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Discover Hidden Web Properties by Random Walk on
Bipartite Graph

Yan Wang · Jie Liang · Jianguo Lu

Abstract This paper proposes to use random walk to discover the properties
of the deep web data sources that are hidden behind searchable interfaces. The
properties, such as the average degree and population size of both documents and
terms, are of interests to general public, and find their applications in business
intelligence, data integration and deep web crawling. We show that simple random
walk (RW) can outperform the uniform random (UR) samples disregarding the
high cost of uniform random sampling. We prove that in the idealized case when
the degrees follow Zipf’s law, the sample size of UR sampling needs to grow in the
order of O(N/ln2N) with the corpus size N , while the sample size of RW sampling
grows logarithmically. Reuters corpus is used to demonstrate that the term degrees
resemble power law distribution, thus RW is better than UR sampling. On the
other hand, document degrees have lognormal distribution and exhibit a smaller
variance, therefore UR sampling is slightly better.

Keywords Hidden data source, deep web, random walk, graph sampling,
estimator, Zipf’s law.

1 Introduction

Searchable forms are ubiquitous on the web. Many web sites, especially the large
ones, have searchable interfaces such as HTML Forms or programmable web APIs.
The data hidden behind a searchable interface constitute a hidden web data source
[5] that can be accessed by queries only. The profiles of a hidden data source,
including the average degrees and the total population size for both terms and
documents in a data source, are of great interest to general public and business
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competitors [24], to data crawlers [35,49,34,21,41], and to virtual data integrators
such as vertical portals and meta search engines [47,45]. In business intelligence,
people would like to know the number of users in Facebook, their average number
of follower and their variations. In distributed information retrieval there is a need
to profile the data sources before deciding where the queries should be sent to [8,
45]. In deep web crawling, it needs to know how many documents are there so that
it can decide when to stop the crawling [35,51].

Discovering these properties has been a long lasting challenge [8], mainly due
to the unequal probability of the data being sampled, or the heterogeneity of the
data. Consequently it is difficulty or costly to obtain the uniform random samples
[2,4]. This paper shows that instead of using uniform random (UR) samples, the
biased sample obtained by simple random walk (RW) on the document-term graph
can perform better.

For instance, we may want to learn the average document frequencies of the
terms in a data source, or the average degree of the terms in its term-document
graph. Average degree can be used to derive other properties such as degree vari-
ance and population size as we will show in Section 4. In turn average degree and
population size reveal the total number of terms of the hidden corpus.

Given N number of terms labeled as 1, 2, . . . , N , and their degrees d1, d2, . . . , dN .
The average degree is

〈d〉 =
1

N

N∑
i=1

di. (1)

One obvious but often impractical estimation method is via Uniform Random
(UR) sampling, i.e., select a set of terms {x1, x2 . . . , xn} where xi ∈ {1, 2, . . . , N}
randomly with equal probability, count their degrees {dx1 , dx2 , . . . , dxn} for each
term, and calculate the sample mean as the estimate of the population mean:

〈̂d〉SM =
1

n

n∑
i=1

dxi . (2)

The sample mean estimator 〈̂d〉SM is unbiased if the terms or documents are
homogeneous, i.e., they can be selected randomly with equal probability. Unfortu-
nately this is not the case in most practice. Popular terms have a higher probability
being sampled if terms are selected randomly from a document. Similarly, large
documents tend to have a higher probability of being sampled if they are selected
by random queries.

To analyze such heterogeneous data where elements have unequal probabilities
of being sampled, various sampling methods have been studied for hidden data
sources including search engine indexes [2], and in related areas such as the Web
[20], graphs [26,3], online social networks [15,40], and real social networks [44,
50]. The typical underlying techniques include Metropolis Hasting Random Walk
(MHRW) [36] for uniform sampling and Random Walk (RW) [28] for unequal
probability sampling. MHRW is reported rather good at obtaining a random sam-
ple. However, in the sampling process many nodes are retrieved, examined, and
rejected. The cost is rather high especially for hidden data sources. The samples
are retrieved by queries that occupy network traffic, let alone the daily quotas
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impose by data providers. Thus a practical sampling method should include all
the samples even if they induce bias.

Even when random samples are obtained, the sample mean estimator has a
high variance because the degree distribution of the terms usually follows Zipf’s
law [55] [37]. Most terms have small degrees, while a few of them have huge degrees.
The inclusion/exclusion of a huge term such as a stop word in a sample will make
the estimation diverge.

We propose to use harmonic mean, instead of arithmetic mean, of the sample
as the estimator of the average degree of documents and terms:

〈̂d〉H = n

[
n∑
i=1

1

dxi

]−1

. (3)

Here the subscript H indicates that it is the harmonic mean, and that it can be
derived from the traditional Hansen-Hurwitz estimator [19].

The sample for this estimator is obtained by low cost simple random walk
where the node selection probability is asymptotically proportional to its degree.
It is rather common to use Hansen-Hurwitz related estimators when selection
probabilities are not equal for elements in the population. But usually people use
PPS (Probability Proportional to Size) sampling because of the unavailability of

random samples [44]. This paper shows that 〈̂d〉H can be better than the sample
mean estimator even when uniform random samples are available–it has a very
small bias, and the variance is smaller than the sample mean estimator for terms
and is only slightly larger for the documents.

The crux of population size estimation is the heterogeneity of the data–documents
and terms have unequal probabilities of being sampled. Yet the degree of the het-
erogeneity, called Coefficient of Variation (CV, denoted as γ hereafter), is difficult
to predict in traditional sampling studies where the accurate degree is hard to
quantify. In our setting the degrees of sampled documents and terms are easy to
obtain, thereby the average degree is ascertained accurately thanks to the estima-

tor 〈̂d〉H . Thus, the coefficient of variation can be estimated by

γ̂2 + 1 =
1

〈d〉n

n∑
1

dxi . (4)

With the knowledge of γ, the population size can be obtained by

N̂ = (γ̂2 + 1)N0 = (γ̂2 + 1)

(
n

2

)
1

C
. (5)

Here N0 is an estimator for homogeneous data, and (n2) 1
C is one of the N0 estima-

tors. C is the collisions of the nodes happened during sampling.
Our main contributions in this paper can be summarized as follows:

– For average degree estimation we show that RW sampling can outperform UR
sampling, even ignoring the high cost of obtaining the uniform random samples.

– We show that RW is not always better than UR sampling. We give the condition
when RW could be better.

– We show that average degree is an important property that can lead to the
discovery of the population size;
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– We solved the open problem to correct the bias in capture-recapture method. It
is well known in the area of capture-recapture method that there is a negative
bias when the data is heterogeneous. The problem to quantify and consequently
correct this bias has never been solved. We show that the population size can be
estimated first as if the data were homogeneous, then multiply the estimation
by γ2 + 1. In particular, we show that it is a practical approach because of the
success estimation of the mean degree that leads to the discovery of γ2.

In the following we will first introduce the related work, especially the back-
ground of population size estimation. Then we model the query-based sampling as
a random walk on a bipartite graph. Section 4 introduces two estimators, one for
average degree and the other for population size. We prove that in the idealized
case where term degrees follow Zipf’s law with exponent one, our proposed estima-

tor 〈̂d〉H is much better than 〈̂d〉SM when the corpus size is large. The experiments
section dissects the Reuter corpus with details of the data distributions, sample
distributions, and estimation results with various sample sizes. Then we give an

intuitive explanation for why 〈̂d〉H can reduce the variance.

2 Related work

Query based profiling of hidden data sources has been studied ever since the occur-
rence of web query interfaces. One of the early influential works is the estimation
of search engine size [24]. The problem can be further classified by the syntax
of the queries allowed and the types of data bases sitting behind. Queries can be
simple key words [9,46,7,31,53], boolean expressions [24], or even SQL queries [13,
14,18]. The data sources can be text databases such as a collection of documents
[9,46,7,3], or structured data in the form of relational database tables [13,14,18].
Our paper assumes simple keyword interfacing with textual database.

The background of this research is the population size estimation and sampling
that have been widely studied in other disciplines [48] especially in ecology [1] and
social studies [44], and more recently in computer science for estimating the size
of the web [24], databases [18], web data sources [53,14,20,54,7], and online social
networks [22,15,52].

2.1 Average degree estimation

At the first sight, the average degree estimation problem seems neither important
nor difficult. In reality it is an important problem in that 1) it leads to the discovery
of the coefficient of variation (CV), in turn CV can be used in the population
size estimation; 2) it reveals the overall data size. Average degree estimation is
also a difficult problem because uniform random samples may not be directly
available due to the restricted sampling interface as in the query-based sampling.
Although there are studies to obtain the uniform random sample using rejection
method or MHRW [3], the cost will be rather high. Therefore there are studies
to use the biased sample directly, and use harmonic mean to adjust the bias. The
detailed derivation of the harmonic mean estimator can be found in [44] where
the purpose is to sample hidden population such as drug-addicts. In this setting
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it is impossible to evaluate the estimator because neither the true value nor the
sampling probability can be verified. The biased samples are taken because uniform
random sampling is impossible. The harmonic mean estimator is derived to correct
the bias, not to improve the performance of the estimation.

In the area of peer-to-peer network [42] and online social network [23,16], the
re-weighted random walk that resembles harmonic mean was used and empirically
compared with MHRW, but not with uniform random samples.

Our work is the first to show that RW can outperform UR samples disregard-
ing the cost of obtaining these samples. In addition, we give the conditions when
RW could be better. The preliminary result was also published in our workshop
paper [32] where the data is online social network. This paper reports our recent
progresses on the following aspects: 1) we experiment on text bipartite graph in-
stead of the non-bipartite graph representing social networks; 2) we show that RW
is not always better than UR sampling, and analytically give the conditions when
RW outperforms UR sampling; 3) the experiments verifie that when the degree
distribution follows power law, RW sampling is much better than UR sampling.
When the degree distribution is log-normal, UR is slightly better than RW sam-
pling; 4) in addition to average degree estimation, population size estimation is
discussed and experimented in detail; 5) we added the intuitive explanation as for
why UR can be better than RW sampling.

2.2 Population size estimation

2.2.1 Capture-Recapture Method

The starting point of population estimation is the well-known Lincoln-Petersen
estimator [1] that can be applied when there are two sampling occasions and
every node has equal probability of being sampled:

N̂LP =
n1n2
d

, (6)

where n1 is the number of nodes sampled in the first capture occasion, n2 is
the number of nodes sampled in the second occasion, d is the duplicates among
two samples. The assumptions of Lincoln-Petersen estimator can be hardly met
in reality. It is extended in two dimensions: one is allowing multiple sampling
occasions, the other is supporting heterogeneity in capture probability, as will be
discussed in the next two subsections.

Albeit its simplicity and severe restriction, most of the existing work used
the capture-recapture sampling method and the corresponding Lincoln-Petersen
estimator in one form or another. The classic work is the estimation of the Web
and the search engines described in [25] and [6]. Both approaches use queries to
capture documents, and count the duplicates between the two captures. In [25],
Lawrence and Giles were aware that the estimation is not accurate, therefore they
presented the estimation as relative size, not the absolute size. Bharat et al. [6]
investigated the causes for the inaccuracy, in particular the unequal probability
of documents being matched by queries (called query bias in their paper). They
proposed to alleviate the bias by obtaining uniform random samples, say, from the
search engine directly as privileged users instead of public searchable interfaces.
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Gulli and Signorini [17] used the same method in a larger scale, by building query
lexicon from dmoz.com directory that contains 4 million pages.

Continuing in this direction, other innovative methods are proposed for those
two captures, not necessarily by two queries. Nonetheless, the underlying estimator
is still Lincoln-Petersen estimator, and the bias problem remains un-tackled. Both
Si et al. [47] and Kunder 1 used query frequencies to estimate search engine sizes.
They take a sample set of documents with size (n1), and another sample set of
documents that contain a specific query. Say the second capture is of size n2, which
is actually the document frequency of the query, and it may be provided by search
engines. The overlapping d is the the intersection of those two sets, i.e., the number
of documents that match the query in the sample documents. The advantage
of this method is that n2 does not need to be calculated by the sampler. The
disadvantage is also obvious: in both sampling occasions the documents are not
sampled with equal probability. What is worse, the document frequency returned
by search engines are often inflated, sometimes in orders of magnitude.

In [7] Broder et al. also use Lincoln-Petersen estimator, but each capture is
defined as the documents covered by many queries. Because the number of queries
is very large, it is not possible to obtain n1 and n2 directly by actually submitting
the queries. Instead n1 and n2 themselves are estimated.

Equation 6 is ubiquitous and applied in various forms. Quite often even the
users may not be aware that they are actually applying the basic capture-recapture
method. For instance, ID sampling is used to estimate Facebook population by
leveraging the fact that each ID is a 9-digit number [15]. The estimation method
is to select a number uniformly at random in the range 1 to 109, then probe the
server to check whether it is a valid ID. Suppose that the total number of valid
IDs is n1, the probings being sent is n2, and valid ones among the samples are
the duplicates between the two sets, denoted as d. Then, according to 6, we have
109 = n1n2/d. When n2 and d are available, we can use the equation to estimate
n1, the number of valid IDs.

2.2.2 Multiple Capture-Recapture Method

When there are more than two sampling occasions and each time only one sample is
taken, Darroch [12] derived that the approximate Maximum Likelihood Estimator
(MLE), N̂D, is the solution of the following equation:

n− d = N
(

1− e−
n
N

)
, (7)

where n is the total sample size, and d is the duplications. This equation has
also been used to predict the isolated nodes in random graph when edges are
randomly added [38]. Unfortunately it does not have a simple closed form solution
[38] [12], i.e., it can not be solved algebraically for N . In online social network
studies, [52] used numeric method to find the solution to this estimator. [31] gives
an approximate solution for N that reveals a power law governing the data not
sampled and the overlapping rate. In a simpler form, it states that the percentage
P of the data not sampled decreases in the power of the overlapping rate R =

1 http://www.worldwidewebsize.com/

http://www.worldwidewebsize.com/
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n/(n− d), i.e.,

P = R−2.1. (8)

2.2.3 Unequal Sampling Probability

When the data is heterogeneous, i.e., elements have unequal probabilities of being
sampled, the estimation becomes notoriously difficult. One approach to solving
this problem is to obtain the uniform random sample [3] using algorithms such as
Metropolis-Hasting random walk, then traditional estimators are applied on the
random sample. The other approach uses the biased sample to save the sampling
cost, but adjust the bias by devising new estimators [7,46,31]. Broder et al.[7]
assigned less weight to large documents being sampled; Shokouhi et al. [46] run
regression on past data to establish the relationship between the homogeneous
and heterogeneous data; Lu et al. [29][31] [33] went a step further by using γ, the
degree of heterogeneity, to adjust the discrepancy.

The problem is that estimating γ itself is equally challenging. Therefore Equa-
tion 5 as an estimator for N was not seen in ecology. Instead, the same equation
was used by Chao et al. [10] in a reverse way to estimate γ as below:

γ̂2 = N0C

(
n

2

)−1

− 1, (9)

where N0 is a rough estimation for N assuming the data is homogeneous. This
method was demonstrated [10] on small data where γ2 is typically around one.
That is, the ratio between N and N0 is around two. In our large and power law
data γ2 can go up to hundreds, making the traditional estimator biased downwards
by hundreds of times smaller than the real value.

In the estimation of digitalized networks such as hidden web data sources,
the sampling probability for each node can be (partially) decided by the degrees.
Unlike traditional sampling schemes where sampling probability of animals are
different but the exact variance is impossible to quantify accurately, in the simple
random walk on the term-document graph we know not only the exact degree of
the node being visited, but also that the sampling probability is proportional to
its degree. With this knowledge, we can obtain the value of γ, thereby estimator
N̂ can be applied. Not surprisingly, Katzir et al. [22] used a similar equation to
estimate the size of online social networks:

N̂K =
1

2C

n∑
1

dxi

n∑
1

1/dxi , (10)

which can be transformed to estimator N̂ . [22] showed that it is a consistent
estimator.

Note that estimator N̂ can be approximated by equations either 7 or 8 when
γ = 0, sample size is small, and collisions C can be approximated by duplicates d.
The approximation can be established by applying Taylor expansion on the right
hand side of equation 7.
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Fig. 1 Hidden data source as a bipartite graph

2.3 Other size estimation methods

In contrast to the traditional sampling in ecology and social studies, the diversity of
the access interfaces to web data collections opens up opportunities for designing
sampling schemes that take advantages of interface specifics. For instance, [15]
samples valid Facebook IDs from an ID space of 9 digits, utilizing the Facebook
implementation details that make the number of invalid IDs not much bigger than
the valid ones; [54] levarages the prefix encoding of Youtube links; [14] depends
on the negation of queries to break down the search results; [30][53] deals with the
return limit of the search engines. Dasgupta et al. use random walk in query space
to probe database properties [13] [14], which is different from our random walk
in that 1) they suppose the SQL like syntax of the queries that support boolean
expressions. 2) The random walk is on the query space constructed by the boolean
operators, not the document-term graphs in our paper.

3 Problem definition

Following [51] [39] [53], a hidden data source can be modelled as a document-term
bipartite graph G = (D,T,E), where nodes are divided into two separate sets, D
the set of documents, and T the set of terms. Every edge in E links a term and a
document. There is an edge between a term and a document if the term occurs in
the document.

Let dDi denote the degree of the document node i , for i ∈ {1, 2, . . . , |D|}, i.e., the
number of distinct terms in document i. Let dTj denote the degree (or document
frequency) of the term node j for j ∈ {1, 2, . . . , |T |}. The volume τ of the documents
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D (or the volume of terms T ) is

τ =

|D|∑
i=1

dDi =

|T |∑
j=1

dTj .

The mean degree of documents D is 〈dD〉 = τ/|D|, and the mean degree of
terms T is 〈dT 〉 = τ/|T |.

The goal of this paper is to estimate 〈dD〉, 〈dT 〉, |D| and |T | using a sample.
When it is clear from the context, we will omit the superscript D and T , using 〈d〉
to denote the average degree for documents or terms, and N to denote the size of
the population |D| or |T |. We use terms and queries interchangeably with slight
different connotations: a lexicon in a document is a term, when a term is sent to
a searchable interface it is called a query.

Example 1 (Bipartite graph of hidden web) Figure 1 gives an example of a hid-

den data source that is represented as a bipartite graph, where D = {d1, d2, . . . , d9}
and T = {q1, q2, . . . , q7}. 〈dT 〉 = 18/7, and 〈dD〉 = 18/9.

A simple random walk on the document-term graph is described in Algorithm
1. First a seed query is selected randomly from a dictionary and the list of the
matched document URLs are retrieved. From the list we select randomly one of the
URLs and download the corresponding document. From the downloaded document
a query is selected randomly and sent to the data source. The process is repeated
until n number of sample documents and n number of sample terms are obtained.
In the samples the documents or the terms can be visited multiple times. In other
words it is a sampling with replacement.

During the random walk process, we do not need to explore all matched docu-
ments. Instead, we can first ask for the number of matches m, generate a random
number r between 1 and m, then directly access the page containing the r-th doc-
ument. Therefore for each sample document and term at most two queries are
needed, one to get the degree of the query, the other to get the page containing
the r-th document.

Algorithm 1: Random Walk Sampling

Input: t0=seed term, sample size n
Output: Sample documents Ds and their degrees; Sample terms Ts and their degrees.
DS = TS=empty lists;
i =1;
while i ≤ n do

add ti and its degree to Ts ;
di=one random document that matches ti ;
add di and its degree to Ds ;
ti+1=one random term in document di;
i+ +;

end
return Ds and Ts;
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Example 2 (Random walk) If the sample size n is 5 and the seed term is q1. A

random walk result can be

Ts = ((q1, 1), (q6, 5), (q7, 5), (q7, 5), (q6, 5))

Ds = ((d2, 3), (d4, 2), (d1, 1), (d7, 3), (d3, 2))

4 Estimators

This paper focuses on two properties, the average degree and the total population
size for both terms and documents. When uniform random samples are available,
the former property can be estimated by the sample mean, the latter by capture-
recapture methods [1]. However, uniform random samples are not easy to obtain.
It is well known that in random walk large documents and queries have higher
probability of being visited. Asymptotically the sampling probability of a docu-
ment or a term is proportional to its degree. Therefore we need to use estimators
developed for such samples whose sampling probability is proportional to their
sizes.

We first develop the estimation of average degree, including the average length
(number of distinct terms) of the documents and the average size (or document
frequency) of terms. Based on the average degree, the estimator of population size
(total number of terms and documents) is derived.

Table 1 summarizes the notations used in this paper.

Table 1 Summary of notations

Notation Meaning Properties
N population size
n sample size
di degree of node i

τ volume of all the document/term nodes τ =
∑N

1 di = N〈d〉
dxj degree of the j th sampled node xj ∈ {1, 2, . . . , N}
pi probability of node i being visited pi = di/τ ,

∑N
1 pi = 1

〈d〉 mean degree 〈d〉 = τ/N

〈d2〉 mean of the squared degrees 〈d2〉 =
∑N

1 d2i /N
σ2 variance of the degrees σ2 = 〈d2〉 − 〈d〉2
γ2 square of coefficient of variation γ2 = σ2/〈d〉2 = 〈d2〉/〈d〉2 − 1
〈dW 〉 asymptotic mean degree of random walk 〈dW 〉 = 〈d2〉/〈d〉

4.1 Average degree

Suppose that in the document-term graph there are N number of document nodes.
Node i has a degree di, i ∈ {1, 2, . . . , N}. Let the total number of document degree

is τ =
∑N
i=1 di, and the mean of document degrees is 〈d〉 = τ/N .

The variance σ2 of the degrees in the population is defined as [48]

σ2 = 〈d2〉 − 〈d〉2, (11)
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where 〈d2〉 is the arithmetic mean of the square of the degrees in the total popu-
lation.

The coefficient of variation (CV, also denoted as γ) is defined as the stan-
dard deviation, or the square root of the variance, normalized by the mean of the
degrees:

γ2 =
σ2

〈d〉2 =
〈d2〉
〈d〉2 − 1. (12)

A sample of n elements (dx1 , . . . , dxn) is taken from the population, where
xi ∈ {1, 2, . . . , N} for i = 1, 2, . . . , n. Our task is to estimate the average degree 〈d〉
using the sample.

4.1.1 Sample mean estimator

If a uniform random sample (dx1 , . . . , dxn) is obtained, the sample mean is an
unbiased estimator as defined below:

〈̂d〉SM =
1

n

n∑
i=1

dxi . (13)

The variance of the estimator 〈̂d〉SM is [48]

var(〈̂d〉SM ) =
σ2

n
. (14)

The problem with this sample mean estimator is that the uniform random
sample is not easy to obtain. Moreover, its variance is too large to be of practical
application if the degrees have a large variance. It is well established that the
degree of the terms follows Zipf’s law, causing the population variance σ2 of the
term degrees very large.

More specifically, if the degrees follow the Zipf’s law strictly, the variance of
the sample mean estimator can be described by the following theorem

Theorem 1 Suppose the degrees follow Zipf’s law with exponent one, i.e., di = A
α+i ,

where A and α are constants. The variance of the sample mean estimator is

var(〈̂d〉SM ) ≈ 〈d〉
2

n

(
N

[
α ln2 N + α

1 + α

]−1

− 1

)
. (15)

Proof See appendix.

4.1.2 Harmonic mean estimator

When sampling probability is not equal for each unit, a common approach is to
use Hansen-Hurwitz estimators [48]. In the case where the sampling probability

of a node is proportional to its degree, the estimator for degree mean 〈̂d〉H is the
harmonic mean of the degrees:

〈̂d〉H = n

[
n∑
i=1

1

dxi

]−1

. (16)
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We refer to Salganik et al. [44] for detailed derivations of the estimator in the
setting of respondent driven sampling. Also it can be derived as a special case of
importance sampling [27].

Unlike the unbiased estimator 〈̂d〉SM , 〈̂d〉H is biased. According to Cochran
[11] the bias is on the order of 1/n. Since the sample size n in our setting is far
greater than one in general, the bias is negligible.

Its variance can be derived from the variance of Hansen-Hurwitz estimator
using the Delta method, resulting in:

v̂ar(〈̂d〉H) =
s2v
v4n

, (17)

where vi = 1/dxi, v and s2v are the sample mean and variance of vi’s. This estimated
variance will be supported by our experiments in Section 5.

In the idealized case when the degrees follows exactly with Zipf’s law, we have
the following theorem that can highlight the reduced variance of the estimator:

Theorem 2 When the degrees follow Zipf’s law whose exponent is one, the variance

of the estimator is

var(〈̂d〉H) =
〈d〉2

n

(
1

2
ln
N + α

1 + α
− 1

)
. (18)

Proof See appendix.

Comparing the variances of estimators 〈̂d〉SM and 〈̂d〉H , we can see that the

variance of 〈̂d〉H grows logarithmically with corpus size N , while 〈̂d〉SM increases
in the order of O(N/ln2N), almost linearly with N when N is large. In other words,
in order to make the variance commensurate to the real value 〈d〉2, the sample size

n should be in the order of N for 〈̂d〉SM , but merely lnN for 〈̂d〉H .

Example 3 (Degree estimation) For our example, the harmonic mean estimation

for average degree of terms is

〈̂d〉H =
n∑
1/di

=
5

1
1 + 1

5 + 1
5 + 1

5 + 1
5

=
25

9
= 2.7778.

For documents the estimated average degree is

〈̂d〉H =
n∑
1/di

=
5

1
3 + 1

2 + 1
1 + 1

3 + 1
2

=
30

16
= 1.875.

4.2 Population size estimation

The population size can be estimated as follows,

N̂ = (γ2 + 1)N̂0 = (γ2 + 1)

(
n

2

)
1

C
, (19)

where N̂0 is the estimation of N if the samples are taken uniform randomly, n is
the sample size, C is the number of collisions, γ is Coefficient of Variation (CV)
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of the degrees. Let fi denote the number of individuals that are visited exactly i

times.

C =
+∞∑
i=1

(
i

2

)
fi.

The derivation of the estimator is given in Appendix 9.3. It can be also derived
as a special case of Eq 3.20 in [10]. But that equation is used to estimate γ instead
of N . Katzir et al. [22] used an equivalent formula but in a very different form.

Note that this is a biased estimator as we pointed out in [33]. The relative bias
is approximately 1/C, and can be corrected using the following estimator. When
collisions C is large, such bias can be neglected. This paper uses the estimator in
equation 19 to focus on the other bigger bias, i.e., the bias introduced by γ.

N̂∗ = (γ2 + 1)

(
n

2

)
1

C + 1
, (20)

The elegance of the equation is that when the samples are uniform, γ = 0, and
the estimator is reduced to the traditional birthday paradox or capture-recapture
method. When the sample is obtained by random walk, the sampling probability
is not equal among all the documents or terms, resulting in γ > 0. The population
size can be estimated as if the samples were taken uniformly, then multiplied by
γ2 + 1. This was not seen in literature as far as we are aware.

The reason of this formulation being overlooked may due to the challenge of
determining γ in traditional estimation problems. In ecology and social studies
the degree of a node can not be quantified accurately. For instance, it is hard
to determine the friends of a drug-addict. This makes it impossible to perform
a simple random walk in the graph. In our setting of deep web data sources, we
know exactly the number of documents a query matches, and the number of terms
a document contains. Leveraging this information, the heterogeneity γ of the data
can be obtained by simple random walk as below. Asymptotically the mean of the
degrees obtained by a random walk is

〈dW 〉 =
N∑
i=1

pidi =
〈d2〉
〈d〉 , (21)

where pi = di/τ is the selection probability of node i. Hence

γ2 + 1 =
〈dW 〉
〈d〉 , (22)

where 〈dW 〉 can be estimated by its sample mean

〈̂dW 〉 =
1

n

n∑
i=1

dxi , (23)

and 〈d〉 can be estimated by its harmonic mean 〈̂d〉H . Combining the two equations
we derive the estimator for γ as follows:

γ̂2 + 1 =
〈̂dW 〉
〈̂d〉

=
1

n2

n∑
1

dxi

n∑
1

1/dxi . (24)
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Table 2 Summary of the Datasets

Data # Docs # Terms Document Degree Term Degree
Average γ Average γ

Reuters 806,791 380,465 109.97 0.72 232.97 16.12
NG20 11,059 84,644 190.45 0.82 24.88 9.08
Wiki 9,989 7,213 19.3 1.09 26.74 3.86

KDDCUP 17,118 980,039 393.36 6.84 6.77 10.91

The convenience of the method is that only one random walk is needed to obtain
both 〈d〉 and 〈dW 〉.

Example 4 (Population size estimation) Continuing on our example data source

for terms.

γ̂2 + 1 =
〈̂dW 〉
〈̂d〉

=
21/5

25/9
= 1.512.

n=5, f1 = 1(q1), f2 = 2 (q6 and q7), therefore

C =
∞∑
i=1

(
i

2

)
fi = 2,

N̂ = 1.512× 4× 5

2
× 1

2
= 7.56.

5 Experiments

5.1 Datasets

Our method is tested against several datasets including Reuters newswires [43]
(Reuters), newsgroups 2 (NG20), KDDCUP 2013 research papers (KDDCUP) 3,
and a subset of Wikipedia (Wiki). The statistics of these datasets are summarized
in Table 2. In this experiment a term is a sequence of letters and is case-insensitive.
The term population N is the total number of distinct terms that are collected in
all the documents in the corpus. The degree of a term is the document frequency
of the term, i.e., the number of documents that contain the term. The degree of a
document is the number of distinct terms in that document.

We list γ, the normalized standard deviation of the degrees, for each dataset.
It is well known that term degrees (document frequencies) follow power law, while
document degrees follow lognormal law. Reflected in our datasets, γ for term degree
is larger than that of the document degrees. As a verification, we show distributions
of Reuters, for both term degrees and document degrees in Figure 2. In order to
show both ends of the distributions, we plot the degree against its rank in sub
panel (A) and (C), as well as the frequency against its degree in sub panels (B)
and (D). The former plot has a better view of the top degrees, while the latter

2 Available at http://qwone.com/~jason/20Newsgroups/
3 http://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge.

Our data contains 17,118 publication venues and the keywords (980,039) occurred in the
venues.

http://qwone.com/~jason/20Newsgroups/
http://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge
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Fig. 2 Degree distribution of terms (panels A and B ) and documents (panels C
and D) in Reuters corpus. Panels (A) and (C) are degree vs .rank plots. (B) and
(D) are frequency vs. degree plots. It shows that terms have a larger variance
than documents.

depicts better the small terms or documents. Clearly the distributions of term
degrees and document degrees are different, which is the cause of different values
for γ, and different results on average degree estimation for terms and documents.
The term degrees obviously follow Zipf’s law, while document degrees are more like
log-normal distribution. In addition, document degrees sit in a very narrow range
(min is 6, max is 1659) compared with term degrees (1 to 434202). Therefore the
heterogeneity of those two kinds of degrees are very different. CV of term degrees
is 16, and CV of document degree is merely 0.7.

5.2 Summary of the Results

First, we evaluate the estimators in terms of relative standard error (RSE) that is
defined as below:

RSE(d̂) =
1

E(d̂)

[
E(d̂− E(d̂))2

]1/2
,

(25)

where E(X) is the expectation of X, i.e., the mean of all the possible values, which
can be approximated by the sample mean when the number of values is large. We
omit bias or MSE because these estimators have negligible biases when the sample
size is not small, and the degree estimator for uniform random sampling does not
have bias. In the next subsection, we will give more detailed evaluation for Reuters
data in terms of both bias and variance.
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Average Degree Population
Documents Terms Documents Terms

UR RW UR RW UR RW UR RW
Reuters 0.0215 0.0292 0.2209 0.1741 0.4114 0.1474 0.1815 0.1736

NG20 0.0580 0.0454 0.6424 0.2979 0.2321 0.1757 0.3126 0.1112
Wiki 0.0776 0.0746 0.2730 0.2054 0.2683 0.1187 0.2661 0.1927

KDDCUP 0.7716 0.2779 0.4839 0.2010 0.4617 0.2877 0.2655 0.0507

Table 3 Relative standard errors of the estimations. For average degrees, the sample size is
fixed at n = 200(5000 for Reuters), and the observed variance is obtained from 2000 repetitions
(200 for Reuters). For population size, sample size varies with the true population size (∝√

2N).

Table 5.2 summarizes the relative standard errors for the four combinations of
two estimators for both terms and documents. For average degree estimation, the
sample size is 200 (5000 for Reuters). RSE is obtained from 2000 repetitions (200
for Reuters). For population size estimation, the sample size varies with real data
size N , approximately in the order of

√
2N . That is the number needed to produce

some collisions.
Overall, we observe that random walk (RW) outperforms uniform random (UR)

samples, by obtaining smaller variance using the same sample size. There are
also cases where RW is worse than or close to UR, for instance in document
degree estimation in Reuters, NG20 and Wiki datasets. This is because γ for these
datasets are rather small, ranging between 0.7 and 1.1. When γ is larger, RW
demonstrate a larger advantage, such as in KDDCUP data.

5.3 Average Degree of Reuters

In the following we focus on the detailed analysis using one dataset, the Reuters
data. Estimators are normally evaluated in terms of bias, standard error (SE), and
rooted mean squared error(RSME). In the case of average degrees they are defined
as

Bias(d̂) = E(d̂)− d,

SE(d̂) =
[
E(d̂− E(d̂))2

]1/2
,

RMSE(d̂) =
[
E(d̂− d)2

]1/2
,

Since Bias2 +SE2 = RMSE2, and bias is negligible compared to SE according
to Section 4 and our first experiment below, we have SE ≈ RMSE. Thus except
the first experiment where Bias, SE and RMSE are reported, in the remaining
experiments we report SE only.

Average degrees are estimated on both UR and RW samples using sample

mean estimator 〈̂d〉SM defined in Equation 2 and harmonic mean estimator 〈̂d〉H
defined in Equation 3, respectively. Since the degrees of terms have a much larger
CV than that of documents, RW estimator is better than the UR for terms, but
slightly worse for documents.
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(C) Error bound.

Fig. 3 Average term degree estimation by UR and RW samplings. Panel A: box
plots for various sample sizes ranging between 103 and 104. Data consist of 200 runs
for each sample size. It shows RW has a smaller variance for all different sample
sizes. Panel B: histograms focusing on the last box in panel A when n=104 for UR
and RW. It shows that the estimations by RW and UR follow normal distribution
whose mean is the true value 233, and RW has a smaller variance. Panel C: 10
estimation processes along with the estimated 95% error bound calculated from
Equations 14 and 17 respectively. It shows that mostly the estimations are within
the error bound, and RW has a smaller variance.
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Table 4 Estimations of average term degree 〈d〉 = 233 over 200 runs for various sample size
n.

n Bias Standard error RMSE
×103 UR RW UR RW UR RW

1 4.3217 28.4480 132.6423 113.7653 132.7130 117.2856
2 -3.4330 17.7063 85.4701 74.0365 85.5394 76.1347
3 2.9543 9.8360 62.3450 59.5591 62.4153 60.3699
4 4.0269 4.7295 55.7902 47.2623 55.9361 47.4995
5 1.0870 1.8336 51.4717 40.5863 51.4833 40.6279
6 1.9411 1.0162 45.1416 36.7005 45.1835 36.7146
7 1.4922 0.1831 41.8117 33.2903 41.8385 33.2908
8 2.0617 0.3111 39.9589 30.7277 40.0123 30.7292
9 3.6235 1.5489 38.4063 29.4498 38.5777 29.4907

10 3.3618 1.3060 37.0325 27.3982 37.1855 27.4295

5.3.1 Average Degree of Terms

The two estimators are tested on the data for 10 different sample sizes ranging
between 103 and 104. For each sample size we repeat the experiment for 200 times
and the results are plotted in Figure 3. Panel A compares UR and RW using box
plots. It shows that RW has a smaller variance consistently for all sample sizes.
Panel B plots the distribution of the estimations in the last box of panel A when
sample size is 104. It demonstrates that 1) both RW and UR estimations follow
normal distribution with the same mean value (233); 2) RW has a smaller variance
than UR.

Since the estimations follow normal distribution, the 95% error bound can be
calculated as roughly twice of the standard error described in Equations 14 and 17.
Panel C plots the error bounds along with 10 large samples, each with size up to
2× 105. Although 10 sampling processes are hardly discernible from each other in
the plot, what we want to show is that mostly they are within the error bounds as
predicted by Equations 14 and 17. The plot validates the equations for estimated
variances, and gives another perspective explaining why RW is better than UR.
We will elaborate this further in Section 6. This plot also helps us determine how
large the sample should be to achieve a satisfactory estimation.

The bias, standard error, and rooted mean squared error of the two estimators

are tabulated in Table 4. It shows that indeed 〈̂d〉H has a very small bias as
expected in Section 4.1.2 for most sample sizes except for the smallest ones. When
the sample size is very small (n ≈ 1000), RW has a positive bias. A closer inspection

of the experiment data reveals that the small terms dictate the outcome of 〈̂d〉H ,
but they can be hardly visited within a small number of random walk steps.
Nonetheless, even for small samples where n=1000 the overall indicator RMSE of
RW is 117, still smaller than that of UR (132). We also experimented with sample
size n=500 where RMSE of UR is slightly better than RW.

Another perspective to interpret the results is looking at the sample sizes that
reach similar SEs from RW and UR methods. For instance when the sample size
is 6,000, the SE of RW is 36.7005. On the other hand, UR needs more than 10,000
samples to achieve the same SE.
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Table 5 Estimated average document degree 〈d〉 = 109.97. Data obtained from 200 runs for
various sample size n ranging between 500 and 5,000.

Standard error
n(×100)

UR RW
5 7.4210 10.3475

10 5.2573 7.2885
15 4.2589 5.9236
20 3.7398 5.0035
25 3.3266 4.5959
30 3.0740 4.1151
35 2.8880 3.9370
40 2.6676 3.6564
45 2.4589 3.3721
50 2.3763 3.2211

5.3.2 Average Degree of Documents

Table 5 lists the standard errors of the 200 runs on document degrees for sample

sizes ranging between 500 and 5,000. First of all both estimators (〈̂d〉SM and

〈̂d〉H) perform better than term degree estimation because of the small variation
of document degrees (CV=0.7). Since the standard error of UR is already rather
small, there is little chance for RW to beat the UR samples.

However, uniform random sampling is only slightly better than random walk
sampling for the same sample size. If we include the cost of obtaining the random
samples using algorithm such as Metropolis-Hasting Random Walk, the total cost
shall be much higher since samples can be rejected many times. In simple random
walk we only need to double the sample size to achieve better result achieved by
uniform random samples. For instance, the standard error of 3000 random walk
samples is 4.1151, while 1500 uniform random samples can achieve similar standard
error (4.2589).

5.4 Population Size

In this experiment again random walk (RW) samples are compared with uniform
random (UR) samples. For RW samples, the population size N for both documents
and terms are estimated using Equation 19, where γ is estimated using Equation
24. For UR samples the same estimator is used except that γ = 0.

Tables 6 and Table 7 show the standard errors for term population and doc-
ument population, respectively. For term population size, the estimations may be
infinite for small sample sizes 500, 1000 and 1500 due to zero conflict (C=0). For
document population size, the smallest sample size is 2500, no longer 500 as in
other experiments because small size may not induce collision in both sampling
methods. Correspondingly the number of repetitions of the tests in this experiment
is reduced to 20.

In both term and document population size estimations, RW works better than
UR in terms of standard error, even for the document size estimation where CV
is not large. This is because for the same sample size n RW has larger expected
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Table 6 Population size of terms. Data obtained from 200 runs for various sample size n
ranging between 500 and 5000.

Standard error(×105)
n(×100)

UR RW
5 NaN 2.1133

10 NaN 1.4647
15 NaN 1.1659
20 2.5481 0.9953
25 1.7894 0.8832
30 1.3004 0.8545
35 1.1187 0.7975
40 0.9463 0.7256
45 0.8208 0.6906
50 0.6969 0.6634

Table 7 Population size of documents. Data obtained from 20 runs for various sample size n
ranging between 2500 and 25000.

Bias(×105) Standard error (×105)
n(×100)

UR RW UR RW
25 3.7417 1.8063 8.8771 9.7239
50 1.2461 -0.2711 3.3212 1.1986
75 0.3536 -0.2045 1.6406 1.0799

100 0.0421 -0.1480 1.0858 0.7245
125 -0.1507 -0.0905 0.7640 0.5768
150 0.0022 -0.0722 0.7331 0.5832
175 0.0733 -0.0415 0.7017 0.5386
200 0.0573 0.0055 0.7009 0.4784
225 0.0358 0.0058 0.6003 0.4295
250 0.0164 0.0493 0.5012 0.3994

collision, therefore smaller relative variance. In addition, RW needs smaller sample
size to produce non-infinite estimations. In UR sampling the sample size needs
to be greater than

√
2N 4 so that collisions can occur and the estimate is not

infinite. For random walk sampling, large documents have higher probability of
being visited, thus smaller sample size can also induce collisions.

6 Discussions

This paper shows that the biased sampling can be better than uniform sampling.
In the past, people try to obtain uniform samples whenever possible, and resort to
biased sampling such as PPS (Proportional To Size) sampling only when uniform
sampling is impossible [44] or costly. The results of this paper suggest that in the
context of hidden data sources, random walk sampling instead of uniform sampling
should be used, even when uniform random samples are readily accessible.

We explain this using average term degree estimation as an example. The
sample distributions of the degrees are depicted in Figure 4. Panel A is the degree

4 by Equation 38 when γ = 0.
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Fig. 4 The term degree distributions of the samples obtained from uniform ran-
dom and random walk samplings. n=10,000.

distribution for uniform random sample, which resembles the distribution of the
population as expected. Panel B describes the distribution obtained from random
walk sampling. The ”Y” shape plot shows that the small terms still follow power
law roughly, while the large terms, the popular words, can be sampled many times.
In other words, both small terms and large terms are sampled multiple times but
for different reasons. Rare terms are sampled because there are large number
of them, even though each term has a very small probability of being sampled.
Large terms are sampled because they have higher probability of being visited,
even though there are only a few of them. Unlike uniform random samples where
some types of terms, especially the very popular words, are included by chance, in
random walk samples both rare words and popular words are well represented in
the sample.

We elaborate this point further using a simplified fictitious example to gain an
intuitive understanding of the method. Instead of the full spectrum of the degrees,
we assume a polarized scenario that contains only two kinds of nodes–one million
of small nodes with degree one and ten large nodes with degree one million. This
mimics the scale-free graph that has many small nodes and a few very large nodes.
Suppose that the sample size n is 104 (1% of the population). In both UR and
RW sampling, the expected estimations are close to 11, the true value.

In UR sampling, the probability of a node being visited is p ≈ 1/106 when one
sample node is taken. When n = 104 samples are taken, the number of times a node
is sampled follows binomial distribution B(n,p) whose expectation is np = 10−2.
Thus the expected number of small nodes being sampled is 10−2 × 106 = 104,
the expected number of large nodes being visited is 10−2 × 10 = 0.1. However,
we can not have 0.1 number of node. Instead, most probably a large node is
sampled zero or one time. Either case the estimation deviates from the real mean
greatly as shown in Table 8. In Case 1 the large node is not sampled, resulting
in the estimation 10. In Case 2 the large node is sampled once, resulting in the
estimation 100 which is way larger than the expectation 11.

On the other hand, in RW sampling the probability of a node being sampled is
proportional to its degree. For a small node, the probability being sampled when
one sample is taken is ps = 1/(11 × 106). The probability of a large node being
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Table 8 Illustrative example where the graph contains 106 small nodes whose degree is one,
and 10 large nodes whose degree is 106 . Sample size n = 104.

Node type
Small Large Total
(d=1) (d = 106)

Data N 106 10 ∼ 106

τ 106 107 11× 106

〈d〉 ∼ 11
UR E(n) 104 0.1 104

E(
∑
di) 104 105 11× 104

E(〈d〉) ∼ 11
Case 1 n 104 0 104∑

di 104 0 104

〈̂d〉SM ∼ 10
Case 2 n 9999 1 104∑

di 9999 106 ∼ 106

〈̂d〉SM ∼ 100
RW E(n) 909 9091 10000

E(
∑

1/di) 909 0.01 909
E(〈d〉) ∼ 11

sampled is 106 times larger, i.e., pl = 106/(11×106). Thus the expected number of
times a small node being sampled is nps = 1/(11×102), the expected total number
of small nodes being sampled is 106/(11 × 102) = 909. The expected number of
large nodes being sampled is 10 × npl = 9091. Since the expected values are way
larger than one, the estimates will not deviate a lot from the expected values.

7 Conclusions

This paper tackles the estimations of the average degree, the degree heterogeneity,
and the population size in hidden web data sources. We show that the three
proposed estimators are dependent on each other– population size is dependent on
the heterogeneity, and in turn the heterogeneity relies on the average degree. Such
decomposition of the estimation problem has not only the pedagogical significance,
but more importantly, a large problem is divided into two smaller ones, and each
sub-problem can be approached with different methods, not necessarily by random
walk.

The highlight of the paper is not the random walk estimators. Rather, it is the
comparison with the uniform random sampling. It shows that when the data follow
Zipf’s law, the variance of the UR method diverges with the corpus size, while the
variance of RW sampling grows logarithmically. In real graphs with moderate high
CV such as term degrees in Reuters, the RW method is already much better than
the UR samples, let alone the high cost of obtaining those uniform samples. In
[32] we show that with higher CV and larger graphs, RW is orders of magnitude
better than uniform random samples.

This paper shows that the behaviour of the RW method depends on the het-
erogeneity of the data. For term degrees whose variance is large (CV=16), the
RW method has a big lead over the UR method. For document degrees where the



Discover Hidden Web Properties by Random Walk on Bipartite Graph 23

variance is small (CV=0.7), the RW method is slightly worse than the UR samples
if the cost of random sampling is excluded. In ecology studies the data reported
usually have small heterogeneity whose γ2 is around one. In our big data γ2 is in
the scale of hundreds or thousands. This big difference entails new methods that
are drastically different from the traditional estimators such as the ones developed
in [10].

For the population size estimation, RW is better than UR for both terms and
documents in two perspectives. One is that in UR sampling the sample size needs
to be greater than

√
2N so that collisions can occur and the estimate is not infinite.

For RW sampling, since large documents have higher probability of being visited
in the random walk, smaller sample size can also induce collisions, consequently
produce non-infinite estimates. Secondly, the standard error of random walk is
smaller than that of the uniform sampling because the expected collisions are
larger in RW.
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9 Appendix

Both Theorem 1 and Theorem 2 assume that the degrees follow the Zipf’s-Mandelbrot
law [37] which states that if the term degrees di are sorted in descending order,
then

di =
A

α+ i
, (26)

where α and A are constants. α� N . All the degrees sum up to τ , i.e.,

N∑
1

di ≈
∫ N

1

A

α+ x
dx ≈ A ln(

α+N

α+ 1
) = A lnB = τ, (27)

where we use B = (α+N)/(α+1) to make our derivations more concise. Therefore

the normalizing constant A = τ/ lnB. Besides,
∑N

1 d2i can be approximated by the
following since N is a very large number:

N∑
1

d2i ≈
∫ N

1

A2

(α+ x)2
dx ≈ A2

α+ 1
. (28)

9.1 Proof of Theorem 1

Proof Based on Equations 27 and 28, the variance of all the degrees is

σ2 = 〈d2〉 − 〈d〉2 = 〈d〉2
[
N

∑N
1 d2i

(
∑N

1 di)2
− 1

]

≈ 〈d〉2
[

N

(α+ 1) ln2B
− 1

]
. (29)
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Using Equation 14 the variance of 〈̂d〉SM is

var(〈̂d〉SM ) =
〈d〉2

n

[
N

(α+ 1) ln2B
− 1

]
. (30)

9.2 Proof of Theorem 2

Proof When nodes are sampled with simple random walk, the asymptotic proba-
bility of the node i being visited is pi = di/ τ . When n nodes (x1, x2, . . . , xn) are
sampled, where each xi ∈ {1, . . . , N}, the Hansen-Hurwitz size estimator of the
population size N is [48]:

N̂H =
1

n

n∑
i=1

1

pxi

=
τ

n

n∑
1

1

dxi

, (31)

and the variance of N̂H is [48]:

var(N̂H) =
1

n

N∑
i=1

pi

(
1

pi
−N

)2

. (32)

Replacing pi with di/τ and expand di with A/(α+ i), we have

var(N̂H) =
1

n

(
τ

A

N∑
1

i−N2

)
≈ N2

n

(
lnB

2
− 1

)
. (33)

The Taylor expansion of 〈̂d〉H around N is

〈̂d〉H =
τ

N̂H
= τ

(
1

N
− N̂H −N

N2
+ . . .

)
. (34)

By the Delta method, the variance of 〈̂d〉H is

var(〈̂d〉H) = τ2
var(N̂H)

N4
=
〈d〉2

n

(
lnB

2
− 1

)
. (35)

9.3 Population size estimation

Nodes are selected during random walk. When selecting two nodes, the probability
that the same node i is visited twice is p2i . Among all the nodes, the probability

of having a collision is p =
∑N
i=1 p

2
i . Since there are (n2) pairs in a sample of size n,

the number of collisions follows binomial distribution B(n(n−1)/2, p) whose mean
is

E(C) =

(
n

2

)
p. (36)
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The collision probability p can be translated into the heterogeneity of the data
measured by γ using the definition of γ in Equation 12 :

p =
N∑
i=1

p2i =
1

τ2

N∑
i=1

d2i =
1

N

〈d2〉
〈d〉2 =

1

N
(γ2 + 1). (37)

Combining Equations 37 and 36 we obtain the expected number of collisions is:

E(C) =

(
n

2

)
γ2 + 1

N
. (38)

Hence the population size can be described by

N = (γ2 + 1)

(
n

2

)
1

E(C)
. (39)

Since E(C) is unknown, it can be estimated by the observed collisions C. This
gives us the estimator

N̂ = (γ2 + 1)

(
n

2

)
1

C
. (40)
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