m[i,j-1]+1, m[i-1, j-1]}
else m[i,j] = min{m[i-1, 41, m[i, j1]4+1, m[i-1, j-1]+1}

return m||s{|,|sz|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Edit distance

Levenshtein distance: Algorithm

LEVENSHTEINDISTANCE(s], S2)

1

O O oo ~NOO P~ WwN

—_

for i< 0 to |si|

do m[i,0] =/

for j < 0 to |sy|

do m[oaj] =J

for i+ 1 to |s1]

do for j < 1 to |

do if 51[1'] = 52[_]]

then mii,j] = min{m[i-1, j]+1, m[i,j-1]+1, m[i-1, j-1]}
else mli,j| = min{m[i1, j+1, m[i, j-1]+1, m[i-1, j-1]4+1}

return m||s{|,|sz|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy
(cost 0)
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Edit distance

Levenshtein distance: Example
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Edit distance

Each cell of Levenshtein matrix

cost of getting here from
my upper left neighbor
(copy or replace)

cost of getting here
from my upper neighbor
(delete)

cost of getting here from
my left neighbor (insert)

the minimum of the
three possible “move-
ments”; the cheapest
way of getting here
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Edit distance

Levenshtein distance: Example
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Edit distance

Dynamic programming (Cormen et al.)

@ Optimal substructure: The optimal solution to the problem
contains within it subsolutions, i.e., optimal solutions to
subproblems.

@ Overlapping subsolutions: The subsolutions overlap. These
subsolutions are computed over and over again when
computing the global optimal solution in a brute-force
algorithm.

@ Subproblem in the case of edit distance: what is the edit
distance of two prefixes

@ Overlapping subsolutions: We need most distances of prefixes
3 times — this corresponds to moving right, diagonally, down.
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Edit distance

Weighted edit distance

Weight of an operation depends on the characters involved.

Meant to capture keyboard errors, e.g., m more likely to be
mistyped as n than as g.

Therefore, replacing m by n is a smaller edit distance than by
qg.
We now require a weight matrix as input.

Modify dynamic programming to handle weights
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Edit distance Spelling correction Soundex

Wildcard queries

Dictionaries

f X (incorrect) for Y (correct)

Y (correct)
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Edit distance

Using edit distance for spelling correction

o Given query, first enumerate all character sequences within a
preset (possibly weighted) edit distance

@ Intersect this set with our list of “correct” words

@ Then suggest terms in the intersection to the user.
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Edit distance

Exercise

@ Compute Levenshtein distance matrix for OSLO — SNOW

@ What are the Levenshtein editing operations that transform
cat into catcat?
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Edit distance
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Edit distance

N
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Edit distance

1 2 3
2 2
1 2 3
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Edit distance
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Edit distance

415
3

4

4

79 / 108



Edit distance

How do | read out the editing operations that transform OSLO into SNOW?
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Edit distance

cost operation H input ‘ output

insert
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Edit distance

cost operation H input ‘ output

o

(copy)
insert

0
1
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Edit distance

cost operation H input ‘ output

1
0
1

o
*

replace
(copy)
insert
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Edit distance

o
*

cost operation H input ‘ output

(copy)
replace
(copy)
insert

0
1
0
1
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Edit distance
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Edit distance

(8]

-

(o]

cost operation H input ‘ output

*

*

*

[¢
a
t

insert
insert
insert
(copy)
(copy)
(copy)

1
1
0
0
0

87 / 108



Edit distance

(8]

-

(o]

cost operation H input ‘ output

C

*

*

*

a
t

(copy)
insert
insert
insert

0
1
1
1
0
0

(copy)
(copy)
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Edit distance

(8]

-

(o]

cost operation H input ‘ output

C

*

*

*
t

(copy)
(copy)
insert
insert
insert
(copy)

0
0
1
1
1
0
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Edit distance

(8]

-

(o]

cost operation H input ‘ output

C

*

*

(copy)
(copy)
(copy)
insert
insert

0
0
0
1
1
1

insert

90 / 108



Dictionaries Wildcard queries Edit distance Spelling correction Soundex

e Spelling correction
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Spelling correction

Spelling correction

@ Two principal uses
o Correcting documents being indexed
o Correcting user queries

@ Two different methods for spelling correction
o Isolated word spelling correction

@ Check each word on its own for misspelling
e Will not catch typos resulting in correctly spelled words, e.g.,
an asteroid that fell form the sky

o Context-sensitive spelling correction

o Look at surrounding words
@ Can correct form/from error above
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Spelling correction

Correcting documents

@ We're not interested in interactive spelling correction of
documents (e.g., MS Word) in this class.

@ In IR, we use document correction primarily for OCR'ed
documents. (OCR = optical character recognition)

@ The general philosophy in IR is: don't change the documents.
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Spelling correction

Correcting queries

o First: isolated word spelling correction
@ Based on two assumptions:
o Premise 1: There is a list of “correct words” from which the
correct spellings come.
o Premise 2: We have a way of computing the distance between
a misspelled word and a correct word.

@ Simple spelling correction algorithm: return the “correct”
word that has the smallest distance to the misspelled word.

@ Example: informaton — information

@ For the list of correct words, we can use the vocabulary of all
words that occur in our collection.

@ Why is this problematic?
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Spelling correction

Alternatives to using the term vocabulary

@ A standard dictionary (Webster's, OED etc.)
@ An industry-specific dictionary (for specialized IR systems)

@ The term vocabulary of the collection, appropriately weighted
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Spelling correction

Distance between misspelled word and “correct” word

There are several alternatives:
o Edit distance and Levenshtein distance
@ Weighted edit distance

@ k-gram overlap
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Spelling correction

k-gram indexes for spelling correction

o Enumerate all k-grams in the query term
o Example: bigram index, misspelled word bordroom
e Bigrams: bo, or, rd, dr, ro, oo, om
@ Use the k-gram index to retrieve “correct” words that match
query term k-grams
@ Threshold by number of matching k-grams
e E.g., only vocabulary terms that differ by at most 3 k-grams

97 / 108



Spelling correction

k-gram indexes for spelling correction: bord

BO aboard about boardroom border
OR border lord morbid sordid
RD aboard ardent boardroom border

BON ORN RD = {border}

terms matched twice: aboard, boardroom
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Spelling correction

Context-sensitive spelling correction

@ Our example was: an asteroid that fell form the sky

@ How can we correct form here?
@ One idea: hit-based spelling correction

Retrieve “correct” terms close to each query term

for flew form munich: flea for flew, from for form, munch for
munich

Now try all possible resulting phrases as queries with one word
“fixed” at a time

Try query “flea form munich”

Try query “flew from munich”

Try query “flew form munch”

The correct query “flew from munich"” has the most hits.

@ Suppose we have 7 alternatives for flew, 20 for form and 3 for
munich, how many “corrected” phrases will we enumerate?
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Spelling correction

Context-sensitive spelling correction

@ The “hit-based” algorithm we just outlined is not very
efficient.

@ More efficient alternative: look at “collection” of queries, not
documents
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Spelling correction

General issues in spelling correction

@ User interface

e automatic vs. suggested correction

e Did you mean only works for one suggestion.
o What about multiple possible corrections?

e Tradeoff: simple vs. powerful Ul

o Spelling correction is potentially expensive.

e Avoid running on every query?

e Maybe just on queries that match few documents.

e Guess: Spelling correction of major search engines is efficient
enough to be run on every query.
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Spelling correction

Exercise: Understand Peter Norvig's spelling corrector

[colab] link

import re, collections
def words(text): return re.findall('[a-z]+', text.lower())
def train(features):

model = collections.defaultdict(lambda: 1)

for f in features:

model[f] += 1

return model
NWORDS = train(words(file('big.txt').read()))
alphabet = 'abcdefghijklmnopqrstuvwxyz'
def editsi(word):

splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [a + b[1:] for a, b in splits if b]

transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b) gt 1]
replaces = [a + ¢ + b[1:] for a, b in splits for c in alphabet if b]
inserts =[a+c+hb for a, b in splits for c in alphabet]

return set(deletes + transposes + replaces + inserts)
def known_edits2(word) :
return set(e2 for el in editsi(word) for e2 in editsi(el) if e2 in NWORDS)
def known(words): return set(w for w in words if w in NWORDS)
def correct(word):
candidates = known([word]) or known(editsl(word)) or known_edits2(word) or [word]
return max(candidates, key=NWORDS.get)

http://norvig.com/spell-correct.html
Run in colab
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Soundex

Soundex

@ Soundex is the basis for finding phonetic (as opposed to
orthographic) alternatives.

e Example: chebyshev / tchebyscheff

@ Algorithm:

e Turn every token to be indexed into a 4-character reduced form
e Do the same with query terms
e Build and search an index on the reduced forms
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Soundex

Soundex algorithm

© Retain the first letter of the term.

@ Change all occurrences of the following letters to '0" (zero): A, E, |,
O, U H WY

© Change letters to digits as follows:

B,F,P,Vtol

C G JLK QS X, Zto2

D, Tto3

Lto4

M, N to 5

Rto 6

Repeatedly remove one out of each pair of consecutive identical digits

Remove all zeros from the resulting string; pad the resulting string

with trailing zeros and return the first four positions, which will

consist of a letter followed by three digits

© 0

105 / 108



Example: Soundex of HERMAN

®© 6 6 6 6 o o

Retain H

ERMAN — ORMON
ORMON — 06505
06505 — 06505
06505 — 655
Return H655

Note: HERMANN will
generate the same code

065055 — 06505 — 655

Soundex

@ Retain the first letter of the
term.

e AVEILO U H WY =0

@ Change letters to digits as
follows:

© © 0 ©
—
- -
(@)
N

@ reduce consecutive identical
digits
@ remove zeros
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Soundex

How useful is Soundex?

@ Not very — for information retrieval
@ Ok for “high recall” tasks in other applications (e.g., Interpol)

@ Zobel and Dart (1996) suggest better alternatives for phonetic
matching in IR.
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Soundex

Recap

o fast access to the terms: hashing, B-tree

@ Tolerant retrieval: What to do if there is no exact match
between query term and document term
o Wildcard queries.
e Spelling correction. edit distance. dynamic programming
algorithm.
o k-gram index
e soundex
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