
1

Near Duplicate Detection

http://infolab.stanford.edu/~ullman/mmds/ch3.pdf

http://infolab.stanford.edu/~ullman/mmds/ch3.pdf

2

Duplication is a problem

The Web

Ad indexes

!"#!! "#A%CDA!$!E!$%!FG!HIF%D!&'($%'%%%!GFJ!)*"+".!L%,$-!A#0F1OAP!!

.*"+"4!R10!EE!S1TDUV1W!#CA#!VA!H!0F;<JF;VA#!
SD!DU#!U#HJD!FG!TF%J!UF;#4!S<<CVH10#A!IT!.*"+".!,,,!=[S.!DF!)*"+".0F;.!"#AVO#1DVHC!S<<CVH10#A.!
?H0%%;!]C#H1#JA.!AVAUBHAU#JA.!]FFCV1W!S<<CVH10#A.![D#H;!ab#1.!]FGG##![TAD#;!,,,!!
BBB.)*"+".0F;c!E!deC!E!]H0U#O!E![V;VCHJ!<HW#A!!

.*"+"!
f#C0F;#!DF!.*"+"4!DU#!UF;#!FG!DU#!b#JT!I#AD!H<<CVH10#A!H1O!CVD0U#1A!V1!DU#!BFJCO.!!
BBB.)*"+".0F.%Cc!E!gC!E!]H0U#O!E![V;VCHJ!<HW#A!!

.*"+"!E!A#%DA0U#J!h#JAD#CC#J!bF1!iV1IH%W#JMD#14!hH%AW#JMD#1!,,,!E!k!lJH1ACHD#!DUVA!
<HW#!m!
AHA!nFJDHC!o%;!lU#;H!iAA#1!p!T#1V#AA#1!F1CV1#!%1D#J!BBB.o%EDVA0U.O#.!.*"+"!B#CDB#VD!
...#V1!r#I#1!CH1W.!,,,!fMUC#1![V#!OV#!.*"+"!?#JDJ#D%1W!RUJ#A!rH1O#A.!!
BBB.)*"+".O#c!E!seC!E!]H0U#O!E![V;VCHJ!<HW#A!!

h#JoCV0U!BVCCCF;;#1!I#V!.*"+"!tAD#JJ#V0U!E!k!lJH1ACHD#!DUVA!<HW#!m!
h#JoCV0U!BVCCCF;;#1!I#V!.*"+"!tAD#JJ#V0U!f#11![V#!1V0UD!H%DF;HDVA0U!
B#VD#JW#C#VD#D!B#JO#14!CCV0C#1![V#!IVDD#!UV#Ju!hS=[hSrl[Ti"vli!,,,!!
BBB.)*"+".HDc!E!gC!E!]H0U#O!E![V;VCHJ!<HW#A!!

!

!

!

!

!!
[<F1AFJ#O!rV1CA!

!
]T!S<<CVH10#!iw<J#AA!
AVA0F%1D!S<<CVH10#A!LxyeP!zyxEg^gs!
[H;#!AHT!]#JDVGV#O!R1ADHCCHDVF1!
BBB.0WH<<CVH10#.0F;!
[H1!_JH10VA0FEaHCCH1OE[H1!`FA#4!
]S!
!
.*"+"!?H0%%;!]C#H1#JA!
.*"+"!?H0%%;AE!]F;<C#D#![#C#0DVF1!
_J##![UV<<V1Wu!
BBB.bH0%%;A.0F;!
!
.*"+"!?H0%%;!]C#H1#JA!
.*"+"E_J##!SVJ!AUV<<V1Wu!
SCC!;FO#CA.!h#C<G%C!HObV0#.!
BBB.I#ADEbH0%%;.0F;!
!
!!

!
!!!!!!

!

Web spider

Indexer

Indexes

Search

User

Sec. 19.4.1

links

queries

3

Duplicate documents

• The web is full of duplicated content
– About 30% are duplicates

• Duplicates need to be removed for
– Crawling
– Indexing
– Statistical studies

• Strict duplicate detection = exact match
– Not as common

• But many, many cases of near duplicates
– E.g., Last modified date the only difference between two copies of

a page
– Other minor difference such as web master, logo, …

Sec. 19.6

4

Other applications

• Many Web-mining problems can be expressed as finding
“similar” sets:
1. Topic classification--Pages with similar words, Mirror web sites,

Similar news articles

2. Recommendation systems--NetFlix users with similar tastes in
movies.

3. movies with similar sets of fans.

4. Images of related things.

5. Community in online social networks

6. Plagiarism

5

Algorithms for finding similarities

• Edit distance
– Distance between A and B is defined as the minimal number of

operations to edit A into B
– Mathematically elegant

– Many applications (like auto-correction of spelling)

– Not efficient

• Shingling

6

Techniques for Similar Documents

• Shingling : convert documents, emails, etc., to sets.

• Minhashing : convert large sets to short signatures,
while preserving similarity.

ShinglingDocu-
ment

The set
of terms
of length k
that appear
in the document

Min-hash-
ing

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

From Anand
Rajaraman (anand @ kosmix
dt com), Jeffrey D. Ullman

http://www-db.stanford.edu/~anand/
http://www-db.stanford.edu/~anand/
http://www-db.stanford.edu/~ullman/

7

Shingles
• A k -shingle (or k -gram) for a document is a sequence of k terms that

appears in the document.

• Example:
– a rose is a rose is a rose →
 a rose is a
 rose is a rose
 is a rose is
 a rose is a
 rose is a rose
The set of shingles is {a rose is a, rose is a rose, is a rose is, a rose is a}

• Note that “a rose is a rose” is repeated twice, but only appear once in the set
– Option: regard shingles as a bag, and count “a rose is a” twice.

• Represent a doc by its set of k-shingles.

• Documents that have lots of shingles in common have similar text, even if
the text appears in different order.

• Careful: you must pick k large enough.
– If k=1, most documents overlap a lot.

8

Jaccard similarity

– a rose is a rose is a rose
 è {a rose is a, rose is a rose, is a

rose is, a rose is a}

– A rose is a rose that is it
è {a rose is a, rose is a rose, is a

rose that, a rose that is, rose
that is it}

2 in intersection.
7 in union.
Jaccard similarity
 = 2/7

A
rose
is a

Rose
is a
rose

Is a rose
that

Is a rose
is

A rose
that is

rose that
is it

a rose is
a

!"

!"
!" ##

##
$#%C'((')*+#



"
=

9

The size is the problem

• The shingle set can be very large

• There are many documents (many shingle sets) to
compare

– Billions of documents and shingles

• Problems:
– Memory: When the shingle sets are so large or so many that they

cannot fit in main memory.

– Time: Or, when there are so many sets that comparing all pairs of
sets takes too much time.

– Or both.

10

Shingles + Set Intersection

• Computing exact set intersection of shingles between all
pairs of documents is expensive/intractable
– Approximate using a cleverly chosen subset of shingles from each

(a sketch)

• Estimate (size_of_intersection / size_of_union) based on
a short sketch

Doc
A

Shingle set A Sketch A

Doc
B

Shingle set B Sketch B

Jaccard

Sec. 19.6

11

Set Similarity of sets Ci , Cj

• View sets as columns of a matrix A; one row for each element in the
universe. aij = 1 indicates presence of shingle i in set (document) j

• Example

!"

!"
!" ##

##
$#%C'((')*+#



"
=

C1 C2

 0 1
 1 0
 1 1
 0 0
 1 1
 0 1

Sec. 19.6

Jaccard(C1,C2) =
2/5 = 0.4

12

Key Observation

• For columns C1, C2, four types of rows
 C1 C2

 A 1 1

 B 1 0

 C 0 1

 D 0 0

• Overload notation: A = # of rows of type A

• Claim

!"#
#A!BC'((')*+! ,J ++

=

Sec. 19.6

13

Estimating Jaccard similarity

• Randomly permute rows

• Hash h(Ci) = index of first row with 1 in column Ci

• Property

•Why?
– Both are A/(A+B+C)
– Look down columns C1, C2 until first non-Type-D row
– h(Ci) = h(Cj) ßà type A row

€

P h(Ci) = h(Cj) [] = Jaccard Ci,Cj()

Sec. 19.6

C1 C2

 0 1
 1 0
 1 1
 0 0
 1 1
 0 1
 0 0
 0 0

14

Representing documents and shingles

• To compress long shingles, we
can hash them to (say) 4 bytes.

• Represent a doc by the set of
hash values of its k-shingles.

• Represent the documents as a
matrix

– 4 documents
– 7 shingles in total
– Column is a document
– Each row is a shingle

• In real application the matrix is
sparse—there are many empty
cells

doc1 doc2 doc3 Doc4

Shingle 1 1 1
Shingle 2 1 1

Shingle 3 1 1

Shingle 4 1 1
Shingle 5 1 1
Shingle 6 1 1
Shingle 7 1 1

15

1 1
1 1

1 1
1 1
1 1

1 1
1 1

3
4
7
6
1
2
5

Input m
atri

x

2 1 2 12 1 2 1
3 6 3 4
4 7 5 6
5 7

3 3
4 4

7 7
6 6
1 1

2 2
5 5

Random permutation

Signature matrix

Hashed

Sorted

Hash sort

min

Similarities:

•1~3: 1

•2~4: 1

•1~4: 0

4 docs

16

Repeat the previous process

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

17

More Hashings produce better result

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

18

Sketch of a document

• Create a “sketch vector” (of size ~200) for each
document

–Documents that share ≥ t (say 80%) corresponding
vector elements are near duplicates

– For doc D, sketchD[i] is as follows:
– Let f map all shingles in the universe to 0..2m (e.g., f =

fingerprinting)
– Let pi be a random permutation on 0..2m

– Pick MIN {pi(f(s))} over all shingles s in D

Sec. 19.6

How to detect similar pairs

• Exhaustive comparison is prohibitive
– Time complexity to compare all pairs: O(n^2)

– Our goal is not to calculate the similarity between all pairs

– We only need to identify the top pairs

• Hashing the signature into buckets

• If two documents are found in the same bucket, then they
are probability similar

19

20

