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Abstract. The deep web crawling is the process of collecting data items
inside a data source hidden behind searchable interfaces. Since the only
method to access the data is by sending queries, one of the research chal-
lenges is the selection of a set of queries such that they can retrieve most
of the data with minimal network traffic. This is a set covering problem
that is NP-hard. The large size of the problem, in terms of both large
number of documents and terms involved, calls for new approximation
algorithms for efficient deep web data crawling. Inspired by the TF-
IDF weighting measure in information retrieval, this paper proposes the
TS-IDS algorithm that assigns an importance value to each document
proportional to term size (TS), and inversely proportional to document
size (IDS). The algorithm is extensively tested on a variety of datasets,
and compared with the traditional greedy algorithm and the more recent
IDS algorithm. We demonstrate that TS-IDS outperforms the greedy al-
gorithm and IDS algorithm up to 33% and 29%, respectively. Our work
also makes a contribution to the classic set covering problem by lever-
aging the long-tail distributions of the terms and documents in natural
languages. Since long-tail distribution is ubiquitous in real world, our
approach can be applied in areas other than the deep web crawling.

Keywords: Deep web crawling, query selection, set covering problem, greedy
algorithm, Zipf’s law.

1 Introduction

The deep web [1] is the content that is dynamically generated from data sources
such as databases or file systems. Unlike the surface web, where pages are col-
lected by following the hyperlinks embedded inside collected pages, data from
the deep web are guarded by search interfaces such as HTML forms, web services,
or programmable web API, and can be retrieved by queries only. The deep web
contains a much bigger amount of data than the surface web [2,3]. This calls
for deep web crawlers to collect the data so that they can be used, indexed,
and searched in an integrated environment. With the proliferation of publicly
available web services that provide programmable interfaces, where input and



output data formats are explicitly specified, automated extraction of deep web
data becomes more practical.

Deep web crawling is the process of collecting data from search interfaces
by issuing queries. Sending queries and retrieving data are costly operations
because they occupy network traffic. More importantly, many deep web data
sources impose daily quota for the queries to be sent. In addition, most data
sources paginate the matched results into many pages. All these restrictions call
for the judicious selection of the queries.

The selection of queries can be modelled as a set covering problem. If we
regard all the documents in a data source as the universe, each query is a subset
of the documents it can match, the query selection problem is to find the subsets
(the queries) to cover all the documents with minimal cost. Since the entire set
of documents is not available, the queries have to be selected from a sample
of partially downloaded documents [4,5,6,7]. In particular, [7,8] demonstrates
that the queries selected from a sample set of documents can also work well for
the entire data set. This paper will focus on the set covering algorithm on the
sampled documents.

The set covering problem is NP-hard, and approximate algorithms have to
be used. For large problems, the greedy algorithm is often recommended [9].
The greedy algorithm treats every document equally important. In deep web
crawling, not every document is the same. A very large document containing
virtually all possible terms is not an important document in the sense that it
will be matched sooner or later by some terms. The query selection algorithm
can almost neglect such documents since they can be covered by many terms.
Therefore, the weight of a document is inversely proportional to the document
size (IDS), or the distinct number of terms. In [10], we proposed and evaluated
IDS approach.

This paper reveals that the document importance not only depends on the
number of terms it contains, but also the sizes of these terms. The size of a
term is the document it can cover, or its document frequency. A document that
contains a small term can be covered with less redundancy, therefore they are
of less importance in query selection. A document that is comprised of large
terms only is costly to cover, since only large terms can be used. This kind of
documents are more important, and the importance should be proportional to
the minimal term size (TS) within the document.

Based on the above analysis, we propose the TS-IDS algorithm to select
queries. It outperforms both greedy and IDS algorithms, and is extensively veri-
fied on a variety of datasets. We also exam the query selection process, and find
that TS-IDS fundamentally differs from the other two approaches: both greedy
and IDS methods prefer to use small terms (the terms with low document fre-
quency) first, while TS-IDS tries to use frequent terms first even though it causes
redundancy in the initial stage. In the final stage it uses the small terms to pick
up remaining documents.

Our work also makes a contribution to the classic set covering problem by
leveraging the distributions of the terms and documents in natural languages.



Most of the set covering research assumes that the data are of normal or uniform
distribution. For instance, the classic benchmark for set covering algorithms is
the famous Beasley data, all are of normal distribution. However, most real-
world data follows power law, including natural language texts [11]. We are the
first to use data distribution to improve optimization algorithms as far as we are
aware of.

In the following we will first give an overview of the related work on deep
web crawling, focusing on the query selection task. Then we describe the problem
formally in the context of set covering and bipartite graph. After explaining the
motivations for the TS-IDS method, we present the detailed algorithm and its
comparison with the greedy algorithm. Section 4 compares the three approaches,
i.e., greedy, IDS, TS-IDS on four corpora.

2 Related work

In deep web crawling, the early work selects terms according to the frequencies
of the terms [12], in the belief that high frequency terms will bring back more
documents. Soon people realize that what is important is the number of new
documents being retrieved, not the number of documents. If queries are not
selected properly, most of the documents may be redundant. Therefore, query
selection is modelled as a set covering [4] or dominating vertex [5] problem, so
that the queries can return less redundancies. Since set covering problem or
dominating vertex problem is NP-hard, the optimal solution cannot be found,
especially because the problem size is very big that involves thousands or even
more of documents and terms. Typically, a greedy method is employed to select
the terms that maximize the new returns per cost unit. We realized that not every
document is equal when selecting the queries to cover them. Large documents can
be covered by many queries, no matter how the queries are selected. Therefore
the importance of a document is inversely proportional to its size. We proposed
IDS (inverse document size) algorithm in [10]. Our further exploration in this
problem finds that the importance of the document depends not only on the
number of the terms it contains, but also the sizes of those terms.

In addition to the optimization problem, query selection has also been mod-
elled as reinforcement learning problem [13,14]. In this model, a crawler and a
target data source are considered as an agent and the environment respectively.
Then its selection strategy will be dynamically adjusted by learning previous
querying results and takes account of at most two-step long reward.

Query selection may have goals other than exhaustive exploration of the deep
web data. For instance, in Google deep web crawling, the goal is to harvest some
documents of a data source, preferably ’good’ ones. Their focus is to look into
many data sources, instead of exhausting one data source. In this case they use
the traditional TF-IDF weighting to select the most relevant queries from the
retrieved documents [6]. For another instance, data sources may be ranked and
only return the top-k matches per query. [15] studies the method to crawl the
top ranked documents .



In addition to query selection, there are other deep web crawling challenges
that are out of the scope of this paper. The challenges include locating the
data sources [16,17,18,19], learning and understanding the interface and the
returned results so that query submission and data extraction can be auto-
mated [20,19,21,22].

The set covering is an extensively studied problem [23,24,25]. The state of art
commercial Cplex optimizer can find optimal solutions for small problems. When
the matrix contains hundreds of elements, it often keeps on running for hours or
days. The greedy algorithm is believed to be the better choice for large problems.
Although many other heuristics are proposed, such as genetic algorithms[26],
the improvements are very limited. The classic test cases are Beasley data [26].
Most of the data are synthesized from normal distribution, i.e., in the context
of our document-term analogy, the document size and term size follow normal
distributions. Some datasets even have uniform size for all the documents and
terms. Such datasets can not reflect the almost universal power-law in real world,
and prohibit the discovery of the algorithms such as TS-IDS. We also tested the
TS-IDS algorithm on the Beasley datasets. The result is almost the same as the
greedy algorithm. The reason is obvious–there is little variation of TS and DS,
therefore it reduces to the greedy algorithm.

The inception of TS-IDS algorithm is inspired by the classic TF-IDF weight-
ing. TS-IDS can be regarded as dual concept of TF-IDF. TF-IDF measures the
importance of terms in a document in the presence of a collection documents,
while TS-IDS measures the importance of a document covered by a term among
a set of terms.

3 The TS-IDS algorithm

3.1 The Query Selection Problem

Given a set of documents D = {D1, D2, . . . , Dm} and a set of terms T = {T1,
T2, . . . , Tn}, Each document contains a set of terms. In turn, each term covers
a set of documents. Documents and terms form an undirected bipartite graph
G(D,T,E), where the nodes are D and T , E is the set of edges between T and
D (E ⊆ T ×D). There is an edge between a document and a term iff the term
occurs in the document. This graph can be represented by the document-term
matrix A = (aij) where

aij =

{
1, if Tj occurs in Di;

0, otherwise.
(1)

Let dDi denote the degree of the document Di (the size of document), and dTj the

degree of term Tj (the size of term). Note that dDi =
∑n

k=1 aik, d
T
j =

∑m
k=1 akj .

dTj is also called document frequency of the term in information retrieval. We call
it term size to be consistent with document size. The query selection problem
can be modelled as the set covering problem [27]. In our context, it is a set
covering problem where the cost for each term is the term size dTj :
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Fig. 1: A deep web data source is modelled as a bipartite graph.

Definition 1 (Set Covering Problem) Given an m × n binary matrix A =
(aij). The set covering problem is to find a binary n-vector X = (x1, . . . , xn)
that satisfies the objective function

Z = min

n∑
j=1

xjd
T
j , (2)

subject to 
n∑

j=1

aijxj ≥ 1, for all 1 ≤ i ≤ m, and

xj ∈ {0, 1}, 1 ≤ j ≤ n.

(3)

Here the first constraint requires that each document is covered at least once.
The second constraint says that the solution is a binary vector consists of either
one or zero, i.e., a term can be either selected or not selected. The cost is the
total number of documents retrieved by the selected queries.

The set covering is an NP-hard problem. The greedy method described in
Fig. 2 is proved to be an effective approximation algorithm [9]. It iteratively
selects the best term that maximizes the new harvest per cost unit, as described
in Fig. 2. Initially, all xj = 0, meaning that no query is selected. Then it selects
the next best query until all the documents are covered. The best term is the
one that returns the most new documents (µj) per cost unit (µj/d

T
j ). Note that

in the algorithm m′ is number of rows in the new matrix after all the covered

documents are removed.
∑m′

j=1 aij is the number of new documents, not the term
size.



Fig. 2: The greedy algorithm.

xj = 0, for 1 ≤ j ≤ n;
µj =

∑m
i=1 aij , for 1 ≤ j ≤ n;

while not all docs covered do
Find j that maximizes µj/d

T
j ;

xj = 1;
Remove column j;
Remove all rows that contain Tj ;

µj =

m′∑
i=1

aij in the new matrix;

end

Fig. 3: The TS-IDS algorithm.

xj = 0, for 1 ≤ j ≤ n;
µj =

∑m
i=1 aijwij , for 1 ≤ j ≤ n;

while not all docs covered do
Find j that maximizes uj/d

T
j ;

xj = 1;
Remove column j;
Remove all rows that contain Tj ;

µj =

m′∑
i=1

aijwi in the new matrix.

end

Fig. 4: The greedy and the TS-IDS algorithms. The input is an m× n doc-term
matrix. The output is an n-vector X = (x1, ..., xn). xj = 1 if term j is selected.

3.2 Motivation for the TS-IDS Algorithm

The greedy algorithm treats every document equally when it selects the best
query using µj/d

T
j . Every document contributes unit one to µj , as long as it

is a new document not being covered by other queries yet. However, not every
document is of the same importance in the query selection process. This can be
explained using the example in Fig. 1.

Document 7 and 6 have degrees 3 and 1, respectively, meaning that document
7 has more chances being captured than document 6. In this sense, D6 is more
important than D7. If we include all the terms in the solution, D7 is captured
three times, while D6 is captured only once. When we include a term, say T4, in
a solution, D7 contributes only one third portion of the new document, because
other terms could also be selected and D7 will be covered again. Therefore, the
importance of a document Di is inversely proportional to document size dDi
(IDS).

Furthermore, the document importance depends also on the term size (TS).
Small (or rare) terms, whose degrees are small relative to other terms, are inher-
ently better than large terms in achieving a good solution of set covering problem.
Take the extreme case when all the terms have degree one. Every document will
be covered only once without any redundancy. In general, when every term cov-
ers k documents, The greedy algorithm can approximate the optimal solution
within a factor of

∑k
i=1

1
i ≈ ln(k)[28]. Small terms result in good solutions, while

large terms prone to cause high cost. Documents containing only large terms are
costly to cover, thus they are more important in the query selection process.

Looking back at our example again in Fig. 1. Both document 5 and 4 have
degree two. Document 5 has a query whose degree is 1, while document 4 has two
queries whose degrees are both 5. This means that document 5 can be covered by
query 2 without any redundancy, while document 4 has to be covered by either
T6 or T7, either one of them will most probably resulting in some duplicates.



Table 1: Statistics of the four datasets

Data n
Document size Term size
max min avg max min avg

Reuters 56,187 833 8 106.7 3722 1 19.0
Wikipedia 224,725 2670 15 222.2 3041 1 9.89

Gov 164,889 3797 1 327.9 3028 1 19.8
Newsgroup 193,653 3836 1 245.6 3532 1 12.7

Therefore, we say that D4 is more important than D5 in the query selection
process, even though their degrees are the same.

3.3 The TS-IDS Algorithm

For each document Di, we define its document weight as follows:

Definition 2 (Document weight) The weight of document Di, denoted by
wi, is proportional to the minimal term size of the terms connected to Di, and
inversely proportional to its document size, i.e.,

wi =
1

dDi
min
Tj∈Di

dTj . (4)

With this definition, we give the TS-IDS as described in Fig. 3. Note that
m′ is the number of documents in the new matrix after covered documents are
removed. The weighted new documents of a term Tj , denoted by µj , is the sum
of the document weights containing term Tj , i.e., µj =

∑m
i=1 aijwi. Compared

with the µj in the greedy algorithm, where µj =
∑m′

i=1 aij , the difference in
TS-IDS algorithm is the weight wi for each document. Compared with the IDS
algorithm where the weight is 1/dDi , TS-IDS weights a documents not only by
its length (1/dDi ), but also by the terms it contains. It gives a higher priority to
short documents (1/dDi ) that contain popular terms only (minTj∈Di d

T
j ).

4 Experiments

4.1 Data

To demonstrate the performance of our TS-IDS algorithm, the experiment was
carried out on four data collections that cover a variety of forms of web data,
including regular web pages (Gov), wikipedia articles (Wikipedia), newswires
(Reuters), and newsgroup posts (Newsgroup). 10, 000 documents are selected
uniformly at random from the original corpora. Table 1 summarizes the statis-
tics of the four datasets, including the numbers of documents (m), the number
of terms (n), and the degree properties of the documents and terms. Figures 5
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Fig. 5: Distributions of document sizes dDi and term sizes dTj of the four datasets.
First row: term size distributions. Second row: document size distributions.

plots in log-log scale the distributions of the document size and term size respec-
tively. As expected, document size follows log-normal distribution, while term
size follows power-law [29]. The highly skewed data distribution is the basis of the
success of our algorithm. In traditional set covering studies, the benchmark test
data, called Beasley data [30], are uniformly at random. For such data, term
size (dTj ) and document size (dDi ) are mostly the same. We have also carried
experiments on these data sets, and found that, as expected, TS-IDS and IDS
algorithms perform very closely to the greedy algorithm. Due to space limitation,
this paper focuses on the document-term matrix data only.

4.2 Results and Discussions

We run three algorithms, the Greedy (Fig. 2), the IDS algorithm in [10], and
the TS-IDS algorithm (Fig. 3). Fig. 6 shows the comparison of these algorithms
in terms of the solution quality, the overlapping rate. We can see that perfor-
mance improvement differs from data to data. TS-IDS achieve better improve-
ment for Reuters and Gov, but less for Wiki and Newsgroups, although all the
four datasets have similar document size and term size distributions. For Reuters
dataset, the TS-IDS outperforms the IDS method around 24%, and outperforms
the Greedy method around 33% in average. On the other hand, for Wiki and
Newsgroup datasets, TS-IDS is better than IDS method and Greedy method
around 6% and 10% respectively. This is because the solution costs for Wiki and
Newsgroups are already close to one. Note that the best solution is one, whose
redundancy is zero. Therefore there is little room for the TS-IDS algorithm to
improve.

The result is the average from running each algorithm 50 times for the same
data. Each run may find a different solution because there may be a tie when
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selecting the best queries. When this happens, we select a random one from a
set of equally good queries.
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Fig. 7: Types of queries being selected in the process. First row: overlapping
rate dTj /µj in the selection processes. Second row: corresponding query size dTj .
Dataset is Reuters corpus.

To gain the insight into these algorithms, we plot the redundancy rate (dTj /µj)
for each query that is selected in the first row of Figure 7. The x-axes are the
number of queries selected. The y-axes are the redundancy rate of each query,
i.e., the number of duplicates per new document in log10 scale. The redundancy
rate is smoothed with moving window size 100. The second row shows the corre-
sponding query size dTj , also in log10 scale and smoothed with the same window
size. The data is obtained from the Reuters corpus. Other three datasets demon-
strate similar patterns.



For the greedy algorithm, the first 5785 terms have redundancy rate one,
meaning that all those terms have zero duplicates. After 5785 queries, the re-
dundancy rate increases rapidly in exponential speed. For the last a few hundreds
queries, the average overlapping rate is above 30. In the corresponding query size
plot, we see that the first 5785 queries are mostly small ones. It starts with the
average term size 3.2, then decreases because only smaller queries (i.e., small
subsets) can be found that do not overlap with others already used. When over-
lapping occurs after first 5785 queries, the query size increases greatly, causing
high overlapping rate. Because most of the small queries are already used in the
first stage, it has to use large queries to cover the remaining documents.

The IDS algorithm improves the greedy algorithm by distinguishing docu-
ments according to their sizes. Long documents can be covered by many queries.
Hence, in each iteration the IDS algorithm prefers the queries that cover smaller
documents, even if the overlapping rate of the query is not the smallest. Thus,
we can see that in the second column of Fig. 7 the overlapping rate is not al-
ways one for the first 5000 queries. However, the overall pattern is similar to
that of the greedy algorithm: it tends to select small terms first, and it suffers
the same problem of a surge in overlapping rate and query size when small and
”good” queries are exhausted. A closer inspection on the dataset reveals that
short documents normally contain popular words only. These documents can be
picked up only by large queries, causing significant overlapping when most of
the documents are already covered.

The TS-IDS algorithm solves this problem by giving higher priority to such
documents. Since the document weight is proportional to term size, it starts with
large queries to cover documents only containing high frequency terms, as we
can see from column 3 of Fig. 7. Because of the large query, the overlapping rate
is high at the beginning. The benefit of this approach is to save the small queries
to fill in the small gaps in the final stage. These terms are not the best in terms
of overlapping rate, but along the process of query selection, the overlapping
rate decreases, and the overall performance is better. Surprisingly enough, the
process is the inverse of the greedy algorithm: instead of selecting the best for
the current stage, its current selection is in average worse than later selections.

The greedy algorithm not only has the highest overlapping rate here (1.94
compared with 1.81 for IDS and 1.31 for TS-IDS), but also uses more queries
than other two methods. It selects 7256 queries, while IDS uses 6738 queries,
and TS-IDS uses 4051 queries.

5 Conclusions

This paper presents the TS-IDS method to address the query selection prob-
lem in deep web crawling. It is extensively tested on textual deep web data
sources whose document sizes and document frequencies follow the log-normal
and power law distribution. By utilizing the distributions, TS-IDS method con-
sistently outperforms the greedy and IDS algorithms. The success of the method



is due to the highly skewed distributions of term size (Zipf’s law) and document
size (log-normal).

Without loss of generality, this paper discuss the set covering problem as-
suming each query is a single term. Our bipartite graph model can be extended
to allow nodes representing multiple terms. Although this will greatly increase
the graph size, such queries of multiple terms also follow power-law distribution.
Therefore, our result can be extended to such queries as well.

In real deep web crawling scenario, usually it is impossible to directly apply a
set covering algorithm to all the documents. Those documents are not known yet
by the algorithm. Besides, a data source is usually so large that even approximate
algorithms such as the ones discussed in this paper cannot handle it. The only
option is to run the set covering algorithm on a sample subset of the data source.
In [7], we showed that a solution that works well on a sample is also a good
solution for the entire data source.

Our method is restricted to textual data sources that returns all the matched
documents. Many data sources, especially large ones such Google, rank the
matched documents and return only the top-k matches. This kind of data sources
demand a different query selection strategy. One approach is to select and con-
struct the low frequency queries, so that the number of matched documents is
within the k limit.
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