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ABSTRACT
What do large networks look like? Can we visually tell the
topological difference between networks such as the Web
graph and Facebook network? Due to the huge size of the
network, the overall structure will not be discernible if all the
nodes and edges are plotted regardless of the graph layout.
We reduce the number of nodes and edges by producing a
representative subgraph. The nodes are sampled with prob-
ability proportional to their degrees, so that large nodes with
more connections have a higher probability of being sam-
pled. The edges are reduced further using uniform random
spanning tree. The efficacy of the method is demonstrated
to preserve the community structure that is characterized by
the Network Community Profile (NCP). The result is sup-
ported by six real-world large networks, and demonstrated
on Twitter user network which contains 4.1× 107 nodes.
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1. INTRODUCTION
The topology of large network is hard to visualize, yet it

is crucial for data mining applications. If we plot a network
with millions of nodes, not to mention hundreds of millions
of them, it will be hard to discern the community structure
no matter what graph layout is used, and how powerful the
computer is. To reveal the visual cues to the structure of
the network, we need to reduce the number of nodes and
edges by producing a representative subgraph.

Network visualization has been widely studied [3]. Most
approaches can only handle graphs of size up to hundreds
of nodes and thousands of edges [9]. Beyond this limit, it
will be hard to discern the nodes from edges, preventing the
discovery of patterns in the graph. Since the tree layout
algorithm has the simplest complexity to implement, it is a
common practice to reduce the number of edges by turning
the graph into a tree, especially a spanning tree represen-
tation [2]. The crucial issue is which spanning tree is more
representative of the original graph. A spanning tree ob-
tained by breadth-first search will distort the structure of
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the original network. Numerous efforts have been devoted
in adding weights and finding the minimal spanning tree.
When the network is very large, computationally it may not
be feasible to compute the minimal spanning tree.

Instead of artificially tweaking the parameters for a better
spanning tree, we argue that a uniform random spanning
tree should be a more natural choice. A typical algorithm
to find the uniform spanning tree borrows the idea from
random walk [1], therefore, the complexity of the algorithm
is the same as the random walk cover time. Although for
uniform random graphs the cover time is in the order of
O(NlogN), where N is the number of nodes in the network,
real-world networks are often scale-free and clustered. Thus
we need to prepare for the worst case complexity which is
O(N3) [7]. Obviously, the cost is too high for large networks
if we use that algorithm directly.

We observe that it is not necessary to keep all the nodes
to reveal the topological structure of large networks. The
number of nodes also need to be cut down for very large
networks even when tree representation is adopted. We can
imagine that a large network has many layers of meshes
lying in stack. When all the layers are plotted, the nodes
and the structure are obscured by the meshes. If we plot
only one random mesh, the crucial nodes and the structure
are revealed.

Such random mesh can be obtained by casting the edges
uniform randomly–each edge has the same probability of
being selected. When an edge is casted, two nodes incident
to the edge are collected. In this way, a node will be se-
lected with probability proportional to its degree size. Since
random edge selection is not supported in many online so-
cial networks, we use simple random walk to approximate
the process, considering that the node selection probabil-
ity is the same asymptotically as random edge sampling [7].
Based on this random walk we simultaneously generate the
corresponding random spanning tree. Thereby we reduce
the number of nodes and edges at the same time efficiently.

The evaluation of the visualization also imposes a chal-
lenge. Since the entire network can not be effectively plot-
ted, the visual comparison between the sub-graph and the
original graph is impossible. In particular we would like to
see whether the community structure can be visualized. For
this purpose we use NCP (network community profile) [6]
to evaluate the visualization. As a result, we find that our
visualization corresponds to NCP very well.

Contributions 1) We propose an efficient algorithm to
visualize large networks. It can scale to very large networks
when they are scale-free and crucial nodes and subsequent



Algorithm 1: Random Spanning Tree

Data: Graph G;
Result: Random spanning tree T of size n.
Let n0 be a uniform random node from G;
mark n0;
while i<n do

neighbours(ni−1)= all the neighbours of ni−1;
ni is a random node of neighbours(ni−1) ;
if ni is not marked then

i++;
mark ni;
add edge (ni−1, ni) to T ;

end

end

structure can be surfaced quickly using random walk; 2) We
demonstrate that the visualization can preserve the commu-
nity structure by comparison to the NCP; 3) The random
spanning tree algorithm is adapted into our random walk
node sampling process, reducing the potential high complex-
ity (O(N3)) to a linear algorithm.

2. OUR METHOD
There are at least two ways to select the representative

nodes in a graph: by selecting the nodes uniform randomly,
or selecting the nodes with probability proportional to their
sizes (PPS). When uniform random node selection is ap-
plied, most of the nodes will be small nodes with low degrees
due to the scale-free nature of the network. The large node
with many connections most probably will not be sampled
and omitted in the subgraph. Thus we use PPS sampling
to obtain the representative nodes, where large nodes have
higher probability of being selected. Simple random walk
is an efficient sampling method that is supported by many
real online social networks, and node sampling probability
is proportional to its size asymptotically. Since our random
walk is rather long (6 × 104 distinct nodes in our experi-
ments) and well exceeds the mixing time of the graph, the
sampling probability can approximate PPS sampling.

Even when the number of nodes are reduced, the net-
work structure is still being obscured by excessive number
of edges. Various methods have been proposed to reduce
edge size, such as turning the graph into a spanning tree
[3, 2]. We propose to use random spanning tree, which can
be generated using random walk as illustrated in Algorithm
1. It was originally given by [1], and can be explained as
follows: we perform the simple random walk as usual, but
add an edge to the tree only when the edge does not form
a loop. According to [1], we have the following surprising
result:

Theorem 1. Among all the spanning trees of graph G, T
is one of the uniform random sample.

It may take very long random walk to cover all the nodes
of a graph, especially when the graph is scale-free and clus-
tered. The worst case complexity is in the order of O(N3).
Since node selection also uses random walk, we combine the
two random walks together to trim nodes and edges simul-
taneously, avoiding the need to cover all the nodes.

When the random spanning tree is plotted using two-
dimensional layouts such as the well-known spring model,

Table 1: Statistics of the six networks, each has a
citation indicating where the data is from. 〈d〉 is the
average degree, CV stands for coefficient of varia-
tion.

Network # Nodes CV 〈d〉 Max degree
Flickr [5] 105,936 2.65 43.43 5,425

NotreDame[5] 325,729 6.40 5.25 10,721
Stanford[5] 281,903 11.79 14.14 38,625
Amazon[5] 410,236 1.27 11.89 2,760

Facebook [11] 63,731 1.56 25.64 1,098
Youtube[8] 1,138,499 9.65 5.25 28,754

the structure is still cluttered for trees containing tens of
thousands nodes. We use 3D hyperbolic layout [9] to ame-
liorate the problem.

3. COMMUNITY STRUCTURE
We demonstrate our method on the discovery of commu-

nity structure. The community structure is measured using
NCP (network community profile) plot proposed in [6]. We
refer to Figure 5 in [6] for a good explanation of NCP, where
complete small network visualizations are compared side-by-
side with NCP. That figure explains that NCP corresponds
well to network visualization in small size (∼ 100 nodes),
while we show that the profile is also reflected in our visu-
alization for large networks consisting of millions of nodes.

In network studies, one important measurement for net-
work structure is its conductance, which can be used to char-
acterize the spectral gap and random walk mixing time [10].
The conductance is defined as follows: Let V be the set of
nodes of a graph. The conductance of a subset of nodes S
of V is

Φ(S) =

∑
i∈S,j∈V \S Aij

min(A(S), A(V \S))
(1)

where A is the adjacency matrix of the graph, and A(S) =∑
i∈S,j∈V Aij . The conductance of the graph is Φ = minSΦ(S).

NCP not only looks at the minimal graph conductance, but
also the component conductance over the component size.

We conducted experiments on dozens of large networks
we can find. Most of them are from Stanford SNAP graph
collection [5]. Due to space limitation, we only report the
comparison with NCP on six networks1. Their statistics are
summarized in Table 1. To demonstrate the scalability of
our method, we plot a subgraph obtained from the complete
Twitter user network that contains 4.1×107 nodes and 1.4×
109 edges [4] in Figure 1. The overall structure clearly differs
from other networks plotted in Figure 3. In contrast to the
well enmeshed Facebook network, Twitter has a string of
super large nodes(bloggers) stacking on each other. Each
super node has its own circle of fans with little interaction
between them. The veracity of such topology is not easy
to verify using NCP, because NCP can not be calculated
due to the huge size. However, we can gain some confidence
from other relatively smaller networks where NCP can be
computed as shown in Figures 2 and 3.

1Complete data description and programs can be found at
http://cs.uwindsor.ca/∼jlu/visualization.



Figure 1: Visualization of Twitter user network.

Figure 2 shows the NCP plots, the conductances over
the size of the subcomponents for the original six networks.
They are plotted using SNAP API [6]. The insets (in red
colour) are the NCP plots obtained from the correspond-
ing subgraphs. We can see that the NCP from subgraph
resembles the shape of NCP from the original graph.

Our visualizations of these networks are plotted in Figure
3. The colour of the nodes represents the node degree in the
original network. Among the six networks, three of them
(Flickr, NotreDame, and Stanford) have low graph conduc-
tance, while three others (Facebook, Amazon and Youtube)
have high conductance as comparison.

Overall, each visualization corresponds well to its NCP
plot of the original network. Several networks are remark-
ably different from others. Take the first network, Flickr, for
example. The NCP plot of the original network in Figure 2
shows a sharp dip (∼ 10−3.5) around the component size 104,
indicating that there is a large component separated from
the remaining part. Our visualization in Figure 3 reflects
this dumbbell structure clearly. There is a long link con-
necting these two components, the nodes along the link are
mostly of blue and green colour, indicating that the passage
between those two components is narrow in the original net-
work. These two components are well enmeshed, coinciding
with the NCP plot showing that for most component sizes
the conductance is rather large (above 10−2).

NotreDame and Stanford web graphs exhibit a different
pattern in both visualization and NCP plots. In their NCP
plots, there is a low conductance when the component size is
commensurate to the total size. Correspondingly, in the vi-
sualization there are clusters of similar sizes. In NCP plots,
there are many low conductances when the component size is
small. Correspondingly, in the visualization there are many
small clusters that is obviously different from the Flickr net-
work.

Amazon, Facebook, and Youtube networks have high con-
ductances as shown in their NCP plots. Correspondingly
their visualizations show well enmeshed networks. Note that
although the minimal conductance of Amazon network is
rather small, the cut happens when the component size is
around 100, well below the total size. Therefore, its visual-
ization does not show large clusters.

4. CONCLUSIONS
We demonstrate a practical method to visualize the struc-

ture of large networks. The method reduces both the num-
ber of nodes and edges of the network dramatically, yet it
retains the global topology of the networks. More impor-
tantly, our method is very efficient, and works even when
the data in its entirety is not available as long as simple
random walk is supported.

This is the first attempt to use random spanning tree to
reduce the size of the graph for visualization purpose. Direct
application of the random spanning tree algorithm does not
scale. By combining the random spanning tree algorithm
with PPS node sampling, we propose a very efficient algo-
rithm to reduce both the number of nodes and the number
of edges leveraging the scale-free nature of the networks. 3D
layout is also essential to capture the overall structure.

The calculation of NCP requires the access of the entire
data, and may not be feasible for very large networks. As
a companion to NCP (network community profile), our fast
visualization method sheds a light for the prediction of NCP
using only a small sample of the data.
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Figure 2: Conductance Φ(S) over |S|, the size of the the components, for six networks. Insets: The corre-
sponding NCP plots obtained from the subgraphs.
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Figure 3: (Best viewed in colour) Visualization of six networks. The networks in the first row (Flickr,
NotreDame, and Stanford) are clustered, while the networks in the second row (Amazon, Facebook and
Youtube) are well enmeshed. Node colour indicates the node degree in the original network.


