
Documents Terms Skip pointers Phrase queries

Terms and Postings

adapted from Schütze, Center for Information and Language Processing,
University of Munich

September 20, 2023

Reading material: Chapter 2 of IIR

Terms and Postings 1 / 67

https://nlp.stanford.edu/IR-book/pdf/02voc.pdf

Documents Terms Skip pointers Phrase queries

Overview

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 2 / 67

Documents Terms Skip pointers Phrase queries

Index construction

Terms and Postings 3 / 67

Documents Terms Skip pointers Phrase queries

Index construction

Terms and Postings 4 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 5 / 67

Documents Terms Skip pointers Phrase queries

Documents

Last lecture: Simple Boolean retrieval system
Our assumptions were:

We know what a document is.
We can “machine-read” each document.

This can be complex in reality.

Terms and Postings 6 / 67

Documents Terms Skip pointers Phrase queries

Document format

What format is it in?
pdf/word/excel/html?

What language is it in?
What character set is in use?

(CP1252, UTF-8, …)

Terms and Postings 7 / 67

Documents Terms Skip pointers Phrase queries

what is a document

We return from our query “documents”. but there are often
interesting questions of grain size:

What is a unit document?
A file?
a chapter of a book? a section? a page?
An email? (Perhaps one of many in a single mbox file)
What about an email with 5 attachments?
A group of files (e.g., PPT or LaTeX split over HTML pages)

Terms and Postings 8 / 67

Documents Terms Skip pointers Phrase queries

Format/Language: Complications

A single index usually contains terms of several languages.
Sometimes a document or its components contain multiple
languages/formats.

French email with Spanish pdf attachment
Also: XML

Terms and Postings 9 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 10 / 67

Documents Terms Skip pointers Phrase queries

what is a term?

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 …

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

but what is a term?

Terms and Postings 11 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 12 / 67

Documents Terms Skip pointers Phrase queries

Definitions of token, type and term

Token – An instance of a word or term occurring in a
document.
Type – The same as a term in most cases: an equivalence
class of tokens.
Term – A “normalized” word (case, morphology, spelling etc);
an equivalence class of words.
How many tokens? How many types?

In June, the dog likes to chase the cat in the barn.
Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

Terms and Postings 13 / 67

Documents Terms Skip pointers Phrase queries

Examples for tokenization

Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.
O’Neill

→ neill?
→oneill?
→o’neill?
→ o AND neill ?
→ o’ AND neill?

aren’t
→ aren’t
→ arent
→ are n’t
→ are AND not

Terms and Postings 14 / 67

Documents Terms Skip pointers Phrase queries

Approaches to dealing with token variants

The problem: how to match U.S.A. with USA, or Today with
today?
Solution 1: “normalize” words in indexed text as well as query
terms into the same form.

U.S.A. → USA
implicitly define equivalence classes of terms (i.e, U.S.A and
USA).

Solution 2: do expansion. e.g., U.S.A → U.S.A. USA.
Query expansion: query U.S.A → U.S.A OR USA
Index expansion: both U.S.A and USA are indexed terms
More powerful, but less efficient.

Terms and Postings 15 / 67

Documents Terms Skip pointers Phrase queries

Why expansion approach can be more powerful

Asymmetric expansion
window → window, windows
windows → Windows, windows
Windows (no expansion)

better than putting window, Window, windows, and Windows
in the same equivalence class

Terms and Postings 16 / 67

Documents Terms Skip pointers Phrase queries

Tokenization: Recall construction of inverted index

Input:
Friends, Romans, countrymen. So let it be with Caesar …

Output:
friend roman countryman so …

Each token is a candidate for a postings entry.
What are valid tokens to emit?

Terms and Postings 17 / 67

Documents Terms Skip pointers Phrase queries

Tokenization problems: One word or two? (or several)

Hewlett-Packard
State-of-the-art
co-education
the hold-him-back-and-drag-him-away maneuver
data base
San Francisco
Los Angeles-based company
cheap San Francisco-Los Angeles fares
York University vs. New York University

Terms and Postings 18 / 67

Documents Terms Skip pointers Phrase queries

Numbers

3/20/91
20/3/91
Mar 20, 1991
B-52
100.2.86.144
(800) 234-2333
800.234.2333
Older IR systems may not index numbers …
…but generally it’s a useful feature.

Terms and Postings 19 / 67

Documents Terms Skip pointers Phrase queries

Ambiguous segmentation in Chinese

no spaces between words
莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。

ambiguous segmentation

和尚The two characters can be treated as one word
meaning ‘monk’ or as a sequence of two words meaning ‘and’ and
‘still’.

Terms and Postings 20 / 67

Documents Terms Skip pointers Phrase queries

Chinese and japanese

Chinese and Japanese have no spaces between words:
结婚的和尚未结婚的
结婚 (married) 的和 (and) 尚未 (not yet) 结婚 (married) 的
结婚 (married) 的和尚 (monk) 未 (not) 结婚 (married) 的
Not always guaranteed a unique tokenization

Further complicated in Japanese, with multiple alphabets
intermingled

Terms and Postings 21 / 67

Documents Terms Skip pointers Phrase queries

Other cases of “no whitespace”

Compounds in Dutch, German, Swedish
Computerlinguistik → Computer + Linguistik
Lebensversicherungsgesellschaftsangestellter
→ leben + versicherung + gesellschaft + angestellter
Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)
Many other languages with segmentation difficulties: Finnish,
Urdu, …

Terms and Postings 22 / 67

Documents Terms Skip pointers Phrase queries

Japanese

ノーベル平和賞を受賞したワンガリ・マータイさんが名誉会長を務め

るＭＯＴＴＡＩＮＡＩキャンペーンの一環として、毎日新聞社とマガ

ジンハウスは「私 の、もったいない」を募集します。皆様が日ごろ

「もったいない」と感じて実践していることや、それにまつわるエピ

ソードを８００字以内の文章にまとめ、簡 単な写真、イラスト、図

などを添えて１０月２０日までにお送りください。大賞受賞者には、

５０万円相当の旅行券とエコ製品２点の副賞が贈られます。

4 different “alphabets”: Chinese characters, hiragana syllabary for
inflectional endings and function words, katakana syllabary for
transcription of foreign words and other uses, and latin. No spaces
(as in Chinese).
End user can express query entirely in hiragana!

Terms and Postings 23 / 67

Documents Terms Skip pointers Phrase queries

Japanese

ノーベル平和賞を受賞したワンガリ・マータイさんが名誉会長を務め

るＭＯＴＴＡＩＮＡＩキャンペーンの一環として、毎日新聞社とマガ

ジンハウスは「私 の、もったいない」を募集します。皆様が日ごろ

「もったいない」と感じて実践していることや、それにまつわるエピ

ソードを８００字以内の文章にまとめ、簡 単な写真、イラスト、図

などを添えて１０月２０日までにお送りください。大賞受賞者には、

５０万円相当の旅行券とエコ製品２点の副賞が贈られます。

4 different “alphabets”: Chinese characters, hiragana syllabary for
inflectional endings and function words, katakana syllabary for
transcription of foreign words and other uses, and latin. No spaces
(as in Chinese).

End user can express query entirely in hiragana!

Terms and Postings 23 / 67

Documents Terms Skip pointers Phrase queries

Japanese

ノーベル平和賞を受賞したワンガリ・マータイさんが名誉会長を務め

るＭＯＴＴＡＩＮＡＩキャンペーンの一環として、毎日新聞社とマガ

ジンハウスは「私 の、もったいない」を募集します。皆様が日ごろ

「もったいない」と感じて実践していることや、それにまつわるエピ

ソードを８００字以内の文章にまとめ、簡 単な写真、イラスト、図

などを添えて１０月２０日までにお送りください。大賞受賞者には、

５０万円相当の旅行券とエコ製品２点の副賞が贈られます。

4 different “alphabets”: Chinese characters, hiragana syllabary for
inflectional endings and function words, katakana syllabary for
transcription of foreign words and other uses, and latin. No spaces
(as in Chinese).
End user can express query entirely in hiragana!

Terms and Postings 23 / 67

Documents Terms Skip pointers Phrase queries

Arabic script: Bidirectionality

�ل ا������132 ��� 1962ا����
 ا��
ا�� �� ��� �� . #"!" ! ا�

 ← → ← → ← START

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

Bidirectionality is not a problem if text is coded in Unicode.

Terms and Postings 24 / 67

Documents Terms Skip pointers Phrase queries

Accents and diacritics

Accents: résumé vs. resume (simple omission of accent)
Umlauts: Universität vs. Universitaet (substitution with
special letter sequence “ae”)
Most important criterion: How are users likely to write their
queries for these words?
Even in languages that standardly have accents, users often
do not type them.

Terms and Postings 25 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 26 / 67

Documents Terms Skip pointers Phrase queries

Case folding

Reduce all letters to lower case
Even though case can be semantically meaningful

capitalized words in mid-sentence
MIT vs. mit
Fed vs. fed
…

It’s often best to lowercase everything since users will use
lowercase regardless of correct capitalization.

Terms and Postings 27 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 28 / 67

Documents Terms Skip pointers Phrase queries

Stop words

stop words = extremely common words which would appear
to be of little value in helping select documents matching a
user need
There are a lot of them: 30 % of postings for top 30 words
Stopwords are typically function words:

determiners (a, the), prepositions (on, above), conjunctions
(and, but)

May also be corpus-specific: “plot”in the IMDB corpus
Assumption: stopwords are unimportant because they are
frequent in every document
But you need stop words for phrase queries, e.g. “King of
Denmark”

Terms and Postings 29 / 67

Documents Terms Skip pointers Phrase queries

practice of removing stop words: older systems

The earliest systems used stopword lists of 200-300 terms
To improve efficiency and effectiveness
Very frequent terms were problematic for early retrieval
models (e.g, OR operations in ranked boolean)

Terms and Postings 30 / 67

Documents Terms Skip pointers Phrase queries

practice of removing stop words: modern search engines

Most web search engines index stop words.
possibly ignore them at query-time if they seem unimportant
Good compression techniques (IIR 5) means the space for
including stop words in a system is very small
Good query optimization techniques (IIR 7) mean you pay
little at query time for including stop words.
You need them for:

Phrase queries: “King of Denmark”
Various song titles, etc.: “Let it be”, “To be or not to be”
“Relational”queries: “flights to London”

Terms and Postings 31 / 67

Documents Terms Skip pointers Phrase queries

stopwords in Lucene

The default stop words set in StandardAnalyzer and
EnglishAnalyzer
defined in StopAnalyzer.ENGLISH_STOP_WORDS_SET

”a”, ”an”, ”and”, ”are”, ”as”, ”at”, ”be”, ”but”, ”by”, ”for”, ”if”,
”in”, ”into”, ”is”, ”it”, ”no”, ”not”, ”of”, ”on”, ”or”, ”such”,
”that”, ”the”, ”their”, ”then”, ”there”, ”these”, ”they”, ”this”,
”to”, ”was”, ”will”, ”with”

Terms and Postings 32 / 67

Documents Terms Skip pointers Phrase queries

Lemur Stopword List

first 60 (sorted alphabetically)
a all amongst anywhere become besides about almost an
apart becomes between above alone and are becoming
beyond according along another around been both
across already any as before but after also anybody
at beforehand by afterwards although anyhow av behind
can again always anyone be being can against am
anything became below cannot albeit among anyway
because beside canst

Terms and Postings 33 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 34 / 67

Documents Terms Skip pointers Phrase queries

Morphological Analysis in information retrieval

Basic question: words occur in different forms.
Do we want to treat different forms as different index terms?
Conflation: treating different (inflectional and derivational)
variants as the same index term

Terms and Postings 35 / 67

Documents Terms Skip pointers Phrase queries

Morphology

Inflectional morphology: changes to a word that encode its
grammatical usage (e.g., tense, number, person).

say vs. said, cat vs. cats, see vs. sees
Derivational morphology: changes to a word to make a new
word with related meaning

organize, organization, organizational
Compounding: combining words to form new ones

shipwreck, outbound, beefsteak
more common in other languages (e.g., german)

Terms and Postings 36 / 67

Documents Terms Skip pointers Phrase queries

Stemming

Definition of stemming: Crude heuristic process that chops off
the ends of words
Language dependent
Often inflectional or derivational

Inflectional: e.g., organizes → organize
Derivational: automate, automatic, automation → automat

Terms and Postings 37 / 67

Documents Terms Skip pointers Phrase queries

Porter algorithm

Most common algorithm for stemming English
Results suggest that it is at least as good as other stemming
options
Conventions + 5 phases of reductions
Phases are applied sequentially
Each phase consists of a set of commands.

Sample command: Delete final ement if what remains is longer
than 1 character

replacement → replac
cement → cement

Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Terms and Postings 38 / 67

Documents Terms Skip pointers Phrase queries

Porter stemmer: A few rules

Rule Example
SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat

Terms and Postings 39 / 67

Documents Terms Skip pointers Phrase queries

ATIONAL → ATE relational → relate
TIONAL → TION conditional → condition

ENCI → ENCE valenci → valence
IZER → IZE digitizer → digitize
. . .

from http://snowball.tartarus.org/algorithms/porter/
stemmer.html

Terms and Postings 40 / 67

http://snowball.tartarus.org/algorithms/porter/stemmer.html
http://snowball.tartarus.org/algorithms/porter/stemmer.html

Documents Terms Skip pointers Phrase queries

Terms and Postings 41 / 67

Documents Terms Skip pointers Phrase queries

Terms and Postings 42 / 67

Documents Terms Skip pointers Phrase queries

Three stemmers: A comparison
Sample text: Such an analysis can reveal features that are not easily

visible from the variations in the individual genes and can
lead to a picture of expression that is more biologically
transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili
visibl from the variat in the individu gene and can lead to a
pictur of express that is more biolog transpar and access
to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from
th vari in th individu gen and can lead to a pictur of
expres that is mor biolog transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that
is mor biolog transp and access to interpret

Terms and Postings 43 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 44 / 67

Documents Terms Skip pointers Phrase queries

Lemmatization

lemmatization(wiki)
in linguistics, is the process of grouping together the different
inflected forms of a word so they can be analysed as a single item.

use vocabulary
Reduce inflectional/variant forms to base form
Example:

am, are, is was → be
better → good
car, cars, car’s, cars’ → car
the boy’s cars are different colors → the boy car be different
color

Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).

Terms and Postings 45 / 67

Documents Terms Skip pointers Phrase queries

Does stemming/lematization improve effectiveness?

In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others.
Queries where stemming is likely to help: [tartan sweaters],
[sightseeing tour san francisco]
(equivalence classes: {sweater,sweaters}, {tour,tours})
Porter Stemmer equivalence class
oper = operate operating operates operation operative
operatives operational.
Queries where stemming hurts: [operational AND research],
[operating AND system], [operative AND dentistry]

Terms and Postings 46 / 67

Documents Terms Skip pointers Phrase queries

thesauri and soundex

Do we handle synonyms and homonyms?
E.g., by hand-constructed equivalence classes
car = automobile color = colour

We can rewrite to form equivalence-class terms
When the document contains automobile, index it under
car-automobile (and vice-versa)

Or we can expand a query
When the query contains automobile, look under car as well

What about spelling mistakes?
One approach is Soundex, which forms equivalence classes of
words based on phonetic heuristics
More in IIR 3 and IIR 9

Terms and Postings 47 / 67

Documents Terms Skip pointers Phrase queries

More equivalence classing

Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)
Thesauri: IIR 9 (semantic equivalence, car = automobile)

Terms and Postings 48 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 49 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31
Linear in the length of the postings lists.

Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Recall basic intersection algorithm

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174
Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31
Linear in the length of the postings lists.
Can we do better?

Terms and Postings 50 / 67

Documents Terms Skip pointers Phrase queries

Skip pointers

Skip pointers allow us to skip postings that will not figure in
the search results.
This makes intersecting postings lists more efficient.
Some postings lists contain several million entries – so
efficiency can be an issue even if basic intersection is linear.
Where do we put skip pointers?
How do we make sure intsection results are correct?

Terms and Postings 51 / 67

Documents Terms Skip pointers Phrase queries

Skip lists: Larger example

16 28 72

5 51 98

2 4 8 16 19 23 28 43

1 2 3 5 8 41 51 60 71

Brutus

Caesar

Terms and Postings 52 / 67

Documents Terms Skip pointers Phrase queries

Intersecting with skip pointers
IntersectWithSkips(p1, p2)

1 answer← ⟨ ⟩
2 while p1 ̸= nil and p2 ≠ nil
3 do if docID(p1) = docID(p2)
4 then Add(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer

Terms and Postings 53 / 67

Documents Terms Skip pointers Phrase queries

Where do we place skips?

Tradeoff: number of items skipped vs. frequency skip can be
taken
More skips: Each skip pointer skips only a few items, but we
can frequently use it.
Fewer skips: Each skip pointer skips many items, but we can
not use it very often.

Terms and Postings 54 / 67

Documents Terms Skip pointers Phrase queries

Where do we place skips? (cont)

Simple heuristic: for postings list of length P, use
√

P
evenly-spaced skip pointers.
This ignores the distribution of query terms.
Easy if the index is static; harder in a dynamic environment
because of updates.
How much do skip pointers help?
They used to help a lot.

Terms and Postings 55 / 67

Documents Terms Skip pointers Phrase queries

Outline

1 Documents

2 Terms
General + Non-English
Case folding
stop words
Stemming
lemmatization

3 Skip pointers

4 Phrase queries

Terms and Postings 56 / 67

Documents Terms Skip pointers Phrase queries

Phrase queries

We want to answer a query such as [stanford university] – as a
phrase.
The inventor Stanford Ovshinsky never went to university
should not be a match.
The concept of phrase query has proven easily understood by
users.
Significant part of web queries are phrase queries (explicitly
entered or interpreted as such)
Consequence for inverted index: it no longer suffices to store
docIDs in postings lists.
Two ways of extending the inverted index:

biword index
positional index

Terms and Postings 57 / 67

Documents Terms Skip pointers Phrase queries

Biword indexes

Index every consecutive pair of terms in the text as a phrase.
For example, Friends, Romans, Countrymen would generate
two biwords: “friends romans” and “romans countrymen”
Each of these biwords is now a vocabulary term.
Two-word phrases can now easily be answered.

Terms and Postings 58 / 67

Documents Terms Skip pointers Phrase queries

Longer phrase queries

A long phrase like “stanford university palo alto” can be
represented as the Boolean query “stanford university”
AND “university palo” AND “palo alto”
We need to do post-filtering of hits to identify subset that
actually contains the 4-word phrase.

Terms and Postings 59 / 67

Documents Terms Skip pointers Phrase queries

Issues with biword indexes

Why are biword indexes rarely used?
False positives, as noted above
Index blowup due to very large term vocabulary

Terms and Postings 60 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes

more efficient than biword indexes.
nonpositional index: each posting is just a docID
positional index: each posting is a docID and a list of positions
E.g.,

to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
…⟩

Terms and Postings 61 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”
to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;

2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;

4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

Terms and Postings 62 / 67

Documents Terms Skip pointers Phrase queries

Proximity search

We just saw how to use a positional index for phrase searches.
We can also use it for proximity search.
For example: employment /4 place
Find all documents that contain employment and place
within 4 words of each other.
Employment agencies that place healthcare workers are seeing
growth is a hit.
Employment agencies that have learned to adapt now place
healthcare workers is not a hit.

Terms and Postings 63 / 67

Documents Terms Skip pointers Phrase queries

Proximity search

Use the positional index
Simplest algorithm: look at cross-product of positions of (i)
employment in document and (ii) place in document
Very inefficient for frequent words, especially stop words
Note that we want to return the actual matching positions,
not just a list of documents.
This is important for dynamic summaries etc.

Terms and Postings 64 / 67

Documents Terms Skip pointers Phrase queries

“Proximity” intersection
PositionalIntersect(p1, p2, k)

1 answer← ⟨ ⟩
2 while p1 ̸= nil and p2 ̸= nil
3 do if docID(p1) = docID(p2)
4 then l← ⟨ ⟩
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 ̸= nil
8 do while pp2 ̸= nil
9 do if |pos(pp1)− pos(pp2)| ≤ k

10 then Add(l, pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break
13 pp2 ← next(pp2)
14 while l ̸= ⟨ ⟩ and |l[0]− pos(pp1)| > k
15 do Delete(l[0])
16 for each ps ∈ l
17 do Add(answer, ⟨docID(p1), pos(pp1), ps⟩)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer

Terms and Postings 65 / 67

Documents Terms Skip pointers Phrase queries

Combination scheme

Biword indexes and positional indexes can be combined.
Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc
For these biwords, increased speed compared to positional
postings intersection is substantial.
Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.
Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of
26% more space for index.

Terms and Postings 66 / 67

Documents Terms Skip pointers Phrase queries

recap

tokenization. reduce the vocabulary
normalization. hyphen, numbers, case-folding, other
languages. diacrtic (accent and umlauts)
remove stop words.
stemming, lemmatization. porter’s stemming algorithm

sublinear algorithm for posting intersection
skip pointer

phrase queries
biword index
postional index
proximity search

Terms and Postings 67 / 67

	Documents
	Terms
	General + Non-English
	Case folding
	stop words
	Stemming
	lemmatization

	Skip pointers
	Phrase queries

