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Documents

Last lecture: Simple Boolean retrieval system
Our assumptions were:

We know what a document is.
We can “machine-read” each document.

This can be complex in reality.
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Document format

What format is it in?
pdf/word/excel/html?

What language is it in?
What character set is in use?

(CP1252, UTF-8, …)
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what is a document

We return from our query “documents”. but there are often
interesting questions of grain size:

What is a unit document?
A file?
a chapter of a book? a section? a page?
An email? (Perhaps one of many in a single mbox file)
What about an email with 5 attachments?
A group of files (e.g., PPT or LaTeX split over HTML pages)
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Format/Language: Complications

A single index usually contains terms of several languages.
Sometimes a document or its components contain multiple
languages/formats.

French email with Spanish pdf attachment
Also: XML
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what is a term?

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 …

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

but what is a term?
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Definitions of token, type and term

Token – An instance of a word or term occurring in a
document.
Type – The same as a term in most cases: an equivalence
class of tokens.
Term – A “normalized” word (case, morphology, spelling etc);
an equivalence class of words.
How many tokens? How many types?

In June, the dog likes to chase the cat in the barn.
Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.
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Examples for tokenization

Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.
O’Neill

→ neill?
→oneill?
→o’neill?
→ o AND neill ?
→ o’ AND neill?

aren’t
→ aren’t
→ arent
→ are n’t
→ are AND not
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Approaches to dealing with token variants

The problem: how to match U.S.A. with USA, or Today with
today?
Solution 1: “normalize” words in indexed text as well as query
terms into the same form.

U.S.A. → USA
implicitly define equivalence classes of terms (i.e, U.S.A and
USA).

Solution 2: do expansion. e.g., U.S.A → U.S.A. USA.
Query expansion: query U.S.A → U.S.A OR USA
Index expansion: both U.S.A and USA are indexed terms
More powerful, but less efficient.
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Why expansion approach can be more powerful

Asymmetric expansion
window → window, windows
windows → Windows, windows
Windows (no expansion)

better than putting window, Window, windows, and Windows
in the same equivalence class
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Tokenization: Recall construction of inverted index

Input:
Friends, Romans, countrymen. So let it be with Caesar …

Output:
friend roman countryman so …

Each token is a candidate for a postings entry.
What are valid tokens to emit?
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Tokenization problems: One word or two? (or several)

Hewlett-Packard
State-of-the-art
co-education
the hold-him-back-and-drag-him-away maneuver
data base
San Francisco
Los Angeles-based company
cheap San Francisco-Los Angeles fares
York University vs. New York University
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Numbers

3/20/91
20/3/91
Mar 20, 1991
B-52
100.2.86.144
(800) 234-2333
800.234.2333
Older IR systems may not index numbers …
…but generally it’s a useful feature.
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Ambiguous segmentation in Chinese

no spaces between words
莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。 

ambiguous segmentation

和尚The two characters can be treated as one word
meaning ‘monk’ or as a sequence of two words meaning ‘and’ and
‘still’.
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Chinese and japanese

Chinese and Japanese have no spaces between words:
结婚的和尚未结婚的
结婚 (married) 的和 (and) 尚未 (not yet) 结婚 (married) 的
结婚 (married) 的和尚 (monk) 未 (not) 结婚 (married) 的
Not always guaranteed a unique tokenization

Further complicated in Japanese, with multiple alphabets
intermingled
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Other cases of “no whitespace”

Compounds in Dutch, German, Swedish
Computerlinguistik → Computer + Linguistik
Lebensversicherungsgesellschaftsangestellter
→ leben + versicherung + gesellschaft + angestellter
Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)
Many other languages with segmentation difficulties: Finnish,
Urdu, …
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Japanese

ノーベル平和賞を受賞したワンガリ・マータイさんが名誉会長を務め

るＭＯＴＴＡＩＮＡＩキャンペーンの一環として、毎日新聞社とマガ

ジンハウスは「私 の、もったいない」を募集します。皆様が日ごろ

「もったいない」と感じて実践していることや、それにまつわるエピ

ソードを８００字以内の文章にまとめ、簡 単な写真、イラスト、図

などを添えて１０月２０日までにお送りください。大賞受賞者には、

５０万円相当の旅行券とエコ製品２点の副賞が贈られます。 

4 different “alphabets”: Chinese characters, hiragana syllabary for
inflectional endings and function words, katakana syllabary for
transcription of foreign words and other uses, and latin. No spaces
(as in Chinese).
End user can express query entirely in hiragana!
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Arabic script: Bidirectionality

�ل ا������132 ��� 1962ا����
 ا��
ا�� �� ��� ��  . #"!" !  ا�

                               ← →   ← →                   ← START 

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

Bidirectionality is not a problem if text is coded in Unicode.
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Accents and diacritics

Accents: résumé vs. resume (simple omission of accent)
Umlauts: Universität vs. Universitaet (substitution with
special letter sequence “ae”)
Most important criterion: How are users likely to write their
queries for these words?
Even in languages that standardly have accents, users often
do not type them.
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Case folding

Reduce all letters to lower case
Even though case can be semantically meaningful

capitalized words in mid-sentence
MIT vs. mit
Fed vs. fed
…

It’s often best to lowercase everything since users will use
lowercase regardless of correct capitalization.
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Stop words

stop words = extremely common words which would appear
to be of little value in helping select documents matching a
user need
There are a lot of them: 30 % of postings for top 30 words
Stopwords are typically function words:

determiners (a, the), prepositions (on, above), conjunctions
(and, but)

May also be corpus-specific: “plot”in the IMDB corpus
Assumption: stopwords are unimportant because they are
frequent in every document
But you need stop words for phrase queries, e.g. “King of
Denmark”
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practice of removing stop words: older systems

The earliest systems used stopword lists of 200-300 terms
To improve efficiency and effectiveness
Very frequent terms were problematic for early retrieval
models (e.g, OR operations in ranked boolean)
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practice of removing stop words: modern search engines

Most web search engines index stop words.
possibly ignore them at query-time if they seem unimportant
Good compression techniques (IIR 5) means the space for
including stop words in a system is very small
Good query optimization techniques (IIR 7) mean you pay
little at query time for including stop words.
You need them for:

Phrase queries: “King of Denmark”
Various song titles, etc.: “Let it be”, “To be or not to be”
“Relational”queries: “flights to London”
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stopwords in Lucene

The default stop words set in StandardAnalyzer and
EnglishAnalyzer
defined in StopAnalyzer.ENGLISH_STOP_WORDS_SET

”a”, ”an”, ”and”, ”are”, ”as”, ”at”, ”be”, ”but”, ”by”, ”for”, ”if”,
”in”, ”into”, ”is”, ”it”, ”no”, ”not”, ”of”, ”on”, ”or”, ”such”,
”that”, ”the”, ”their”, ”then”, ”there”, ”these”, ”they”, ”this”,
”to”, ”was”, ”will”, ”with”
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Lemur Stopword List

first 60 (sorted alphabetically)
a all amongst anywhere become besides about almost an
apart becomes between above alone and are becoming
beyond according along another around been both
across already any as before but after also anybody
at beforehand by afterwards although anyhow av behind
can again always anyone be being can against am
anything became below cannot albeit among anyway
because beside canst
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Morphological Analysis in information retrieval

Basic question: words occur in different forms.
Do we want to treat different forms as different index terms?
Conflation: treating different (inflectional and derivational)
variants as the same index term

Terms and Postings 35 / 67



Documents Terms Skip pointers Phrase queries

Morphology

Inflectional morphology: changes to a word that encode its
grammatical usage (e.g., tense, number, person).

say vs. said, cat vs. cats, see vs. sees
Derivational morphology: changes to a word to make a new
word with related meaning

organize, organization, organizational
Compounding: combining words to form new ones

shipwreck, outbound, beefsteak
more common in other languages (e.g., german)
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Stemming

Definition of stemming: Crude heuristic process that chops off
the ends of words
Language dependent
Often inflectional or derivational

Inflectional: e.g., organizes → organize
Derivational: automate, automatic, automation → automat
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Porter algorithm

Most common algorithm for stemming English
Results suggest that it is at least as good as other stemming
options
Conventions + 5 phases of reductions
Phases are applied sequentially
Each phase consists of a set of commands.

Sample command: Delete final ement if what remains is longer
than 1 character

replacement → replac
cement → cement

Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.
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Porter stemmer: A few rules

Rule Example
SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat
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ATIONAL → ATE relational → relate
TIONAL → TION conditional → condition

ENCI → ENCE valenci → valence
IZER → IZE digitizer → digitize
. . .

from http://snowball.tartarus.org/algorithms/porter/
stemmer.html
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Three stemmers: A comparison
Sample text: Such an analysis can reveal features that are not easily

visible from the variations in the individual genes and can
lead to a picture of expression that is more biologically
transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili
visibl from the variat in the individu gene and can lead to a
pictur of express that is more biolog transpar and access
to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from
th vari in th individu gen and can lead to a pictur of
expres that is mor biolog transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that
is mor biolog transp and access to interpret
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Lemmatization

lemmatization(wiki)
in linguistics, is the process of grouping together the different
inflected forms of a word so they can be analysed as a single item.

use vocabulary
Reduce inflectional/variant forms to base form
Example:

am, are, is was → be
better → good
car, cars, car’s, cars’ → car
the boy’s cars are different colors → the boy car be different
color

Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).
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Does stemming/lematization improve effectiveness?

In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others.
Queries where stemming is likely to help: [tartan sweaters],
[sightseeing tour san francisco]
(equivalence classes: {sweater,sweaters}, {tour,tours})
Porter Stemmer equivalence class
oper = operate operating operates operation operative
operatives operational.
Queries where stemming hurts: [operational AND research],
[operating AND system], [operative AND dentistry]
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thesauri and soundex

Do we handle synonyms and homonyms?
E.g., by hand-constructed equivalence classes
car = automobile color = colour

We can rewrite to form equivalence-class terms
When the document contains automobile, index it under
car-automobile (and vice-versa)

Or we can expand a query
When the query contains automobile, look under car as well

What about spelling mistakes?
One approach is Soundex, which forms equivalence classes of
words based on phonetic heuristics
More in IIR 3 and IIR 9
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More equivalence classing

Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)
Thesauri: IIR 9 (semantic equivalence, car = automobile)
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Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31
Linear in the length of the postings lists.

Can we do better?
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Skip pointers

Skip pointers allow us to skip postings that will not figure in
the search results.
This makes intersecting postings lists more efficient.
Some postings lists contain several million entries – so
efficiency can be an issue even if basic intersection is linear.
Where do we put skip pointers?
How do we make sure intsection results are correct?
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Skip lists: Larger example

16 28 72

5 51 98

2 4 8 16 19 23 28 43

1 2 3 5 8 41 51 60 71

Brutus

Caesar
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Intersecting with skip pointers
IntersectWithSkips(p1, p2)

1 answer← ⟨ ⟩
2 while p1 ̸= nil and p2 ≠ nil
3 do if docID(p1) = docID(p2)
4 then Add(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer
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Where do we place skips?

Tradeoff: number of items skipped vs. frequency skip can be
taken
More skips: Each skip pointer skips only a few items, but we
can frequently use it.
Fewer skips: Each skip pointer skips many items, but we can
not use it very often.
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Where do we place skips? (cont)

Simple heuristic: for postings list of length P, use
√

P
evenly-spaced skip pointers.
This ignores the distribution of query terms.
Easy if the index is static; harder in a dynamic environment
because of updates.
How much do skip pointers help?
They used to help a lot.
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Phrase queries

We want to answer a query such as [stanford university] – as a
phrase.
The inventor Stanford Ovshinsky never went to university
should not be a match.
The concept of phrase query has proven easily understood by
users.
Significant part of web queries are phrase queries (explicitly
entered or interpreted as such)
Consequence for inverted index: it no longer suffices to store
docIDs in postings lists.
Two ways of extending the inverted index:

biword index
positional index
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Biword indexes

Index every consecutive pair of terms in the text as a phrase.
For example, Friends, Romans, Countrymen would generate
two biwords: “friends romans” and “romans countrymen”
Each of these biwords is now a vocabulary term.
Two-word phrases can now easily be answered.
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Longer phrase queries

A long phrase like “stanford university palo alto” can be
represented as the Boolean query “stanford university”
AND “university palo” AND “palo alto”
We need to do post-filtering of hits to identify subset that
actually contains the 4-word phrase.
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Issues with biword indexes

Why are biword indexes rarely used?
False positives, as noted above
Index blowup due to very large term vocabulary
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Positional indexes

more efficient than biword indexes.
nonpositional index: each posting is just a docID
positional index: each posting is a docID and a list of positions
E.g.,

to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
…⟩
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Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!
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Proximity search

We just saw how to use a positional index for phrase searches.
We can also use it for proximity search.
For example: employment /4 place
Find all documents that contain employment and place
within 4 words of each other.
Employment agencies that place healthcare workers are seeing
growth is a hit.
Employment agencies that have learned to adapt now place
healthcare workers is not a hit.
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Proximity search

Use the positional index
Simplest algorithm: look at cross-product of positions of (i)
employment in document and (ii) place in document
Very inefficient for frequent words, especially stop words
Note that we want to return the actual matching positions,
not just a list of documents.
This is important for dynamic summaries etc.
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“Proximity” intersection
PositionalIntersect(p1, p2, k)

1 answer← ⟨ ⟩
2 while p1 ̸= nil and p2 ̸= nil
3 do if docID(p1) = docID(p2)
4 then l← ⟨ ⟩
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 ̸= nil
8 do while pp2 ̸= nil
9 do if |pos(pp1)− pos(pp2)| ≤ k

10 then Add(l, pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break
13 pp2 ← next(pp2)
14 while l ̸= ⟨ ⟩ and |l[0]− pos(pp1)| > k
15 do Delete(l[0])
16 for each ps ∈ l
17 do Add(answer, ⟨docID(p1), pos(pp1), ps⟩)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer
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Combination scheme

Biword indexes and positional indexes can be combined.
Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc
For these biwords, increased speed compared to positional
postings intersection is substantial.
Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.
Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of
26% more space for index.
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recap

tokenization. reduce the vocabulary
normalization. hyphen, numbers, case-folding, other
languages. diacrtic (accent and umlauts)
remove stop words.
stemming, lemmatization. porter’s stemming algorithm

sublinear algorithm for posting intersection
skip pointer

phrase queries
biword index
postional index
proximity search
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