Terms and Postings

adapted from Schiitze, Center for Information and Language Processing,
University of Munich

September 20, 2023

Reading material: Chapter 2 of IIR

Terms and Postings

1/67

https://nlp.stanford.edu/IR-book/pdf/02voc.pdf

Overview

@ Documents

© Terms

@ General 4+ Non-English
o Case folding

@ stop words

@ Stemming

@ lemmatization

© Skip pointers

@ Phrase queries

Terms and Postings 2 /67

Documents Terms

Skip pointers Phrase queries

Index construction

=

E-mail, Web pages,

News articles, Memos, Letters

Terms and Postings

@ Document data store

Text Acquisition

Index Creation

» &

Text Transformation

=

Index

3/ 67

Documents Terms Skip pointers Phrase queries

Index construction

Doc_:uments to = A= ’ Friends, Romans, countrymen. ‘
be indexed = .

[]

[]
Token stream l ‘ Friends H Romans H Countrymen ‘

Linguistic modules ’
[

Modified tokens | friend ‘ roman ‘ countryman ‘

o—>
Inverted index 1 >
oy =13 }{16]

Terms and Postings 4 /67

Documents Terms Skip pointers Phrase queries

Outline

© Documents

Terms and Postings 5/ 67

Documents

Documents

@ Last lecture: Simple Boolean retrieval system
@ Our assumptions were:

e We know what a document is.
o We can “machine-read” each document.

@ This can be complex in reality.

Terms and Postings 6 /67

Documents

Document format

@ What format is it in?
o pdf/word/excel /html|?

@ What language is it in?

@ What character set is in use?
o (CP1252, UTF-§, ...)

Terms and Postings

767

Documents

what is a document

@ We return from our query “documents”. but there are often
interesting questions of grain size:

What is a unit document?

A file?

a chapter of a book? a section? a page?

An email? (Perhaps one of many in a single mbox file)

What about an email with 5 attachments?

A group of files (e.g., PPT or LaTeX split over HTML pages)

Terms and Postings 8 /67

Documents

Format/Language: Complications

@ A single index usually contains terms of several languages.

@ Sometimes a document or its components contain multiple
languages/formats.

e French email with Spanish pdf attachment
@ Also: XML

Terms and Postings 9 /67

Terms

Outline

© Terms

@ General 4+ Non-English
o Case folding

@ stop words

@ Stemming

@ lemmatization

Terms and Postings 10 / 67

Terms

what is a term?

For each term t, we store a list of all documents that contain t.

| Brutus | — [1] 2] 4] 11[31[45[173[174]
| Camsar | — [1] 2] 4] 5] 6]16] 57[132].]
[CALPURNIA | — [2] 3154] 101]

———
dictionary postings

but what is a term?

Terms and Postings 11 / 67

Documents Terms Skip pointers Phrase queries

Outline

© Terms

@ General 4+ Non-English

Terms and Postings

12 / 67

Terms

Definitions of token, type and term

@ Token — An instance of a word or term occurring in a
document.

@ Type — The same as a term in most cases: an equivalence
class of tokens.

@ Term — A "normalized” word (case, morphology, spelling etc);
an equivalence class of words.

@ How many tokens? How many types?

e In June, the dog likes to chase the cat in the barn.
e Mr. O'Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

Terms and Postings 13 / 67

Terms

Examples for tokenization

@ Mr. O’Neill thinks that the boys’ stories about Chile's capital
aren’t amusing.
@ O'Neill
e — neill?
e —oneill?
e —o'neill?
e — o AND neill 7
e — o' AND neill?

@ aren't

e — aren't

e — arent

e —aren't

o — are AND not

Terms and Postings 14 / 67

Terms

Approaches to dealing with token variants

@ The problem: how to match U.S.A. with USA, or Today with
today?

@ Solution 1: “normalize” words in indexed text as well as query
terms into the same form.

e USA — USA
o implicitly define equivalence classes of terms (i.e, U.S.A and

USA).
@ Solution 2: do expansion. e.g., U.S.A — U.S.A. USA.

e Query expansion: query U.S.A — U.5.A OR USA
o Index expansion: both U.S.A and USA are indexed terms
e More powerful, but less efficient.

Terms and Postings 15 / 67

Terms

Why expansion approach can be more powerful

@ Asymmetric expansion
e window — window, windows
e windows — Windows, windows
e Windows (no expansion)
@ better than putting window, Window, windows, and Windows
in the same equivalence class

Terms and Postings 16 / 67

Terms

Tokenization: Recall construction of inverted index

o Input:

Friends, Romans, countrymen.

So let it be with Caesar| ...

o Output:

friend

roman

countryman

@ Each token is a candidate for a postings entry.

@ What are valid tokens to emit?

Terms and Postings

17 / 67

Terms

Tokenization problems: One word or two? (or several)

Hewlett-Packard

State-of-the-art

co-education

the hold-him-back-and-drag-him-away maneuver
data base

San Francisco

Los Angeles-based company

cheap San Francisco-Los Angeles fares

York University vs. New York University

Terms and Postings 18 / 67

Terms

Numbers

e 3/20/91

e 20/3/91

e Mar 20, 1991
e B-52

e 100.2.86.144

e (800) 234-2333
e 800.234.2333

Older IR systems may not index numbers ...

..but generally it's a useful feature.

Terms and Postings 19 / 67

Terms

Ambiguous segmentation in Chinese

no spaces between words

PR BAE SR AR R R B HA. 544 H
9 H, BHRIBIEEREE - RIRTALNEGT T 1 8 H2
Ho ZEHIRAS b, 7Rk T RO,

ambiguous segmentation

A
H The two characters can be treated as one word

N N Y . ‘ 1
meaning ‘monk’ or as a sequence of two words meaning ‘and’ and
‘still’.

Terms and Postings 20 / 67

Terms

Chinese and japanese

1. Original text
5L GEAE T 3 B PR

(the impact of droughts in China)

2. Word segmentation
o A hE G
drought at china make impact

3. Bigrams
B RAE fEd P [EHiE
WA R M fm
@ Chinese and Japanese have no spaces between words:
o Z5UERAIAI I REEIERY
Z54E (married) B9 (and) B3R (not yet) Z548 (married) B9
ZEYE (married) B9F01E (monk) 7R (not) 588 (married) B9
o Not always guaranteed a unique tokenization
o Further complicated in Japanese, with multiple alphabets

intermingled
T4 —F 125004 (LR TE D=0 B [E1d 7-$500K(#76,00075)

Terms and Postings 21 / 67

Terms

Other cases of “no whitespace”

Compounds in Dutch, German, Swedish
Computerlinguistik — Computer + Linguistik

Lebensversicherungsgesellschaftsangestellter

o

o

o

@ — leben + versicherung + gesellschaft + angestellter

@ Inuit: tusaatsiarunnanngittualuujunga (I can't hear very well.)
o

Many other languages with segmentation difficulties: Finnish,
Urdu, ..

Terms and Postings 22 / 67

Terms

Japanese

)= B ZZE LT B v — S A SUNBESREEBD
ADMOTTAINAILI Fxo_X—r0 8L LT, HHBLLE~H
DN RE THL O, bomnpn ZEELET, BERRSA
[Hh o] SEUTEEBRLTWEZ ERL, FRUICE2PpSTE
V—FK%Z800TFUNOXEIZE LD, flif HARTHE, 417X K, K
REEHRZTIOA20HETIZEBEY <XV, KEZHZFICE.
50 MY ORTTAE =2l 2 SORENESNET,

Terms and Postings 23 /67

Terms

Japanese

=W EMB RSB LIV A v —E A SABPBESREBHD
HMOTTATINAT Xy rA—ro BE LT, i HHte <~
DNy RE [FA D bolonipny) ZEELET, BERPAZA
[ofnien) LU TEELTWSZ LR, ZRICE2DSH I
Y—R%&80 0OFLUNOIHEIZELD, il HARTH, 417 Z M K
BMEEBRATLIOA 20 HETIRIXY <7Z3W, REZHEEITIE,
50 TS Ohef T4 & o =2 il 2 KORBE A S ET,

4 different “alphabets”: Chinese characters, hiragana syllabary for
inflectional endings and function words, katakana syllabary for
transcription of foreign words and other uses, and latin. No spaces
(as in Chinese).

Terms and Postings 23 /67

Terms

Japanese

= SVWERBEZE LT LAY v — 2 SAPHERREHD
HMOTTATINAT Xy rA—ro BE LT, i HHte <~
DNy RE [FA D bolonipny) ZEELET, BERPAZA
[ofnien) LU TEELTWSZ LR, ZRICE2DSH I
Y—R%&80 0OFLUNOIHEIZELD, il HARTH, 417 Z M K
BMEEBRATLIOA 20 HETIRIXY <7Z3W, REZHEEITIE,
50 TS Ohef T4 & o =2 il 2 KORBE A S ET,

4 different “alphabets”: Chinese characters, hiragana syllabary for
inflectional endings and function words, katakana syllabary for
transcription of foreign words and other uses, and latin. No spaces
(as in Chinese).

End user can express query entirely in hiragana!

Terms and Postings 23 /67

Terms

Arabic script: Bidirectionality

i il JYEaYI e Lle 132 323 1962 s 3 il 3o ol
— = — —> <— START
‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

Bidirectionality is not a problem if text is coded in Unicode.

Terms and Postings 24 | 67

Terms

Accents and diacritics

@ Accents: résumé vs. resume (simple omission of accent)

e Umlauts: Universitat vs. Universitaet (substitution with
special letter sequence “ae”)

@ Most important criterion: How are users likely to write their
queries for these words?

@ Even in languages that standardly have accents, users often
do not type them.

Terms and Postings 25 / 67

Documents Terms Skip pointers Phrase queries

Outline

© Terms

o Case folding

Terms and Postings 26 / 67

Terms

Case folding

@ Reduce all letters to lower case
@ Even though case can be semantically meaningful

capitalized words in mid-sentence
MIT vs. mit
Fed vs. fed

@ It's often best to lowercase everything since users will use
lowercase regardless of correct capitalization.

Terms and Postings 27 | 67

Documents Terms Skip pointers Phrase queries

Outline

© Terms

@ stop words

Terms and Postings 28 / 67

Terms

Stop words

@ stop words = extremely common words which would appear
to be of little value in helping select documents matching a
user need

@ There are a lot of them: 30 % of postings for top 30 words

@ Stopwords are typically function words:

o determiners (a, the), prepositions (on, above), conjunctions
(and, but)

e May also be corpus-specific: “plot”in the IMDB corpus

@ Assumption: stopwords are unimportant because they are
frequent in every document

@ But you need stop words for phrase queries, e.g. “King of
Denmark”

Terms and Postings

29 / 67

Terms

practice of removing stop words: older systems

@ The earliest systems used stopword lists of 200-300 terms
@ To improve efficiency and effectiveness

o Very frequent terms were problematic for early retrieval
models (e.g, OR operations in ranked boolean)

Terms and Postings 30 / 67

Terms

practice of removing stop words: modern search engines

Most web search engines index stop words.
@ possibly ignore them at query-time if they seem unimportant

@ Good compression techniques (IIR 5) means the space for
including stop words in a system is very small

e Good query optimization techniques (IIR 7) mean you pay
little at query time for including stop words.
@ You need them for:
o Phrase queries: “King of Denmark”

» o«

e Various song titles, etc.: “Let it be”, “To be or not to be”
o “Relational”queries: “flights to London”

Terms and Postings 31 /67

Terms

stopwords in Lucene

@ The default stop words set in StandardAnalyzer and
EnglishAnalyzer

o defined in StopAnalyzer. ENGLISH_STOP_WORDS_SET

”a”, ”an”, ”and”, ”are”, ”aS”, ”at”, HbeH' ”but”' HbyH' ”for”, Hif‘H,
"o noone n ”it”, " "o non

"in”, "into"”, "is", no”, "not”, "of", "on", "or"”, "such”,
"that”, "the", "their”, "then”, "there”, "these"”, "they”, "this",

"to", "was", "will”, "with"

Terms and Postings 32 /67

Terms

Lemur Stopword List

first 60 (sorted alphabetically)

a all amongst anywhere become besides about almost an
apart becomes between above alone and are becoming
beyond according along another around been both
across already any as before but after also anybody
at beforehand by afterwards although anyhow av behind
can again always anyone be being can against am
anything became below cannot albeit among anyway
because beside canst

Terms and Postings 33 /67

Documents Terms Skip pointers Phrase queries

Outline

© Terms

@ Stemming

Terms and Postings 34 /67

Terms

Morphological Analysis in information retrieval

@ Basic question: words occur in different forms.
@ Do we want to treat different forms as different index terms?

e Conflation: treating different (inflectional and derivational)
variants as the same index term

Terms and Postings 35 /67

Terms

Morphology

@ Inflectional morphology: changes to a word that encode its
grammatical usage (e.g., tense, number, person).
e say vs. said, cat vs. cats, see vs. sees
@ Derivational morphology: changes to a word to make a new
word with related meaning
e organize, organization, organizational
@ Compounding: combining words to form new ones

e shipwreck, outbound, beefsteak
e more common in other languages (e.g., german)

Terms and Postings 36 / 67

Terms

Stemming

@ Definition of stemming: Crude heuristic process that chops off
the ends of words

@ Language dependent

@ Often inflectional or derivational

o Inflectional: e.g., organizes — organize
o Derivational: automate, automatic, automation — automat

Terms and Postings 37 /67

Terms

Porter algorithm

@ Most common algorithm for stemming English

@ Results suggest that it is at least as good as other stemming
options

@ Conventions + 5 phases of reductions

@ Phases are applied sequentially

@ Each phase consists of a set of commands.

e Sample command: Delete final ement if what remains is longer
than 1 character

o replacement — replac
e cement — cement

@ Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Terms and Postings 38 /67

Terms

Porter stemmer: A few rules

Rule
SSES
IES
SS

Terms and Postings

L1l

SS

SS

Example
caresses
ponies
caress
cats

caress
poni
caress
cat

39 / 67

Terms

ATIONAL
TIONAL
ENCI
IZER

VRN AN

from http://snowball.tartarus.org/algorithms/porter/

stemmer.html

Terms and Postings

ATE
TION
ENCE

IZE

relational
conditional
valenci
digitizer

N
N
N
N

relate
condition
valence
digitize

40 / 67

http://snowball.tartarus.org/algorithms/porter/stemmer.html
http://snowball.tartarus.org/algorithms/porter/stemmer.html

Documents Terms Skip pointers

False positives

Phrase queries

False negatives

organization/organ
generalization/generic
numerical /numerous
policy/police
university /universe
addition/additive
negligible/negligent
execute/executive
past/paste
ignore/ignorant
special /specialized
head /heading

Terms and Postings

european/europe
cylinder /cylindrical
matrices/matrix
urgency /urgent
create/creation
analysis/analyses
useful /usefully
noise/noisy
decompose/decomposition
sparse/sparsity
resolve /resolution
triangle/triangular

41/ 67

Terms

Original text:

Document will describe marketing strategies carried out by U.S. companies for their agricultural
chemicals, report predictions for market share of such chemicals, or report market statistics for
agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share,
stimulate demand, price cut, volume of sales.

Porter stemmer:

document describ market strategi carri compani agricultur chemic report predict market share chemic
report market statist agrochem pesticid herbicid fungicid insecticid fertil predict sale market share
stimul demand price cut volum sale

Krovetz stemmer:

document describe marketing strategy carry company agriculture chemical report prediction market
share chemical report market statistic agrochemic pesticide herbicide fungicide insecticide fertilizer
predict sale stimulate demand price cut volume sale

Terms and Postings 42 / 67

Terms
Three stemmers: A comparison

Sample text: Such an analysis can reveal features that are not easily
visible from the variations in the individual genes and can
lead to a picture of expression that is more biologically
transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili
visibl from the variat in the individu gene and can lead to a
pictur of express that is more biolog transpar and access
to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from
th vari in th individu gen and can lead to a pictur of
expres that is mor biolog transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that
is mor biolog transp and access to interpret

Terms and Postings 43 / 67

Documents Terms Skip pointers

Outline

© Terms

@ lemmatization

Terms and Postings

Phrase queries

44 / 67

Terms

Lemmatization

lemmatization(wiki)

in linguistics, is the process of grouping together the different
inflected forms of a word so they can be analysed as a single item.

@ use vocabulary
@ Reduce inflectional /variant forms to base form
o Example:
e am, are, is was — be
e better — good
e car, cars, car’s, cars' — car
e the boy'’s cars are different colors — the boy car be different
color
@ Lemmatization implies doing “proper” reduction to dictionary

headword form (the lemma).

Terms and Postings 45 / 67

Terms

Does stemming/lematization improve effectiveness?

In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others.

Queries where stemming is likely to help: [tartan sweaters],
[sightseeing tour san francisco]

(equivalence classes: {sweater,sweaters}, {tour,tours})

Porter Stemmer equivalence class
oper = operate operating operates operation operative
operatives operational.

Queries where stemming hurts: [operational AND research],
[operating AND system|, [operative AND dentistry]

Terms and Postings 46 / 67

Terms

thesauri and soundex

@ Do we handle synonyms and homonyms?

e E.g., by hand-constructed equivalence classes
e car = automobile color = colour

@ We can rewrite to form equivalence-class terms

e When the document contains automobile, index it under
car-automobile (and vice-versa)

@ Or we can expand a query
o When the query contains automobile, look under car as well

What about spelling mistakes?

One approach is Soundex, which forms equivalence classes of
words based on phonetic heuristics

More in IIR 3 and IIR 9

Terms and Postings 47 / 67

Terms

More equivalence classing

@ Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)

@ Thesauri: IIR 9 (semantic equivalence, car = automobile)

Terms and Postings 48 / 67

Documents Terms Skip pointers Phrase queries

Outline

© Skip pointers

Terms and Postings 49 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31] 45][173][174]
CALPURNIA — —>—>—>

Intersection =—

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]o[a]-[11]-]31] 45][173][174]
CALPURNIA — —>—>—>

Intersection =—

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2[a]-[11]-]31][45][173][174]
CALPURNIA — —>—>—>

Intersection =—

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2[a]-[11]-]31][45][173][174]
CALPURNIA — —>—>—>

Intersection =—

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[4 5[11]-]31][45][173][174]
CALPURNIA — —>—>—>

Intersection =—

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]o[a]-[11]-]31][45][173][174]
CALPURNIA — —>—>—>

Intersection =—

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31 [45][173][174]
CALPURNIA — —>—>—>

Intersection =—

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31 [45][173][174]
CALPURNIA — —>—>—>

Intersection — —>

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31][45 |- 173][174]
CALPURNIA — —>—>—>

Intersection — —>

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31][48]~ 173 | 174]
CALPURNIA — —>—>—>

Intersection — —>

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31][48]~ 173 | 174]
CALPURNIA — —>—>—>

Intersection — —>

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31] 45][173][174]
CALPURNIA — —>—>—>

Intersection — —>

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31] 45][173][174]
CALPURNIA — —>—>—>

Intersection — —>

@ Linear in the length of the postings lists.

Terms and Postings 50 / 67

Skip pointers

Recall basic intersection algorithm

BRUTUS — [1]=[2]-[a]-[11]-]31] 45][173][174]
CALPURNIA — —>—>—>

Intersection — —>

@ Linear in the length of the postings lists.

@ Can we do better?

Terms and Postings 50 / 67

Skip pointers

Skip pointers

Skip pointers allow us to skip postings that will not figure in
the search results.

This makes intersecting postings lists more efficient.

Some postings lists contain several million entries — so
efficiency can be an issue even if basic intersection is linear.

Where do we put skip pointers?

How do we make sure intsection results are correct?

Terms and Postings 51 / 67

Skip pointers

Skip lists: Larger example

16 28 /2
 ~
Brutus 16»19»23»28»43

5 — -
Caesar 41*51*60*71

Terms and Postings

52 / 67

Skip pointers

Intersecting with skip pointers

INTERSECTWITHSKIPS(p1, p2)
1 answer< ()
2 while p; # NIL and ps # NIL
3 do if docID(p;) = docID(p3)

4 then ADD(answer, doclD(py))

5 p1 < next(p1)

6 p2 < next(p2)

7 else if doc/D(p1) < doclD(p2)

8 then if hasSkip(p1) and (docID(skip(p1)) < doclD(p2))

9 then while hasSkip(p;) and (docID(skip(p1)) < doclD(p2))
10 do p; « skip(p1)

11 else p; < next(py)

12 else if hasSkip(p2) and (doclD(skip(p2)) < doclD(p1))

13 then while hasSkip(p2) and (docID(skip(p2)) < doclD(p1))
14 do py + skip(p2)

15 else py <+ next(p2)

16 return answer

Terms and Postings 53 / 67

Skip pointers

Where do we place skips?

@ Tradeoff: number of items skipped vs. frequency skip can be
taken

@ More skips: Each skip pointer skips only a few items, but we
can frequently use it.

o Fewer skips: Each skip pointer skips many items, but we can
not use it very often.

Terms and Postings 54 / 67

Skip pointers

Where do we place skips? (cont)

Simple heuristic: for postings list of length P, use v/P
evenly-spaced skip pointers.

This ignores the distribution of query terms.

Easy if the index is static; harder in a dynamic environment
because of updates.

How much do skip pointers help?

They used to help a lot.

Terms and Postings 55 / 67

Documents Terms Skip pointers Phrase queries

Outline

@ Phrase queries

Terms and Postings 56 / 67

Phrase queries

Phrase queries

We want to answer a query such as [stanford university] — as a
phrase.

@ The inventor Stanford Ovshinsky never went to university
should not be a match.

@ The concept of phrase query has proven easily understood by
users.

e Significant part of web queries are phrase queries (explicitly
entered or interpreted as such)

@ Consequence for inverted index: it no longer suffices to store
docIDs in postings lists.

@ Two ways of extending the inverted index:

e biword index
e positional index

Terms and Postings 57 / 67

Phrase queries

Biword indexes

@ Index every consecutive pair of terms in the text as a phrase.

@ For example, Friends, Romans, Countrymen would generate
two biwords: “friends romans” and “romans countrymen”

@ Each of these biwords is now a vocabulary term.

@ Two-word phrases can now easily be answered.

Terms and Postings 58 / 67

Phrase queries

Longer phrase queries

@ A long phrase like “stanford university palo alto” can be
represented as the Boolean query “STANFORD UNIVERSITY”
AND “UNIVERSITY PALO” AND “PALO ALTO”

@ We need to do post-filtering of hits to identify subset that
actually contains the 4-word phrase.

Terms and Postings 59 / 67

Documents Terms Skip pointers Phrase queries

Issues with biword indexes

@ Why are biword indexes rarely used?

o False positives, as noted above
e Index blowup due to very large term vocabulary

Terms and Postings 60 / 67

Phrase queries

Positional indexes

more efficient than biword indexes.
nonpositional index: each posting is just a docID
positional index: each posting is a docID and a list of positions

Eg.,

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
)

Terms and Postings 61 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4: (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4. (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Terms and Postings

62 / 67

Phrase queries

Positional indexes: Example

Query: “to; bey orz noty tos beg”

TO, 993427:
(1: (7, 18, 33, 72, 86, 231);
2: (1, 17, 74, 222, 255);
4: (8, 16, 190, 429, 433);
5: (363, 367);
7: (13, 23, 191); ..)
BE, 178239:
(1: (17, 25);
4. (17, 191, 291, 430, 434);
5: (14, 19, 101); ..)

Document 4 is a match!

Terms and Postings

62 / 67

Phrase queries

Proximity search

We just saw how to use a positional index for phrase searches.
We can also use it for proximity search.

For example: employment /4 place

Find all documents that contain EMPLOYMENT and PLACE
within 4 words of each other.

o Employment agencies that place healthcare workers are seeing
growth is a hit.

o Employment agencies that have learned to adapt now place
healthcare workers is not a hit.

Terms and Postings 63 / 67

Phrase queries

Proximity search

Use the positional index

Simplest algorithm: look at cross-product of positions of (i)
EMPLOYMENT in document and (ii) PLACE in document

Very inefficient for frequent words, especially stop words

Note that we want to return the actual matching positions,
not just a list of documents.

This is important for dynamic summaries etc.

Terms and Postings 64 / 67

Phrase queries

“Proximity” intersection

POSITIONALINTERSECT(p1, p2, k)
1 answer < ()
2 while p; # NIL and p2 # NIL
3 do if docID(p1) = docID(p2)

4 then /|« ()
5 pp1 < positions(py)
6 pp2 < positions(pa)
7 while pp; # NIL
8 do while ppy # NIL
9 do if |pos(pp1) — pos(pp2)| < k
10 then ADD(/, pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break
13 pp2 < next(ppz)
14 while /# () and |/[0] — pos(pp1)| > k
15 do DELETE(/[0])
16 for each pse/
17 do ADD(answer, (doclD(p1), pos(pp1), ps))
18 pp1 < next(pp1)
19 p1 < next(p1)
20 p2 < next(p2)
21 else if doclD(p1) < doclD(p2)
22 then p; < next(p1)
23 else py < next(p2)

24 return answer

Terms and Postings 65 / 67

Phrase queries

Combination scheme

@ Biword indexes and positional indexes can be combined.

@ Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc

@ For these biwords, increased speed compared to positional
postings intersection is substantial.

@ Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.

e Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of
26% more space for index.

Terms and Postings 66 / 67

Phrase queries

recap

@ tokenization. reduce the vocabulary

e normalization. hyphen, numbers, case-folding, other

languages. diacrtic (accent and umlauts)

@ remove stop words.

e stemming, lemmatization. porter's stemming algorithm
@ sublinear algorithm for posting intersection

o skip pointer
@ phrase queries

e biword index
e postional index
e proximity search

Terms and Postings 67 / 67

	Documents
	Terms
	General + Non-English
	Case folding
	stop words
	Stemming
	lemmatization

	Skip pointers
	Phrase queries

