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Why sampling

Applications
�� ��DeepWeb

�� ��OSN
�� ��SouceCode

�� ��SemanticWeb
|

|
Properties

�� ��Size
�� ��Distribution

�� ��Ranking
�� ��Community

�� ��Diameter
�� ��CluterteringCoefficient

We need to estimate the properties for two reasons:

Data in its entirety is not available (e.g., Facebook), or without central control (e.g., WWW),
or evolving.
Data is big. Quadratic algorithms are not feasible.
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Deep web graph model
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B: same graph as (A) in spring model layout

Figure: Hidden data source as a bipartite graph
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What to sample for

data size;

distributions;

clustering coefficient;

communities;

influential bloggers (degree, pageRank, Katz centralities, etc.)

Outliers (spammers, zombies, inflated followers)
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How to sample
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Sample by random node;
Sample by random edge;
Sample by random walk;
Combinations and modifications. e.g., random walk with uniform random restart.
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What is different from traditional sampling

Most of the networks are scale-free. Degrees have very large variance. Uniform
random sampling does not work.

Precise sampling: quantities are digitalized, making the sampling process
precise. e.g., know the exact degree, and can choose uniformly at random from
the neighbouring nodes. Only possible for ONLINE social networks not real social
networks.

Access interface: provide interface APIs, many options. Can design new sampling
schemes using APIs.
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Size estimation

Applications

Size of web, search engines

Size of Online Social Network (Twitter, Weibo)

Number of bugs in programs

...
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Capture-Recapture Method

The estimator often used
When all the elements have equal probability of being sampled,

N =
n1n2

d
(1)

where n1 and n2 are the number of samples in two capture occasions, d is the
duplicates.

Lawrence and C. Giles. Searching the world wide web. Science,
280(5360):98-100, 1998.

A. Broder and et al. Estimating corpus size via queries. In CIKM, pages 594-603.
ACM, 2006.

L. Katzir, E. Liberty, and O. Somekh. Estimating sizes of social networks via
biased sampling. In WWW, pages 597-606. ACM, 2011.

Petersson et al., Capture–recapture in software inspections after 10 years
research—-theory, evaluation and application, Journal of Systems and Software,
2004.

Lots of research on obtaining uniform random sampling, using methods such as
Metropolis-Hasting Random Walk

Bar-Yossef et al. Random sampling from a search engine’s index, JACM 2008.
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Multiple Capture-Recapture

Equal sampling probability

N =
n2

2C
(2)

where n is total number of sampled elements, C is the number of collisions

Unequal sampling probability

N =
n2

2C
Γ (3)

where Γ is the normalized variance of the degrees of the graph

How large is Γ?
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Γ in various datasets

Graph N(×103) γ or
√

Γ− 1 Φ(×10−5)
WikiTalk [?] 2,388 26.32 2,700

BerkStan [?] 654 14.51 5.3
EmailEu [?] 224 13.66 13
Stanford [?] 255 11.51 5.8

Skitter [?] 1,694 10.46 56
Youtube [?] 1,134 9.64 440

NotreDame [?] 325 6.40 9.4
Gowalla [?] 196 5.54 1,200
Epinion [?] 75 4.02 610
Google [?] 855 4.00 62

Slashdot [?] 82 3.35 1,900
Facebook [?] 2,937 3.14 590

Flickr [?] 105 2.64 68
IMDB [?] 374 2.05 130
DBLP [?] 511 1.61 560

Amazon [?] 410 1.27 98
Gnutella [?] 62 1.21 9,100

CitePatents [?] 3,764 1.20 1,100

Table: Statistics of the 18 real-world graphs, sorted in descending order of the coefficient of degree
variation γ. Φ is the conductance.

For Twitter data, Γ ≈ 1300.
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Bias Correction

Theorem
The relative bias of N̂ can be approximated by the reciprocal of E(C), i.e.,

RB ≈
1

E(C)
(4)

Jianguo Lu, Dingding Li, Bias Correction in Small Sample from Big Data, TKDE, 2013.
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Figure: RB and 1/E(C) against sample sizes in simulation study. It shows that N̂ is biased upwards,
and the relative bias can be approximated by the reciprocal of E(C).
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Our bias corrected estimators

N =
n2

2(C + 1)
(5)

N =
n2

2(C + 1)
Γ (6)
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Figure: N̂ and N̂S over 104 runs for various sample size in simulation study. Red dotted line is the
true value.
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Twitter data

N=41million.
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Uniform Random Sampling not Recommended

Lemma (Variance of N̂N )

The estimated variance of RN estimator N̂N is

v̂ar(N̂N ) ≈
N2

E(C)
≈

2N3

n2
(7)

Lemma (Variance of N̂E )

The estimated variance of RE estimator N̂E is

v̂ar(N̂E ) ≈
2N3

n2Γ

(
1 +

nΓCV 2(Γ)

2N

)
, (8)

where CV (Γ) is the coefficient of variation of Γ.

Theorem (RN vs. RE)

To achieve the same variance of N̂E , N̂N needs to use at most
√

Γ times more
samples.
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Estimated vs. observed
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Figure: Estimated and observed RSE of RE sampling with the growth of sample size over 18
datasets. The sample size ranges between 10×

√
2N/Γ and 20×

√
2N/Γ, i.e., the expected

collisions are between 100 and 400.
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RN and RE Sampling on Facebook Data
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Comparison of RN, RE, and RW Sampling

Figure: Comparison of three sampling methods. The sample size n =
√

2NC where
√

C = 10. It shows
that for RN sampling (red solid bars), the relative standard error is equal to 1/

√
C = 0.1 across all the

datasets. RE sampling is consistently smaller than RN sampling.RW sampling can approximate RE
sampling for some datasets. For NotreDame etc. that have low conductance, RW is grossly wrong.
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Why RW Varies

100~+∞

10~99
2~9
1

Figure: Subgraphs obtained by RW sampling from Flickr, EmailEu, Stanford and Youtube. Each
subgraph contains 60,000 nodes. Node colour represents its degree in the original graph.
Green=1; Blue=2 ∼ 9; Orange= 10∼99; Red=100∼ ∞.
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Sampling for average degree

Average degree is an important metrics in any network

In and out average degrees in Weibo are different.

Naive method–arithmetic sample mean

Problem– Variance is too large because of the power law

Solution– Use PPS (RE) sampling and harmonic mean estimator

On Twitter, PPS sampling can be hundreds of times better
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Average Degree Estimation

〈̂d〉RN =
1
n

n∑
i=1

dxi (9)

〈̂d〉RE = 〈̂d〉RW = n

[ n∑
i=1

1
dxi

]−1

(10)

Theorem
Suppose the degrees follow Zipf’s law with exponent one, i.e., di = A

α+i . The variance
of the random node estimator is

var(〈̂d〉RN ) ≈
〈d〉2

n

(
N
[

(α+ 1) ln2 N + α

1 + α

]−1
− 1

)
. (11)

var(〈̂d〉RE ) ≈
〈d〉2

n

(
1
2

ln
N + α

1 + α
− 1
)
. (12)

Main conclusion
RE is better than RN in many cases; RW depends on graph conductance.
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Degree distribution
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Plots are sorted in decreasing order of coefficient of variation γ.

Most of them follow power-law, yet they are very different
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Comparison of Three Sampling methods
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Comparison of RN and RE
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Comparison of RN, RE, and RW Samplings
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Figure: RRMSEs of RN, RE, and RW samplings as a function of sample size for 18 graphs.
The dotted, dashed, and solid lines are for RN(. . . ), RE(−−), and RW(–) samplings
respectively. It shows that in most cases the sample size does not change the relative
positions of the sampling methods. The exceptions are the web graphs 3 and 5 where RW
sampling does not improve with the increase of sample size because of the random walk
traps.
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Sample distribution
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Figure: The degree distributions of the samples obtained from RE (Random Edge)
samplings. n=8,000. The log-log plots in the first two rows exhibit a “V" shape, where the
sampled small nodes resemble the distribution of the original graph, while the sampled
large nodes have a tail pointing upwards. These plots in the first two rows indicate that both
small and large nodes are well represented in the sample. The plots in the last row indicate
that the sample distribution is similar to the original distribution, therefore the RRMSE of RE
sampling is similar to that of RN sampling.
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Graph conductance and RW sampling
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Figure: Standard error ratio between RW and RE vs. graph conductance Φ for 18 datasets.
Sample size is 400.
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Network Structure

Flickr NotreDame Stanford Web

100~+∞

10~99
2~9
1

Amazon Facebook-2 Youtube

Figure: Random walks on six networks. Flickr, NotreDame and Stanford have loosely
connected components while Amazon, Facebook and Youtube are well enmeshed. Each
random walk contains 6× 104 nodes except NotreDame which has 15× 104 nodes. Node
colour indicates the degree of the node. Green=1; Blue=2∼9; Yellow=10∼99; Red=100+.
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Figure: Conductance Φ(S) over |S|, the size of the the components, for six networks. Plots
are drawn using SNAP API described in [?].
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Weibo

Very important

We can access only partial information
What is the global picture?

Size
Distribution
Most influential
Overall topology (e.g. clustering coefficient)
Message diffusion, Critical nodes
Communities
...
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Star Sampling

Select nodes uniformly at random
(e.g., nodes 1 and 6);

Take all the neighbours as sample
(nodes 2,3,4,5,5,7,9);

It approximate PPS (probability
proportional to size) sampling;

More efficient than random walk by
taking all the neighbours instead a
random one;

We sampled around one million
Weibo stars;
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Degrees and Messages

Figure: Estimated out-degree, in-degree, and message distributions of Weibo.

Average in-degree and out-degree as 32.10 (CI 31.91, 32.29) and 54.39 (CI 49.02,
59.76), respectively.
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Estimation of followers

fi di 〈̂d〉i Difference Ratio
1 85016 23,335,290 16,859,105 6,476,185 0.38
2 75243 15,945,306 14,921,069 1,024,237 0.06
3 71417 15,247,604 14,162,354 1,085,250 0.07
4 37914 13,394,620 7,518,539 5,876,081 0.78
5 61962 13,278,161 12,287,380 990,781 0.08
6 63308 13,153,177 12,554,298 598,879 0.04
7 59969 12,990,041 11,892,158 1,097,883 0.09
8 57100 12,604,270 11,323,220 1,281,050 0.11
9 59406 12,097,122 11,780,512 316,610 0.02

10 54264 12,003,137 10,760,827 1,242,310 0.11

Table: Estimation for the top 10 Weibo accounts. fi : capture frequency of account i ; di : claimed
in-degree or number of followers; 〈̂d〉i : estimated number of followers; Ratio = (di − 〈̂d〉i )/〈̂d〉i .
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Estimated Followers
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Estimated vs. Claimed Followers
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Figure: Estimated followers vs. claimed followers in log-log scale. The Pearson correlation
coefficient is 0.9797.
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Whether is it correct ...

Relative standard deviation of the estimator is

RSD(d̂i ) = 1/
√

fi . (13)
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Figure: Sampling accuracy on existing data
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