
boolean queries
Inverted index

query processing
Query optimization

boolean model

September 17, 2023

Reading material: Chapter 1 of IIR

1 / 37

https://nlp.stanford.edu/IR-book/pdf/01bool.pdf

boolean queries
Inverted index

query processing
Query optimization

Outline

1 boolean queries

2 Inverted index

3 query processing

4 Query optimization

2 / 37

boolean queries
Inverted index

query processing
Query optimization

taxonomy of IR models

Document Property

text

links

multimedia

IR models

Boolean

vector

probalistic

Semistructured text

proximal nodes

xml based

web

page rank

hubs and authorities (HITs)

Multimedia

image retrieval

audio

video

Set theoretic

fuzzy

extended boolean

set-based

algebraic

generalized vector

LSI

NN

probablistic

BM25

language models

Bayersian networks

3 / 37

boolean queries
Inverted index

query processing
Query optimization

Outline

1 boolean queries

2 Inverted index

3 query processing

4 Query optimization

4 / 37

boolean queries
Inverted index

query processing
Query optimization

Boolean retrieval

The Boolean model: the simplest model for an information
retrieval system.

Queries are Boolean expressions, e.g.,

Caesar and Brutus

The search engine returns all documents that satisfy the
Boolean expression.

Does Google use the Boolean model?

5 / 37

boolean queries
Inverted index

query processing
Query optimization

Boolean retrieval

The Boolean model: the simplest model for an information
retrieval system.

Queries are Boolean expressions, e.g.,

Caesar and Brutus

The search engine returns all documents that satisfy the
Boolean expression.

Does Google use the Boolean model?

5 / 37

boolean queries
Inverted index

query processing
Query optimization

Does Google use the Boolean model?

Not a simple yes or no question.

On Google, the default interpretation of a query
w1 w2 . . .wn

is
w1 AND w2 AND . . . AND wn

Cases where you get hits that do not contain one of the wi?

6 / 37

boolean queries
Inverted index

query processing
Query optimization

Does Google use the Boolean model?

Not a simple yes or no question.

On Google, the default interpretation of a query
w1 w2 . . .wn

is
w1 AND w2 AND . . . AND wn

Cases where you get hits that do not contain one of the wi?

6 / 37

boolean queries
Inverted index

query processing
Query optimization

Cases that are not exact boolean query

anchor text

<a h r e f=”www. ibm . com”> b i g b l u e

page contains variant of wi (morphology, spelling correction,
synonym)

long queries (n large)

boolean expression generates very few hits

...

7 / 37

boolean queries
Inverted index

query processing
Query optimization

Cases that are not exact boolean query

anchor text

<a h r e f=”www. ibm . com”> b i g b l u e

page contains variant of wi (morphology, spelling correction,
synonym)

long queries (n large)

boolean expression generates very few hits

...

7 / 37

boolean queries
Inverted index

query processing
Query optimization

Cases that are not exact boolean query

anchor text

<a h r e f=”www. ibm . com”> b i g b l u e

page contains variant of wi (morphology, spelling correction,
synonym)

long queries (n large)

boolean expression generates very few hits

...

7 / 37

boolean queries
Inverted index

query processing
Query optimization

Cases that are not exact boolean query

anchor text

<a h r e f=”www. ibm . com”> b i g b l u e

page contains variant of wi (morphology, spelling correction,
synonym)

long queries (n large)

boolean expression generates very few hits

...

7 / 37

boolean queries
Inverted index

query processing
Query optimization

Cases that are not exact boolean query

anchor text

<a h r e f=”www. ibm . com”> b i g b l u e

page contains variant of wi (morphology, spelling correction,
synonym)

long queries (n large)

boolean expression generates very few hits

...

7 / 37

boolean queries
Inverted index

query processing
Query optimization

Simple Boolean vs. Ranking of result set

Simple Boolean retrieval returns matching documents in no
particular order.

Google (and others) ranks the result set

they rank good hits (according to some estimator of relevance)
higher than bad hits.

8 / 37

boolean queries
Inverted index

query processing
Query optimization

Outline

1 boolean queries

2 Inverted index

3 query processing

4 Query optimization

9 / 37

boolean queries
Inverted index

query processing
Query optimization

Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
grep is line-oriented, IR is document-oriented
“not Calpurnia” is non-trivial
Other operations (e.g., find the word Romans near
countryman) not feasible

10 / 37

boolean queries
Inverted index

query processing
Query optimization

Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
grep is line-oriented, IR is document-oriented
“not Calpurnia” is non-trivial
Other operations (e.g., find the word Romans near
countryman) not feasible

10 / 37

boolean queries
Inverted index

query processing
Query optimization

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

11 / 37

boolean queries
Inverted index

query processing
Query optimization

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

11 / 37

boolean queries
Inverted index

query processing
Query optimization

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

11 / 37

boolean queries
Inverted index

query processing
Query optimization

Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutusand Caesar and not
Calpurnia:

Take the vectors for Brutus, Caesar, and Calpurnia
Complement the vector of Calpurnia
Do a (bitwise) and on the three vectors

Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
not Calpurnia 1 0 1 1 1 1

AND 1 0 0 1 0 0

12 / 37

boolean queries
Inverted index

query processing
Query optimization

0/1 vectors and result of bitwise operations

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

result: 1 0 0 1 0 0

13 / 37

boolean queries
Inverted index

query processing
Query optimization

Answers to query

Anthony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’ the

Capitol; Brutus killed me.

14 / 37

boolean queries
Inverted index

query processing
Query optimization

Bigger collections

Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

On average 6 bytes per token, including spaces and
punctuation

⇒ size of document collection is about 6 · 109 = 6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

15 / 37

boolean queries
Inverted index

query processing
Query optimization

Can’t build the incidence matrix

M = 500, 000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.

Matrix is extremely sparse.

What is a better representations?

We only record the 1s.

16 / 37

boolean queries
Inverted index

query processing
Query optimization

Can’t build the incidence matrix

M = 500, 000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.

Matrix is extremely sparse.

What is a better representations?

We only record the 1s.

16 / 37

boolean queries
Inverted index

query processing
Query optimization

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

17 / 37

boolean queries
Inverted index

query processing
Query optimization

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

17 / 37

boolean queries
Inverted index

query processing
Query optimization

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

17 / 37

boolean queries
Inverted index

query processing
Query optimization

Inverted index construction

1 Collect the documents to be indexed:
Friends, Romans, countrymen. So let it be with Caesar . . .

2 Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3 Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms:

friend roman countryman so . . .

4 Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

18 / 37

boolean queries
Inverted index

query processing
Query optimization

Tokenization and preprocessing
Doc 1. I did enact Julius Caesar: I
was killed i’ the Capitol; Brutus killed
me.
Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

=⇒
Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

19 / 37

boolean queries
Inverted index

query processing
Query optimization

Generate postings

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

=⇒

term docID
i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

20 / 37

boolean queries
Inverted index

query processing
Query optimization

Sort postings
term docID
i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

21 / 37

boolean queries
Inverted index

query processing
Query optimization

Create postings lists, determine document frequency
term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

i 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

22 / 37

boolean queries
Inverted index

query processing
Query optimization

Split the result into dictionary and postings file

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file

23 / 37

boolean queries
Inverted index

query processing
Query optimization

Outline

1 boolean queries

2 Inverted index

3 query processing

4 Query optimization

24 / 37

boolean queries
Inverted index

query processing
Query optimization

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To find all matching documents using inverted index:
1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings file
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings file
5 Intersect the two postings lists
6 Return intersection to user

25 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

26 / 37

boolean queries
Inverted index

query processing
Query optimization

Intersecting two postings lists

Intersect(p1, p2)
1 answer ← ⟨ ⟩
2 while p1 ̸= nil and p2 ̸= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)
10 return answer

Question: can we make it faster?

27 / 37

boolean queries
Inverted index

query processing
Query optimization

Query processing: Exercise

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)

28 / 37

boolean queries
Inverted index

query processing
Query optimization

Boolean retrieval model: Assessment

The Boolean retrieval model can answer any query that is a
Boolean expression.

Boolean queries are queries that use and, or and not to join
query terms.
Views each document as a set of terms.
Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades

Many professional searchers (e.g., lawyers) still like Boolean
queries.

You know exactly what you are getting.

Many search systems you use are also Boolean: spotlight,
email, intranet etc.

29 / 37

boolean queries
Inverted index

query processing
Query optimization

Outline

1 boolean queries

2 Inverted index

3 query processing

4 Query optimization

30 / 37

boolean queries
Inverted index

query processing
Query optimization

Query optimization

Consider a query that is an and of n terms, n > 2

For each of the terms, get its postings list, then and them
together

Example query: Brutus AND Calpurnia AND Caesar

What is the best order for processing this query?

31 / 37

boolean queries
Inverted index

query processing
Query optimization

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

32 / 37

boolean queries
Inverted index

query processing
Query optimization

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

32 / 37

boolean queries
Inverted index

query processing
Query optimization

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

32 / 37

boolean queries
Inverted index

query processing
Query optimization

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

32 / 37

boolean queries
Inverted index

query processing
Query optimization

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

32 / 37

boolean queries
Inverted index

query processing
Query optimization

Optimized intersection algorithm for conjunctive queries

Intersect(⟨t1, . . . , tn⟩)
1 terms ← SortByIncreasingFrequency(⟨t1, . . . , tn⟩)
2 result ← postings(first(terms))
3 terms ← rest(terms)
4 while terms ̸= nil and result ̸= nil
5 do result ← Intersect(result, postings(first(terms)))
6 terms ← rest(terms)
7 return result

33 / 37

boolean queries
Inverted index

query processing
Query optimization

More general optimization

Example query: (madding or crowd) and (ignoble or
strife)

Get frequencies for all terms

Estimate the size of each or by the sum of its frequencies
(conservative)

Process in increasing order of or sizes

34 / 37

boolean queries
Inverted index

query processing
Query optimization

Advantages and disadvantages of Boolean Model

Advantages:

Easy for the system

Users get transparency: it is easy to understand why a
document was or was not retrieved

Users get control: it easy to determine whether the query is
too specific (few results) or too broad (many results)

Disadvantages:

The burden is on the user to formulate a good boolean query

35 / 37

boolean queries
Inverted index

query processing
Query optimization

search engine envisioned in 1945

memex (memory extender), described by Vannevar Bush in 1945.
”As We May Think”.

36 / 37

boolean queries
Inverted index

query processing
Query optimization

The memex (memory extender) is the name of the
hypothetical proto-hypertext system

Bush envisioned the memex as a device in which individuals
would compress and store all of their books, records, and
communications,

”mechanized so that it may be consulted with exceeding
speed and flexibility.”

The memex would provide an ”enlarged intimate supplement
to one’s memory”.

The concept of the memex influenced the development of
early hypertext systems (eventually leading to the creation of
the World Wide Web).

used a form of document bookmark list, of static microfilm
pages, rather than a true hypertext system where parts of
pages would have internal structure beyond the common
textual format.

37 / 37

	boolean queries
	Inverted index
	query processing
	Query optimization

