
 - 1 -

Web Service Composition: a Reality Check

1 Jianguo Lu, 2 Yijun Yu, 1 Debashis Roy, 1 Deepa Saha

1School of Computer Science, University of Windsor

{jlu, roy17, sahag@cs.uwindsor.ca

2 Computing Department, The Open University
y.yu@open.ac.uk

Abstract

Automated web service composition is one of the major promises of service-
oriented architecture, where services can be discovered and composed
dynamically and automatically. To investigate the methods for composite web
service construction, we conducted an experiment on creating useful composite
web services from real existing web services where semantic annotations are
not available. The empirical study reveals the difficulties and research
challenges in the discovery, invocation, and composition of web services. The
automation of web service composition requires the inputs from both services
providers and service consumers. Service providers need to develop high
quality services in a disciplined and collaborative way, and service consumers
need to be equipped with tools providing helps such as service discovery and
matching.

Keywords: Web service discovery, web service composition, empirical study.

1. Introduction

Web service is designed to be reused and composed with other web services,
manually or automatically. The ultimate goal of service oriented architecture is the
automated discovery and automated composition of web services. There have been
substantial researches on service discovery [2] [17] and composition [4] [16], based
on various formal methods and AI technologies [3] [8] [9] [11] [12]. In the mean
while, on the web there are already tens of thousands useful web services that are
accessible to the public [5] [21]. However, most of the research and the resulting
prototypes target on imaginary web services, usually with semantic annotation,
instead of real ones. As a result, there are few tools available that assist the creation of
real composite web services from existing publicly available one.

To identify the research challenges in the whole process of web service discovery,
invocation, and composition, we conducted an experiment involving 23 graduate
students. They are requested to create novel and useful web services out of existing
ones on the web, and report their experience on web service discovery, invocation,
and composition. The purpose of the experiment is to identify and evaluate the

- 2 -

existing methods and tools that can be used in real web service discovery and
composition, and identify the difficulties and research problems in real web service
composition.

The study shows that the construction of composite web service is a difficult task
that requires creativity. The most difficult part in developing new web services is the
discovery of the pertinent web services to achieve the goal. Due to various restrictions
in existing web services, currently it is almost impossible to have automated web
service composition. What is even worse is that manual composition is much more
difficult than writing a conventional program because of the ad hoc nature of existing
web services which lacks disciplined development and maintenance.

2. The Experiment

23 graduate students are formed into 11 groups. Many of them have excellent
programming skills and IT industry experience. Each group is required to produce one
or more novel and useful composite service from existing ones. Table 1 lists the
composite services they generated. Please notice that although only 12 composite
services are generated, many compositions consist of several atomic services. Before
a successful composition scenario and atomic service can be decided, students have to
investigate many existing services. Hence a large number of web services are tackled.

Before the experiment, students read extensively on both practical and theoretical
aspects of web service and semantic web, and are exposed to a variety of web service
discovery and composition methods.

In the process the students record the difficulties they encounter in service
discovery, invocation, and composition.

Table 1: List of Composite Web Services

 Composite service(s) Component web services
1 Truck driver route

planning and notification
Mappoint, across communications, fast weather

2 Medicare map Medicare, google map
3 Price comparison and

conversion
Amazon, Barnsnoble, currency converter

4 Trip map Yahoo trip, google map
5 e-commerce product

rating
Amazon, google, msn search, currency
converter

6 Price comparison Ebay, amazon, currency converter
7 Geo tag Flicker, google map, weather
8 Nearest airport Airport, distance, Zipcode
9 Encrypted email Encryption, email
10 Composite calendar Calendar, reminder, call
11 Airport weather Airport, google map, weather
12 Phone weather Cell phone text message, weather

- 3 -

3. Web service discovery

The first step in web service composition is to locate the pertinent web services that
can be used in our composition task. There has been substantial research in web
service discovery and the UDDI [2] [18] [22]. In practice, students prefer two
approaches to discovering web services manually, i.e., from web service portals, or
from generic search engines such as google.

Most students used web service portals such as XMethods.com to locate web
services, although they are familiar with researches in web service discovery. None of
the students tried to use web service discovery tools or prototypes reported in
literature. The reasons may be that most web service discovery researches focus on
the semantic annotation of web services and semantic and capability matching of web
services. However, existing web services on the web usually are not equipped with
semantic descriptions or capability specifications.

Although the number of web services in each portal is limited (a few hundreds in
general), most of those web services are valid or active ones. Two groups of students
used programmable web APIs [13] instead of WSDLs, from which they generated
more complex and interesting applications. Strictly speaking, some APIs from
ProgrammableWeb are not the traditional web services. For example, they may not
provide wsdl descriptions.

Here are the methods students use to find web services. Many groups use a
combination of different methods. For example, they may search for google first to
have a rough idea whether there are certain type of services, then go to a service portal
to locate the ones that are active.

Table 2: Places to find web services

Portals to find web
services

Number of groups used
the portal

Google.com 3
Xmethods.com 5
ProgrammableWeb[13] 3
WebserviceList.com 2
WebserviceX.com 4
strikeIron.com 1
Trynt.com 1
Wsindex.com 1
remoteMethods.com 1

Given the fact that none of the web service portals contains large number of web

services, and yet they are still the most popular ways to discover pertinent services,
there is a need to build a larger web service repository where the quality of web
service is put in the first priority.

- 4 -

4. Web service invocation

Once a web service is located, we need to call the web service. To automate the
composition process, first web services have to be invoked automatically.

In theory, given the WSDL description of a web service, there is no problem to
invoke it automatically. WSDL is designed to enable automated invocation. Indeed
there are various tools supporting this in various programming languages. For the
example of Java programming, Apache Axis can generate the corresponding support
Java classes to call the web services with minimal programming effort.

During the experiment, there are a few factors that make the automated invocation
impossible, including registration key and soap head change. In fact, many times
students found that even the manual invocation is difficult due to lack of
documentation and quick evolution of web services.

4.1 Difficulties for automated invocation

4.1.1 Registration key

In the experiment we find that the current web services are not easy to invoke even
when the WSDLs are available and the services are active. The main reason is that
most web services require a registration key that has to be obtained manually. Almost
all the web services that are investigated in our experiment need manual registration.
Those service providers require users fill in registration forms manually, so that we
can receive the registration keys by email. Then the key has to be provided as a
parameter in the operation each time the web service is called. In addition to manual
registration, some services even require payments. This requirement from service
providers practically prohibits any automated web service invocation.

4.1.2 Tools may fail

Except the registration key issue, most web services can be invoked by using tools
such as Apache Axis. Basically, given the WSDL as input, Axis can generate a set of
java classes corresponding to the Schemas in the WSDL description, and other classes
supporting the remote call. Then the invocation of web service is simply to initiate
some classes that are generated by the tool.

However, sometimes web services require something that can’t be generated by the
tools.

Example 1: Geoplaces web service requires the authentication ID to be sent in
SOAP header instead of in a parameter of the operation. But WSDL2Java in Axis
does not generate the corresponding java code filling in the SOAP head properly.
As a result we had to manually create the SOAP header element and attach it to
the stub object before calling any function.

The format of the SOAP request for the GetPlaceDetails operation in Geoplaces is
given below. The italic part has to be manually injected.

POST /services/PlaceLookup.asmx HTTP/1.1

- 5 -

Host: codebump.com
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://skats.net/services/GetPlaceDetails"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://skats.net/services/"
xmlns:types="http://skats.net/services/encodedTypes"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Header>
 <tns:AuthenticationHeader>
 <SessionID xsi:type="xsd:string">string</SessionID>
 </tns:AuthenticationHeader>
 </soap:Header>
 <soap:Body soap:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
 <tns:GetPlaceDetails>
 <place xsi:type="xsd:string">string</place>
 <state xsi:type="xsd:string">string</state>
 </tns:GetPlaceDetails>
 </soap:Body>
</soap:Envelope>

4.2 Difficulties for manual invocation

All the students found that invoking web services is not an easy task even when it
is done manually. The task is much more difficult than writing a traditional program
for a few reasons.

4.2.1 Lack of Documentation

Web services are designed as self-explanatory components in order to increase
their interoperability. However, the information conveyed in WSDL is not adequate
for a programmer to invoke the service.

The most difficult part in web service invocation is to determine the parameters of
the operations. In conventional programming languages, there are always
explanations for operations and parameters in the operation. Sometimes there are even
sample codes to illustrate the usages of the classes. In addition, with the class
structure and the relationship with other classes, it is easy to derive a conceptual
model of the problem at the hand.

For WSDL description, in general there are no comments in the document element
to explain the parameters and operations. In addition, it is hard to find the web page
containing use instructions that corresponds to the WSDL.

Web services usually are coarse grained and standalone, with the overall structure
of the software hidden behind. Although most WSDLs are automatically generated
from conventional programs, it seems that the comments in programs are not carried

- 6 -

over to WSDL. For example, when we run java2wsdl in Apache Axis, the comments
in the Java program are filtered out.

4.2.2 Versions of WSDLs

Web services are notorious for their fast evolution. For example, eBay service has
a fundamental release every two weeks. The constant change makes even experienced
programmers difficult to invoke the service. Some students have to contact the service
providers to figure out the correct parameters to send out, because existing documents
are for the older versions. With different versions of WSDLs scattered around on the
web, web service invocation is like exploring a labyrinth. The situation is excerbated
with the scarcity of documentation for web services and the connection between them.

Since conventional software has mature version control and upgrading system, web
services need to have a proper management system as well.

5. Web service composition

In the experiment we found the difficulties of service composition can be classified
into the following categories: schema mapping between data types of web services,
large data problem, data quality and optimization, and volatility of web services.

5.1 Schema mapping

In web service composition literature, it is common to assume that we can use one
service’s output as another’s input. In our experiment, the most common problem
reported is the disparity of schemas between web services to be composed. Web
services are developed by different organizations that use different conceptual models
and vocabulary. Inevitably the resulting schemas in web services are different even if
they are meant to be similar or the same.

Example 2: We have two services getAirport and getAirportCoordinate to be

combined: getAirport is of the type
state airport(code, city, country, name)

and getAirportCoordinate is of the type
airportCode (latitude, longitude).

In this case, we need to map the output data
<airport> <code/>…<name/></airport>

from one service to the input data <airportCode/> of another service.

This kind of schema mapping is not easy to be automated [6]. There are substantial
researches on XML Schema mapping, with the aim to identify the correspondences
between the elements of schemas, so that the data can be integrated. Schema mapping
is also actively studied in migrating legacy systems. In web service composition,
every web service is like a legacy system: it is developed by a third party that does not
have adequate documentation. Web service composition is similar to legacy system
integration, where we need to build the mappings between the parameters of the

- 7 -

services. In our experiment, it is almost never possible to directly use one service’s
output as another’s input without any change of the data.

5.2 Large data and quality of data

Several web services in our experiment return huge number of data, which stalls the
composition program, and makes the composite service inefficient and practically not
possible to run.

Example 3: Searching airports by country will result very large data, which
makes the composite web service practically impossible to run. Hence we have to
select an alternative, i.e., obtaining the airports in a state instead of a country.

Another common problem is the low quality of the data returned. Quite often, we
need to write some code to process the data before it can be passed to another service.

Example 4: Although the return of the Airport web service is an XML

document, it is not well formed. As a result, it could not be validated using any
XML schema. The problem with the XML document was that, the GMT Offset
tag was missing in several airport elements. On top of that, it returns each airport
information twice.

5.3 Optimization of composite service

Some web service composition seems perfect logically, and the data transferred is not
big. Still, the composite service is extremely inefficient. The main reason is the
involvement of remote invocation. While there are plenty of work on programming
code optimization and database query optimization, there is little investigation on the
optimization for composite web services.

Example 5: Given two services
book(Keywords?, Price, Currency),
and
exchange(FromCurrency?, ToCurrency?, FromAmount?, ToAmount).

The first returns the price and currency when given as input the keywords of the

books. The second service accepts the amount the currencies to be converted, and
gives as output the equivalent amount in another currency. It is easy to generate a
composite service that gives the price in local currency:

 localBook(Keywords?, LocalCurrency?, LocalPrice)
 :- book(Keywords?, Price, Currency),
 exchange(Currency?, LocalCurrency?, Price?, LocalPrice).

Straightforward implementation of this composite web service will need to invoke
exchange services as many times as the number of returns of the book search. For
each Price for a book, the exchange service is called to get the corresponding
LocalPrice.

- 8 -

However, one call to the exchange service is enough. To optimize this composite
service, we need to reformulate the composite service as below, so that the calls to
web services can be minimized:

localBook(Keywords?, LocalCurrency?, LocalPrice)
 :- book(Keywords?, Price, Currency),

 exchange(Currency?, LocalCurrency?, 1, X), LocalPrice=X*Price.

5.4 Sporadic and inactive web service

Almost all web services, including commercial ones, are not constantly available
during our experiment period that lasted two months. Some times they could be off
line for a few days. For example, Medicare and YahooTravel services experienced
two days blackout.

Although it is common for a web site to be off line for a while for maintenance or
network disruption reasons, the only affected place is the web site itself. Volatile
web services will ripple its unreliability throughout all the applications that use them.

To engineer a robust composite web service, it is paramount to have backup web
services. Almost all the groups built backup service just to make sure that the
composite web service would work properly on the demonstration day. For functions
that are served by several services, such as text messenger, we keep all of them. For
functions that are provided by only one vendor, such as airport information, students
replicate the service on our own machine by downloading part of the data and deploy
our own service, so that it can be used as a contingent plan.

Sporadic and inactive web services impose a serious problem for composite web
services, as there are abundant inactive web services on the web. Before trying out the
web services, there is no way to tell whether they can be used. Table 3 lists the ratio
between active web services from two groups. Please notice that most web services
are from service portal. If the WSDLs are collected from UDDI or google, the
activeness ratio would be much lower.

Table 3: Ration of active web services

 WSDLs checked Active web
service

Active Web
Service Ratio

Group 1 11 5 0.45
Group 2 14 9 0.64

6. Conclusions

This is the first empirical study that we are aware of on web service composition
based on publicly available real web services. Since this study is based on real web
services available, the semantic approach to web service annotation, discovery, and
composition is not covered. There have been substantial empirical studies on the state
of the art of web services [5] [22], but not the compositions. We programmed using

- 9 -

more than 100 web services, and constructed 12 composite services. Some composite
services contain several operations.

The study shows that web service composition is a creative activity, whose
automation is a daunting task that requires the efforts from service provider as well as
service consumers.

Service providers need to develop and maintain high quality web services in a
disciplined and collaborative way. In particular, providers need to

1) Apply software engineering principles: Most web services are developed in an

ad hoc manner, disregarding all the software engineering principles. Even
tools developed for web service generation ignored the importance of
documentation. For example, Apache Axis removed comments in Java classes
when generating WSDLs from those classes.

2) Develop services collaboratively: Collaborative web services need to be
developed collaboratively. For example, if an XML Schema is already
developed or used in other web services, it should be reused, instead of being
reinvented every time a similar schema is needed. This way, schema
heterogeneity can be minimized. Just as writing conventional programs,
developers should reuse existing components instead of re-develop similar
classes and functions every time you need it. To achieve this goal, it is
paramount to build and maintain a repository for web services and schemas to
enhance the reuse.

Partially due to the inadequacy of WSDLs observed above, some students in our

experiment preferred programmable web APIs to create mashups [13]. Similar to web
service composition, when programmable web APIs are selected, it is relatively easy
to compose them, as the process has little difference from the conventional
programming. The difficulty is how to recommend appropriate services, and how to
support end-users to create composite services with minimal programming effort [19].

Acknowledgements We would like to thank all the students who also participated in
the experiment, and the anonymous reviewers for their helpful comments. This work
is supported by NSERC.

References

1. Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S., and Srivastava,
B. A service creation environment based on end to end composition of Web services.
Proceedings of the 14th international Conference on World Wide Web 2005. pp. 128-137.

2. Benatallah, B., Hacid, M., Leger, A., Rey, C., and Toumani, F. 2005. On automating Web
services discovery. The VLDB Journal 14, 1 (Mar. 2005), pp. 84-96.

3. Tevfik Bultan, Jianwen Su, Xiang Fu: Analyzing Conversations of Web Services. IEEE
Internet Computing 10(1): 18-25 (2006)

4. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and Grid
Services 1 (2005). pp. 1-30

5. Fan, J. and Kambhampati, S. 2005. A snapshot of public web services. SIGMOD Rec. 34,
1 (Mar. 2005), 24-32.

- 10 -

6. Jianguo Lu, Ju Wang, Shengrui Wang, XML Schema Matching, IJSEKE, International
Journal of Software Engineering and Knowledge Engineering, in Press.

7. Jianguo Lu, Yijun Yu, John Mylopoulos, A Lightweight Approach to Semantic Web
Service Synthesis, ICDE Workshop on Challenges in Web Information Retrieval and
Integration, Tokyo, 2005.

8. Matskin, M. and Rao, J. 2002. Value-Added Web Services Composition Using Automatic
Program Synthesis. In Revised Papers From the international Workshop on Web Services,
E-Business, and the Semantic Web, 2002. 213-224.

9. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In:
Proc. of the 8th Int. Conf. on Principles and Knowledge Representation and Reasoning
(KR-02), Toulouse, France. 2002

10. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the
semantic web. The VLDB Journal 12 (2003) 333-351.

11. Milanovic, N., Malek, M.: Current solutions for web service composition. Internet
Computing, IEEE 8 (2004)

12. Mao, Z.M., Brewer, E.A., Katz, R.H.: Fault-tolerant, scalable, wide-area internet service
composition. Technical Report UCB//CSD-01-1129, University of California, Berkeley,
USA (2001)

13. ProgrammableWeb, http://www.programmableweb.com.
14. E. Rahm, P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB

J., 10(4):334-350, 2001.
15. Ponnekanti, S.R., Fox, A.: SWORD: A developer toolkit for web service composition. In:

Proc. of the 11th Int. WWW Conf., 2002.
16. Rao, J., Su, X.: A survey of automated web service composition methods. In: Proc. of the

1st Int. Workshop on Semantic Web Services and Web Process Composition,
SWSWPC2004, LNCS, San Diego, USA. (2004)

17. E. Sirin, B. Parsia, and J. Hendler, Composition-driven filtering and selection of semantic
web services, AAAI Spring Symposium on Semantic Web Services, 2004.

18. UDDI, http://www.uddi.org/
19. Wong, J. and Hong, J. I. 2007. Making mashups with marmite: towards end-user

programming for the web. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, California, USA, April 28 - May 03, 2007). CHI '07. ACM
Press, New York, NY, 1435-1444.

20. Wu, D., Parsia, B., Sirin, E., Hendler, J.A., Nau, D.S.: Automating DAML-S web services
composition using SHOP2. In: Proc. of the 2nd Int. Semantic Web Conf.(ISWC2003),
Sanibel Island, FL, USA. (2003)

21. Yijun Yu, Jianguo Lu, Juan Fernandez-Ramil, Phil Yuan, Comparing Web Services with
Other Software Components, International Conference on Web Services, International
Conference on Web Services(ICWS), 2007. pp. 388-397.

22. Zhang, L., Chao, T., Chang, H., and Chung, J. 2003. XML-Based Advanced UDDI Search
Mechanism for B2B Integration. Electronic Commerce Research 3, 1-2 (Jan. 2003), 25-42.

23. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web
services. In: Proc. of the 2003 Int. Conf. on Web Services, 2003.

