
Web Intelligence and Agent Systems: An International Journal 10 (2012) 75–88 75
DOI 10.3233/WIA-2012-0232
IOS Press

Selecting queries from sample to crawl deep
web data sources
Yan Wang a,*, Jianguo Lu a,c, Jie Liang a, Jessica Chen a and Jiming Liu b

a School of Computer Science, University of Windsor, Windsor, Ontario, Canada
E-mail: {jlu,wang16c,liangr,xjchen}@uwindsor.ca
b Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
E-mail: jiming@comp.hkbu.edu.hk
c State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China

Abstract. This paper studies the problem of selecting queries to efficiently crawl a deep web data source using a set of sample
documents. Crawling deep web is the process of collecting data from search interfaces by issuing queries. One of the major
challenges in crawling deep web is the selection of the queries so that most of the data can be retrieved at a low cost. We propose
to learn a set of queries from a sample of the data source. To verify that the queries selected from a sample also produce a good
result for the entire data source, we carried out a set of experiments on large corpora including Gov2, newsgroups, wikipedia and
Reuters. We show that our sampling-based method is effective by empirically proving that 1) The queries selected from samples
can harvest most of the data in the original database; 2) The queries with low overlapping rate in samples will also result in a low
overlapping rate in the original database; and 3) The size of the sample and the size of the terms from where to select the queries
do not need to be very large. Compared with other query selection methods, our method obtains the queries by analyzing a small
set of sample documents, instead of learning the next best query incrementally from all the documents matched with previous
queries.

Keywords: Deep web, hidden web, invisible web, crawling, query selection, sampling, set covering, web service

1. Introduction

The deep web [7] is the content that is dynamically
generated from data sources such as databases or file
systems. Unlike surface web where web pages are col-
lected by following the hyperlinks embedded inside
collected pages, data from a deep web are guarded by
a search interface such as HTML form, web services,
or programmable web API [36], and can be retrieved
by queries. The amount of data in deep web exceeds
by far that of the surface web. This calls for deep web
crawlers to excavate the data so that they can be used,
indexed, and searched upon in an integrated environ-
ment. With the proliferation of publicly available web
services that provide programmable interfaces, where
input and output data formats are explicitly specified,

*Corresponding author.

automated extraction of deep web data becomes more
practical.

The deep web crawling has been studied in two per-
spectives. One is the study of the macroscopic views
of the deep web, such as the number of the deep web
data sources [10,15,29], the shape of such data sources
(e.g., the attributes in the html form) [29], and the total
number of pages in the deep web [7].

When surfacing or crawling the deep web that con-
sists of tens of millions of HTML forms, usually the
focus is on the coverage of those data sources rather
than the exhaustive crawling of the content inside one
specific data source [29]. That is, the breadth, rather
than the depth, of the deep web is preferred when
the computing resource of a crawler is limited. In this
kind of breadth oriented crawling, the challenges are
locating the data sources [15], learning and under-
standing the interface and the returning result so that

1570-1263/12/$27.50 c© 2012 – IOS Press and the authors. All rights reserved

76 Y. Wang et al. / Selecting queries from sample to crawl deep web data sources

query submission and data extraction can be automated
[1,6,19,37].

Another category of crawling is depth oriented. It
focuses on one designated deep web data source, with
the goal to garner most of the documents from the
given data source with minimal cost [5,9,22,33,40].
In this realm, the crucial problem is the selection of
queries to cover most of the documents in a data
source. Let the set of documents in a data source be
the universe. Each query represents the documents it
matches, i.e., a subset of the universe. The query selec-
tion problem is thus cast as a set covering problem. Un-
like the traditional set covering problem where the uni-
verse and all the subsets are known, the biggest chal-
lenge in query selection is that before the queries are
selected and documents are downloaded, there are no
subsets to select from.

One approach taken by Ntoulas et al. to solving this
problem is to learn the global picture by starting with
a random query, downloading the matched documents,
and learning the next query from the current docu-
ments [33]. This process is repeated until all the docu-
ments are downloaded. A shortcoming of this method
is the requirement of downloading and analyzing all
the documents covered by current queries in order to
select the next query to be issued, which is highly inef-
ficient. In addition, in applications where only the links
are the target of the crawling, downloading the entire
documents is unnecessary. Even when our final goal
is to download the documents instead of the URLs, it
would be more efficient to separate the URLs collec-
tion from the document downloading itself. Usually,
the implementation of a downloader should consider
factors such as multi-threading and network excep-
tions, and should not be coupled with link collection.

Because of those practical considerations, we propo-
se an efficient sampling-based method for collecting
the URLs of a deep web data source. We first collect
from the data source a set of documents as a sample
that represents the original data source. From the sam-
ple data, we select a set of queries that cover most of
the sample documents with a low cost. Then we use
this set of queries to extract data from the original data
source.

The main contribution of this paper is the hypoth-
esis that the queries working well on the sample will
also induce satisfactory results on the total data base
(i.e., the original data source). More precisely, this pa-
per conjectures that:

1. The vocabulary learnt from the sample can cover
most of the total data base;

2. The overlapping rate in the sample can be pro-
jected to the total data base;

3. The sizes of the sample and the query pool do not
need to be very large.

While the first result can be derived from [8], the
last two are not reported in the literature as far as we
are aware of. As our method is dependent on the sam-
ple size and query pool size, we have empirically de-
termined the appropriate sizes for the sample and the
query pool for effective crawling of a deep web.

In this paper, we focus on querying textual data
sources, i.e., the data sources that contain plain text
documents only. This kind of data sources usually pro-
vides a simple keywords-based query interface instead
of multiple attributes as studied by Wu et al. [40]. Mad-
havan et al.’s study [29] shows that the vast majority
of the html forms found by Google deep web crawler
contain only one search attribute. Hence we focus on
such search interfaces.

2. Related work

There has been a flurry of research of data extrac-
tion from web [19], and more recently on deep web
[9,29,33]. The former focuses on extracting informa-
tion from HTML web pages, especially on the prob-
lem of turning un-structured data into structured data.
The latter concentrates on locating deep web entries
[6,15,29], automated form filling [9,37], and query
selection [5,22,33,40]. Olston and Najork provided a
good summary on deep web crawling [34] in general.
Khare, An, and Song surveyed the work on automated
query interface understanding and form filling [18].

A naive approach to selecting queries to cover a tex-
tual data source is to choose words randomly from
a dictionary. In order to reduce the network traffic,
queries to be sent need to be selected carefully. Various
approaches [5,23,33,40] have been proposed to solve
the query selection problem, with the goal of maxi-
mizing the coverage of the data source while minimiz-
ing the communication costs. Their strategy is to mini-
mize the number of queries issued, by maximizing the
unique returns of each query.

One of the most elaborate query selection methods
along this line was proposed by Ntoulos et al. [33].
The authors used an adaptive method to select the next
query to issue based on the documents downloaded
from previous queries. The query selection problem
is modeled as a set covering problem [39]. A greedy
algorithm for set-covering problem is used to select

Y. Wang et al. / Selecting queries from sample to crawl deep web data sources 77

an optimal query based on the documents downloaded
so far and the prediction of document frequencies of
the queries on the entire corpus. The focus is to mini-
mize the number of queries sent out, which is impor-
tant when data sources impose the limit for the number
of queries that can be accepted for each user account.
Our focus is minimizing the network traffic, which is
the overlapping rate.

Wu et al. [40] propose an iterative method to crawl
structured hidden web. Unlike our simple keyword-
based search interface, it considers interfaces with
multiple attributes. Also, the data sources are consid-
ered structured (such as relational database), instead of
text documents as we discussed.

Barbosa and Freire [5] pointed out the high overlap-
ping problem in data extraction, and proposed a me-
thod trying to minimize the number of queries. Liddle
et al. [22] gave several evaluation criteria for the cost
of data extraction algorithms, and presented a data ex-
traction method for web forms with multiple attributes.

We reported our preliminary result in a rather short
paper [25]. This paper extends the previous work by
adding more experiment results and analysis.

3. Problem formalization

3.1. Hit rate

The goal of data extraction is to harvest most of the
data items within a data source. This is formalized as
the Hit Rate that is defined below.

Let q be a query and DB a database. We use
S(q,DB) to denote the set of data items in response to
query q on database DB .

Definition 1 (Hit Rate, HR). Given a set of queries
Q = {q1, q2, . . . , qi} and a database DB . The hit rate
of Q in DB , denoted by HR(Q,DB), is defined as
the ratio between the number of unique data items col-
lected by sending the queries in Q to DB and the size
of the data base DB , i.e.:

u =

∣∣∣∣∣

i⋃

j=1

S(qj ,DB)

∣∣∣∣∣,

HR(Q,DB) =
u

|DB | .

3.2. Overlapping rate

The cost of deep web crawling in our work refers
to the redundant links that are retrieved, which can be
defined by the overlapping rate.

Definition 2 (Overlapping Rate, OR). Given a set of
queries Q = {q1, q2, . . . , qi}, the overlapping rate of
Q in DB , denoted by OR(Q,DB), is defined as the
ratio between the total number of collected links (n)
and the number of unique links retrieved by sending
queries (u) in Q to DB , i.e.,

n =

i∑

j=0

|S(qj ,DB)|,

OR(Q,DB) = n/u.

Intuitively, the cost can be measured in several as-
pects, such as the number of queries sent, the num-
ber of document links retrieved, and the number of
documents downloaded. Ntoulas et al. [33] assigned
weights to each factor and use the weighted sum as
the total cost. While it is a straightforward modeling of
the real world, this cost model is rather complicated to
track. In particular, the weights are difficult to verify
in different deep web data sources, and the crawling
method is not easy to be evaluated against such cost
model.

We observe that almost all the deep web data
sources return results in pages, instead of a single
long list of documents. For example, if there are
1,000 matches, a deep web data source such as a
web service or an html form may return one page
that consists of only 10 documents. If you want the
next 10 documents, a second query needs to be sent.
Hence in order to retrieve all the 1000 matches, alto-
gether 100 queries with the same query terms are re-
quired.

With this scenario the number of queries is pro-
portional to the total number of documents retrieved.
Hence there is no need to separate those two factors
when measuring the cost. That is why we simply use n,
the total number of retrieved documents, as the indica-
tor of the cost. Since data sources vary in their sizes,
a large data source with larger n does not necessarily
mean that the cost is higher than a smaller n in a small
data source. Therefore we normalize the cost by divid-
ing the total number of documents by the unique ones.
When all the documents are retrieved, u is equal to the
data source size.

Example 1. Suppose that our data source DB has
three documents d1, d2, and d3. d1 contains two terms
t1 and t2, d2 contains t1 and t3, and d3 contains t2
only. The matrix representation of the data source is
shown in Table 1. OR and HR for queries {t1, t2} and

78 Y. Wang et al. / Selecting queries from sample to crawl deep web data sources

Table 1

HR and OR example

d1 d2 d3

t1 1 1 0

t2 1 0 1

t3 0 1 0

{t2, t3} are calculated as below:

OR({t1, t2},DB) =
2 + 2

3
=

4

3
,

HR({t1, t2},DB) =
3

3
= 1,

OR({t2, t3},DB) =
2 + 1

3
= 1,

HR({t2, t3},DB) =
3

3
= 1.

Since {t2, t3} has a lower OR than {t1, t2} and they
produce the same HR, we should use {t2, t3} instead
of {t1, t2} to retrieve the documents.

3.3. Relationship between HR and OR

Another reason to use HR and OR to evaluate the
crawling method is that there is a fixed relationship be-
tween HR and OR when documents can be obtained
randomly. I.e., if documents can be retrieved ran-
domly with equal capture probability, we have shown
in [24,27] that

HR = 1−OR−2.1. (1)

When documents are retrieved by random queries,
the relationship between HR and OR are roughly

HR = 1−OR−1. (2)

As a rule a thumb, when OR = 2, most probably we
have retrieved 50% of the documents in the deep web
with random queries. This provides a convenient way
to evaluate the crawling methods.

3.4. Our method

The challenge in selecting appropriate queries is that
the actual corpus is unknown to the crawler from the
outside, hence the crawler cannot select the most suit-
able queries without the global knowledge of the un-
derlying documents inside the database.

With our deep web crawling method, we first down-
load a sample set of documents from the total database.

Fig. 1. Crawling method based on sampling.

Algorithm 1 Outline of Deep Web Crawling algorithm
DWC (TotalDB , s, p)

Input: the original data source TotalDB ; sample
size s, query pool size p.

Output: A set of terms in Queries
1: Create a sample data base SampleDB by

randomly selecting s number of documents from
the corpus TotalDB ;

2: Create a query pool QueryPool of size p from
the terms that occur in SampleDB ;

3: Select a set of queries Queries from QueryPool
that can cover at least 99% of the SampleDB by
running a set covering algorithm;

From this sample, we select a set of queries that can
cover most of the documents in the sample set with
low cost. This paper shows that the same set of queries
can be also used to cover most of the documents in the
original data source with a low cost. This method is
illustrated in Fig. 1 and explained in Algorithm 1.

In the following, we will use DWC (db, s, p) to de-
note the output obtained by running the algorithms
with input the data source db, the sample size s, and
the query pool size p.

In our algorithm and experiments random samples
are obtained by generating uniformly distributed ran-
dom numbers within the range of the document IDs in
the corpus. However, in practical applications we do
not have the direct access to the whole corpus. Instead,
only queries can be sent and the matched documents
are accessed. In this scenario the random sampling of
the documents in a corpus is a challenging task, and
has attracted substantial studies (for example in [4]).
Since the cost of obtaining such random samples are
rather high, our experiments skip the random sampling

Y. Wang et al. / Selecting queries from sample to crawl deep web data sources 79

process and take the random samples directly from the
corpus.

To refine this algorithm, there are several parameters
that need to be decided.

One is the number of documents that should be se-
lected into the sample, i.e., the size of SampleDB . Al-
though in general the larger sample will always pro-
duce a better result, we need to find an appropriate size
for the sample so that it is amenable to efficient pro-
cessing while still large enough to produce a satisfac-
tory query list in QueryPool .

The second uncertainty is how to select the terms
from the SampleDB in order to form the QueryPool .
There are several parameters that can influence the se-
lection of terms, typically, the size of the pool and the
document frequencies of the selected terms.

Thus the Queries finally selected from the query
pool depends on various criteria, such as the size of
Queries , the algorithm chosen to obtain the terms in
SampleDB , and the document frequencies of those
terms selected.

The soundness of Algorithm 1 relies on the hypoth-
esis that the vocabulary that works well for the sam-
ple will also be able to extract the data from the ac-
tual database effectively. More precisely, this hypothe-
sis says that

1. the terms selected from SampleDB will cover
most documents in the TotalDB , and

2. the overlapping rate in TotalDB will be close to
the overlapping rate in the SampleDB .

Before analyzing the correspondence between the
sample and total databases in detail, we first study the
problem of query selection from a sample data base.

4. Select queries from SampleDB

4.1. Create the query pool

In order to select the queries to issue, we need to
obtain a query pool QueryPool first. QueryPool is
built from the terms in a random sample of the cor-
pora. We should be aware that random queries can not
produce random documents because large documents
have higher probability of being matched. It is a rather
challenging task to obtain random documents from a
searchable interface [4].

Not every word in the first batch of the search results
should be taken into our consideration, due to the time
constraint we suffer in order to calculate an effective
query set Queries from the SampleDB with high hit

rate and low overlapping rate. As we mentioned in the
Introduction, searching for an optimal query set can be
viewed as a set-covering problem. Set-covering prob-
lem is NP-hard, and satisfactory heuristic algorithms
in the literature have a time complexity that are at least
quadratic to the number of input words. This deter-
mines that we are able to calculate Queries only with a
query pool of limited size. The first batch of search re-
sult, on the contrary, may well-exceed such a limit. For
instance, a first-batch of result randomly selected from
a newsgroups data contains more than 26,000 unique
words. Therefore, we only consider a subset of words
from the sample documents as a query pool.

Apparently, the size of this subset will affect the
quality of the Queries we generate. Moreover, it
should be measured relative to the sample size and the
document frequencies of the terms.

Intuitively, when a sample contains only a few doc-
uments, very few terms would be enough to jointly
cover all of those documents. When the sample size in-
creases, very often we need to add more terms into the
QueryPool in order to capture all the new documents.

There is another factor to consider when selecting
queries in the query pool, i.e., the document frequency
(DF) of the terms in the sample size. There are a few
options:

Random terms Randomly selecting the terms in the
sample database may be an obvious choice. How-
ever, it suffers from low hit rate because most of
the randomly selected queries are of low docu-
ment frequencies. According to Zipf’s Law [42],
the distribution of words sorted by their frequency
(i.e., number of occurrences) is very skewed [42].
In one of our SampleDB there are about 75% of
the words that have very low frequencies. There-
fore, by randomly polling the words from the vo-
cabulary, we will get many queries with small
number of returns.

Popular terms Another possible choice is the pop-
ular words in the sample, which are terms with
high document frequencies. Popular words such
as stop words are not selected for several reasons.
One is that many data sources do not index stop
words. Hence using stop words to extract docu-
ments may not return many results. The second
reason is that data sources usually have a restric-
tion on the maximal number of results that can be
returned to users. Even if a query can match many
documents, data sources will return only part of
it. In addition, the words that return more docu-
ments also bring in more duplicates.

80 Y. Wang et al. / Selecting queries from sample to crawl deep web data sources

Terms within certain range of document frequen-
cies Since neither random words nor popular
words are good choices, in the experiment de-
scribed in this section, we will select terms that
have document frequency ranging between 2 and
20% of the sample size. For example, if the sam-
ple size is 2,000, we use the words with DF values
between 2 and 400. Words with DF = 1 are most
probably rare words. Words that appear in more
than 400 documents are too popular to consider.

The size of the query pool should also be measured
relative to the document frequencies of its terms: terms
with low frequency contribute less to the coverage of
the document set. Taking into account the sample size
and the document frequencies, we define the following
relative query pool size as a factor that influences the
quality of the generated queries.

Definition 3 (Relative query pool size). Let Q be a
set of queries and DB a database. The relative query
pool size of Q on DB , denoted by poolSize(Q,DB),
is defined as follows

poolSize(Q,DB) =

∑
q∈Q df(q,DB)

|DB | ,

where df(q,DB) denotes the document frequency of
q in DB , i.e., the number of documents in DB that
contain the query q.

poolSize indicates the total number of documents
that can be retrieved by the queries in the query pool,
normalized by the data collection size. For example, if
poolSize = 20, on average each document is captured
20 times if all the queries are used. As for exactly what
is the best relative size of the query pool, we will ana-
lyze that in Section 5.4.2.

4.2. Select queries from the query pool

Once the query pool is established, we need to select
from this pool some queries that will be sent to the
TotalDB .

Let QueryPool = {q1, q2, . . . , qn} be a query pool.
We need to find a subset Queries = {q1, . . . , qm},
where m < n, so that

HR(Queries,SampleDB) = 1,

and

OR(Queries,SampleDB)

is minimal.

Let S =
⋃n

i=1 S(qi,SampleDB) and Si = S(qi,
SampleDB). Apparently, we have Si ⊆ S for i =
1, . . . , n, and

⋃n
i=1 Si = S. Thus, the above prob-

lem is equivalent to the set-covering problem, i.e. to
find a set S1, . . . , Sm such that for any i = 1, . . . ,m,
Si = Sj for some j,

⋃m
i=1 S

i = S and that the
cost of the cover as defined by

∑m
i=1 |Si| is mini-

mal.
Selecting a collection of appropriate queries can be

modeled as a set covering problem as follows:

Definition 4 (Set Covering problem). Given a data
source DB whose set of documents is denoted by
S, and finite sets S1, . . . , Sn, where Si ⊆ S, i =
1, . . . , n, each representing the set of documents re-
turned by a query qi, i.e., Si = S(qi,DB). Let J =
{1, 2, . . . , n}. A subset J∗ of J is a cover if

⋃

j∈J∗

Sj = S.

The cost of the cover is

∑

j∈J∗

|Sj |.

The set covering problem is to find a cover with mini-
mum cost.

Note that in our formulation, the cost function is de-
fined as the sum of the cardinalities of the subsets, with
the aim to minimize the overlapping rate. However, the
goal defined in [33] is to select minimal number of
queries.

In query selection, it is not easy to find a complete
cover, especially when the language model of the data
source, such as the distribution of the terms in the cor-
pus, is unknown before hand. Hence, the set-covering
problem is generalized to the p-partial covering prob-
lem, where p is the proportion of the coverage re-
quired.

Set covering is an NP-hard problem and it is not
easy to find an optimal solution. Various heuristic al-
gorithms have been proposed in both graph theory and
various application domains such as crew scheduling.
We have adopted the most straightforward greedy al-
gorithm. According to this algorithm, the set of queries
are generated by repeatedly selecting the next query
which minimizes the cost and maximizes the new doc-
uments returned.

Our greedy algorithm for p-partial covering is
shown in Algorithm 2.

Y. Wang et al. / Selecting queries from sample to crawl deep web data sources 81

Algorithm 2 p-partial set covering algorithm

set J∗ = {};

while
∣∣∣
⋃

j∈J∗ Sj

∣∣∣ < p |S|) do

find a k minimizing
|Sk|

|Sk −
⋃

j∈J∗ Sj |
;

add k to J∗;
end while
for each k ∈ J∗ do

remove Sk if it is redundant;
end for

Example 2. For the matrix in Example 1, a greedy
algorithm will select t1 first. Next it will select t3.
OR(t1, t2) = 4/3. In this case HR = 1, OR({t1, t2},
DB) = 4/3.

5. Experiments

The purpose of the experiments is to study how well
the queries selected from SampleDB perform in the
TotalDB . If the approach is effective, we want to iden-
tify the appropriate sample size and the relative query
pool size.

5.1. Data

We run our experiments on a variety of data col-
lected from various domains. The four corpora are
Reuters, Gov, Wikipedia, and Newsgroups. They are
of different sizes ranging between 30 thousands to 1.4
millions. Their characteristics are summarized in Ta-
ble 2. These are standard test data that are used by
many researchers in information retrieval.

– Reuters is a TREC data set that contains 806,790
news stories in English (http://trec.nist.gov/data/
reuters/reuters.html).

– Gov is a subset of Gov2 that contains 1 million
documents. Gov2 is a TREC test data collected
from .gov domain during 2004, which contains 25
million documents. We used only a subset of the
data for efficiency consideration.

– Wikipedia is the corpus provided by wikipedia.org
which contains 1.4 million documents.

– Newsgroups includes 30k posts in various news-
groups.

In the experiment we built our own search engine
using Lucene [14], in order to have details of a data
source such as its size. In real deep web data sources,
usually the total number of documents is unknown,

Table 2

Summary of test corpora

Name Number of docs Size in MB Avg file size (KB)

Reuters 806,791 666 0.83

Wikipedia 1,369,701 1,950 1.42

Gov 1,000,000 5,420 5.42

Newsgroups 30,000 22 0.73

Fig. 2. Impact of sample size on HR. The queries are selected from
SampleDB and cover above 99% of the documents in SampleDB .
The HR in the plot is obtained when those queries are sent to the
TotalDB . Relative query pool size is 20.

hence it is impossible to calculate the HR and evaluate
the crawling methods.

5.2. Hypothesis I

Our first hypothesis is that in general the queries
learnt from a small SampleDB can cover most of the
data in TotalDB , i.e., the queries can be used to re-
trieve most of the documents in TotalDB .

Hypothesis 1. Suppose that SampleDB and the sub-
sequent set of queries Q are created by our algo-
rithm from TotalDB . If |SampleDB | > 1,000 and
poolSize = 20, then

HR(Q,TotalDB) > 0.8.

Here we assume that the size of TotalDB is a very
large number, i.e., |TotalDB | � 1,000.

We tested the cases where the sample sizes range
between 100 to 4,000 documents for the four corpora
studied. Figure 2 shows HR in TotalDB as a function
of the sample size. It demonstrates that our method
quickly finds the queries that can account for 90% of

82 Y. Wang et al. / Selecting queries from sample to crawl deep web data sources

the documents in TotalDB . It is shown that at the be-
ginning when the sample size increases, HR in total
database will be higher. After about 1,000 documents,
the gain in HR tapers and the increase of sample size
has little impact on the HR in TotalDB .

This phenomenon can be explained by Heaps’ law,
which states that when more documents are gathered,
there are diminishing returns of new words. When
1,000 documents are checked, most common words
are already recovered from the sample. There are very
few useful words left outside the 1,000 sample. Hence
there is little improvement when sample gets larger.

5.3. Hypothesis II

While the first hypothesis shows that it is easy to
select the queries to retrieve most of the documents in
TotalDB , what we concern more is the cost, i.e., the
overlapping rate, to retrieve the data.

Although for SampleDB , we make sure that the se-
lected queries have a low cost by applying a set cov-
ering algorithm, we are not sure yet whether the cost
would be also low for the TotalDB . Hence we need to
verify our second hypothesis, i.e., the queries selected
by Algorithm 1 from SampleDB will also result in low
overlapping rate in TotalDB . More precisely, it can be
described as:

Hypothesis 2. Suppose that queries Q are selected by
our method, i.e., Q = DWC (TotalDB , sampleSize,
poolSize), where sampleSize > 1,000, and poolSize >
10. Q′ is a set of queries selected randomly from
the same query pool such that HR(Q′,TotalDB) =
HR(Q,TotalDB). Then

OR(Q,TotalDB) < OR(Q′,TotalDB).

In order to verify this, we conducted a series of ex-
periments to compare with the cost for random queries.
Figure 3 illustrates the effectiveness of our method by
comparing it with the performance of random queries.
In this experiment our method used greedy algorithm
to select the queries from a QueryPool of relative size
20. The query pool is constructed from a sample set
of documents of size 3,000. The random method in
comparison selects queries randomly from the same
query pool. Take the plot for Reuters corpus for ex-
ample, in order to harvest 90% of the data, random
queries will induce approximately 5 overlapping rate,
while our method using greedy set-covering algorithm
will produce 2.5 overlapping rate. Since Reuters con-
sists of 0.8 million of documents, our method will save

(5 − 2.5) × 0.8 = 2 millions of documents compared
with the random method.

Although this experiment shows that our method is
effective, we need to identify what are the appropriate
sizes for SampleDB and QueryPool , respectively.

5.4. Hypothesis III

The previous two hypotheses have shown that 1) we
can cover most of the documents based on a sample;
2) we can do that with a cost lower than that of a ran-
dom method. Our next concern is exactly how large
the sample and the query pool should be. Our third hy-
pothesis is that in order to download most of the doc-
uments with low overlapping, the sample size and the
relative query pool size do not need to be very large.
This will be elaborated in two aspects, i.e., the sample
size and the query pool size.

5.4.1. Sample size
As for the proper sample size, Fig. 2 shows that a

few thousands of sample documents are good enough
to harvest most of the documents in TotalDB . How-
ever, we have not shown how OR changes as sample
size increases.

The impact of the sample size on OR can be sum-
marized as below:

Hypothesis 3. 1. Suppose that

Q1 = DWC (TotalDB , sampleSize1, poolSize),

Q2 = DWC (TotalDB , sampleSize2, poolSize).

Let Q′
i ⊆ Qi, i ∈ {1, 2}, such that

HR(Q′
1,TotalDB) = HR(Q′

2,TotalDB).

sampleSize1 > sampleSize2 does not imply that

OR(Q′
1,TotalDB) < OR(Q′

2,TotalDB).

Intuitively, this hypothesis says that a larger sample
size does not guarantee smaller OR.

We conducted a series of experiments to investiga-
te the impact of sample size on the overlapping rate.
Figure 4 shows OR in TotalDB as a function of sam-
ple size for the four corpora, with hit rate fixed at 89%,
and relative query pool size fixed at 20.

It shows that sample size has little effect on OR:
sometimes larger sample size may induce higher over-
lap in TotalDB . Although it is counter-intuitive, the
reason is that with more documents in the sample,

Y. Wang et al. / Selecting queries from sample to crawl deep web data sources 83

Fig. 3. Comparison of our method on the four corpora with queries selected randomly from sample. X axis is the Overlapping Rate, Y axis is the
Hit Rate. Sample size is 3,000, relative query pool size is 20. Our method achieves a much smaller OR when HR is high.

Fig. 4. Impact of sample size on OR. HR is 89%, relative query
pool size is 20.

there are more words to choose from, most of them
having low frequency according to Zipf’s law. When
those low frequency words are selected by the set cov-
ering algorithm, they result in low OR in SampleDB .
However, when they are mapped to TotalDB , they are
most probably still of low frequency, hence do not have
much effect on the overall performance.

5.4.2. Query pool size
This experiment investigate the impact of query pool

size on HR and OR. Since the HR and OR will also
vary with different sample size, we include sample size
as another dimension of input in our experiments.

First we need to investigate the impact of query pool
size on HR. Our hypothesis can be formulated as fol-
lows:

Hypothesis 3. 2. Let

Q1 =DWC (TotalDB , sampleSize, poolSize1),

Q2 =DWC (TotalDB , sampleSize, poolSize2).

poolSize1 > poolSize2 does not imply that

HR(Q1,TotalDB) > HR(Q2,TotalDB).

In particular, when sampleSize > 1,000, HR(Q1,
TotalDB) achieves the highest value if poolSize1 is
between 10 and 20.

Figure 5 shows the HR in TotalDB as a function of
relative query pool size and sample size. The pool size
is in the range of 5 and 40. We ignored the pool size

84 Y. Wang et al. / Selecting queries from sample to crawl deep web data sources

Fig. 5. The impact of QueryPool size on hit rate.

smaller than five because it will not produce enough
queries to cover all the documents, let alone select a
better cover.

It can be seen that HR is low only when query pool
size is below 10. When query pool becomes larger, HR
may decrease because of the same reason we explained
in the last sub section, i.e., the inclusion of more low
frequency words. The conclusion of this experiment is
that best performance is achieved when pool size is set
between 10 to 20.

Another investigation is the impact of query pool
size on OR. OR is dependent of HR, hence it is mean-
ingless to list the OR without the reference to HR. In
order to have an objective comparison, we measure the
improvement of OR over random method which ob-
tains the same hit rate. Our empirical study shows the
following result:

Hypothesis 3. 3. Suppose that Q and Q′ have the same
hit rate. Q is selected by our algorithm, while Q′ is a
set of queries randomly selected from the query pool,
i.e.,

Q = DWC (TotalDB , sampleSize, poolSize),

HR(Q,TotalDB) = HR(Q′,TotalDB).

Let OR improvement be

OR(Q′,TotalDB)−OR(Q,TotalDB).

Then OR improvement increases as sample size grows.

The experiment is carried out as follows: we first
fire all the selected queries Q to the TotalDB and
record the overlapping rate OR(Q,TotalDB) and
HR(Q,TotalDB) at the end of querying process.
Then we use random queries Q′ to reach the same HR,
and record the overlapping rate OR(Q′,TotalDB) at
this point. The improvement of OR is

OR(Q′,TotalDB)−OR(Q,TotalDB).

Figure 6 depicts the improvement of OR while sam-
ple size and query pool size vary. It shows that the re-
lative query pool size does not need to be very large–
the best result is obtained while relative query pool size
is around 20, which can be explained again by the in-
clusion of rare words.

Figures 6 and 4 seem contradicting with each other–
with the increase of sample size, one says that OR
improvement increases monotonically while the other
says that the OR does not change with a pattern. Ac-

Y. Wang et al. / Selecting queries from sample to crawl deep web data sources 85

Fig. 6. The impact of QueryPool size on OR.

tually in Fig. 6 the hit rate increases along the growing
sample size, resulting in growing OR improvement.
On the other hand, experiments described in Fig. 4
have a fixed HR.

Figure 6 also gives us an overall comparison be-
tween our method and the random method. First of
all, no matter what sizes of the sample and query pool
have, the result of our method is always better than that
of random method. We can also see that larger sam-
ples will introduce more improvements in overlapping,
while query pool size does not matter very much.

5.5. Compare queries on other data sources

The results in the preceding experiments showed
that the queries selected from the samples can cover
most of the total database effectively. However, these
experiments do not rule out another possibility, i.e.,
whether queries selected from any English corpus may
work equally well for all the data sources. If that were
true, it would imply that the sampling process may
not be necessary – we could select appropriate queries
once and use those queries for all data crawling tasks.

In order to show that the sampling process is neces-
sary, we need to show that the selected queries from a

sample of TotalDB will not work well on another data
source TotalDB ′.

To be precise, suppose that Q is selected from
TotalDB , i.e.,

Q = DWC (TotalDB , sampleSize, poolSize).

Suppose that Q′ and Q′′ are two subsets of Q that can
achieve the same HR of two total databases TotalDB
and totalDB ′, i.e., Q′ ⊆ Q,Q′′ ⊆ Q, such that

HR(Q′,TotalDB) = HR(Q′′,TotalDB ′).

We demonstrate that

OR(Q′,TotalDB) < OR(Q′′,TotalDB ′).

Figure 7 shows the results of applying queries to
other corpora. For example, the sub figure From Reu-
ters corpus shows the OR/HR relationship for queries
selected from a sample of Reuters. Those queries
are subsequently sent to all the four corpora. The
charts show that in three cases queries selected from
SampleDBA will perform better in TotalDBA than
other TotalDBs, with the exception for Wikipedia.

86 Y. Wang et al. / Selecting queries from sample to crawl deep web data sources

Fig. 7. Apply queries selected in one corpus to other corpora. Sample size is 3,000, relative query pool size is 20. Each sub figure shows the
querying results for four corpora with queries selected from one particular corpus.

Wikipedia contains a variety of topics, resulting in
samples that are representative for a variety of corpora.
Hence the learnt queries works equally well for other
corpora.

Comparing Fig. 7 with the random method in Fig. 3,
we find that queries learnt from corpus A can also im-
prove the performance of crawling corpus B, albeit not
as good as learning from corpus B directly. An expla-
nation for this is that some groups of words tend to co-
occur more often in all corpora. By learning less over-
lapping words in one corpus, we break up those co-
occurrent words and resulting better results in another
corpus.

5.6. Select queries directly from TotalDB

When queries are selected directly from the
TotalDB instead of a SampleDB , those queries would
certainly perform better than our method. In order to
learn whether the sampling method is effective, we
would like to know how much better the direct selec-
tion method is than our sampling method. Figure 8
shows the difference when the queries are selected
from SampleDB and TotalDB . In this experiment,

our method sets the sample size as 4,000, the relative
query pool size as 30, and the range of document fre-
quency of the queries as 2 to 800.

The experiment shows that for all the four corpora
we investigated, the sample based method performs
nearly as good as the direct selection method, espe-
cially when the hit rate is close to one. In particular, the
4th sub figure for the Newsgroups corpus shows that
the two approaches have almost the same performance.
This can be explained that the difference between the
sample size and the actual database size is not as big
as other corpora because the Newsgroups corpus has
30,000 documents only.

6. Conclusions

This paper proposes an efficient and effective deep
web crawling method. It can recover most of the data
in a text data source with low overlapping rate. Our
empirical study on the four corpora shows that using a
sample of around 2,000 documents, we can efficiently
select a set of queries that can cover most of the data
source with low cost. We also empirically identified

Y. Wang et al. / Selecting queries from sample to crawl deep web data sources 87

Fig. 8. Comparison with queries selected directly from TotalDB . Each sub figure shows the querying results for queries selected from one
particular corpus.

the appropriate size for the sample and the size for the
query pool.

The main contribution of the paper is that it shows a
relatively small set of sample documents can be used
to select the queries to efficiently cover most of the
data source. Using a sample to predict the characteris-
tics of a total population is widely used in various ar-
eas. Sampling a data source is well studied. Our Hy-
pothesis 1 is related with the result by Callan et al. [8],
which says that using around 500 documents from a
sample, one can predict rather accurately the ctf (total
term frequency) ratio for the total DB . That result co-
incides with our Hypothesis 1. However, Hypotheses 2
and 3 are proposed by us as far as we are aware of.

We will continue to explore:

Ranked data source Our method, as well as many
other approaches, assumes that data sources will
return all the documents. In reality, many data
sources rank the matched result and return only
the top k number of matches. For this type of data
sources, it is almost impossible to harvest all the
data due to high overlapping rate [26], hence the
role of query selection is even more critical.

Multiple search attributes The scope of the paper is
limited to textual database with simple keywords
query interface, which is common for document
searching on the web. Query forms with multi-
ple attributes or complex query grammar are not
considered in this paper. In particular, a practical
data extractor should utilize the query grammar to
achieve better result.

We believe that before crawling a deep web data
source, there is a need to estimate its size [3,26,27].
The knowledge of size is necessary to evaluate the
crawler, to decide when to stop crawling, and to esti-
mate the document frequencies of the terms which is
crucial in crawling ranked data sources [26].

Acknowledgements

We would like to thank the anonymous reviewers for
their detailed comments and suggestions. The research
is supported by Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and State Key Lab
for Novel Software Technology at Nanjing University,
China.

88 Y. Wang et al. / Selecting queries from sample to crawl deep web data sources

References

[1] M. Alvarez, et al., Extracting lists of data records from semi-
structured web pages, Data and Knowledge Engineering 64(2)
(February 2008), 491–509, Elsevier.

[2] M. Alvarez, et al., Crawling the content hidden behind web
forms, in: Computational Science and Its Applications, ICCSA,
2007, pp. 322–333.

[3] I. Anagnostopoulos and C. Anagnostopoulos, Estimating the
size and evolution of categorised topics in web directories, in:
Web Intelligence and Agent Systems 8(1) (2010), 53–68, IOS
Press.

[4] Z. Bar-Yossef and M. Gurevich, Random sampling from a
search engine’s index, in: WWW, 2006, pp. 367–376.

[5] L. Barbosa and J. Freire, Siphoning hidden-web data through
keyword-based interfaces, in: SBBD, 2004.

[6] L. Barbosa and J. Freire, An adaptive crawler for locating
hidden-web entry points, in: Proc. of the 16th International
Conference on World Wide Web, 2007, pp. 441–450.

[7] M.K. Bergman, The deep web: Surfacing hidden value, The
Journal of Electronic Publishing 7(1) (2001).

[8] J. Callan and M. Connell, Query-based sampling of text
databases, ACM Transactions on Information Systems (2001),
97–130.

[9] J. Caverlee, L. Liu, and D. Buttler, Probe, cluster, and dis-
cover: Focused extraction of QA-pagelets from the deep web,
in: ICDE, 2004, pp. 103–114.

[10] C.-H. Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan, A sur-
vey of web information extraction systems, IEEE Transactions
on Knowledge and Data Engineering 18(10) (October 2006),
1411–1428.

[11] Che, et al., Query Rewriting for Extracting Data Behind HTML
Forms, Springer, 2004.

[12] V. Crescenzi, G. Mecca, and P. Merialdo, RoadRunner: To-
wards automatic data extraction from large web sites, VLDB J.
(2001), 109–118.

[13] C. Ferris and J. Farrell, What are web services? Commun. ACM
46(6) (2003), 31.

[14] E. Hatcher and O. Gospodnetic, Lucene in Action, Manning
Publications, 2004.

[15] B. He, et al., Accessing the deep web: A survey, Communica-
tions of the ACM (CACM) 50(2) (May 2007), 94–101.

[16] L. Holst, A unified approach to limit theorems for urn models,
Journal of Applied Probability 16(1) (March 1979), 154–162.

[17] P.G. Ipeirotis, et al., To Search or to Crawl?: Towards a Query
Optimizer for Text-Centric Tasks, ACM Press, New York, NY,
USA, 2006, pp. 265–276.

[18] R. Khare, Y. An, and I.-Y. Song, Understanding deep web
search interfaces: A survey, ACM SIGMOD Record 39(1)
(March 2010), 33–40.

[19] C.A. Knoblock, K. Lerman, S. Minton, and I. Muslea, Accu-
rately and reliably extracting data from the web: A machine
learning approach, IEEE Data Eng. Bull. 23(4) (2000), 33–41.

[20] J.P. Lage, et al., Automatic Generation of Agents for Collect-
ing Hidden Web Pages for Data Extraction, Elsevier, 2004, pp.
177–196.

[21] K. Lang, Newsweeder: Learning to filter netnews, in: Twelfth
International Conference on Machine Learning, 1995, pp.
331–339.

[22] S.W. Liddle, D.W. Embley, D.T. Scott, and S.H. Yau, Extract-
ing data behind web forms, in: Advanced Conceptual Modeling
Techniques, 2002, pp. 402–413.

[23] L. Jiang, Z. Wu, Q. Feng, J. Liu, and Q. Zheng, Efficient
deep web crawling using reinforcement learning, in: Advances
in Knowledge Discovery and Data Mining, Lecture Notes in
Computer Science, Vol. 6118/2010, 2010, pp. 428–439.

[24] J. Lu, Efficient estimation of the size of text deep web data
source, in: CIKM, 2008, pp. 1485–1486.

[25] J. Lu, Y. Wang, J. Liang, J. Chen, and J. Liu, An approach to
deep web crawling by sampling, in: Web Intelligence, 2008, pp.
718–724.

[26] J. Lu, Ranking bias in deep web size estimation using cap-
ture recapture method, Data and Knowledge Engineering, ac-
cepted.

[27] J. Lu and D. Li, Estimating deep web data source size by
capture-recapture method, Information Retrieval 13(1) (2010),
70–95, Springer.

[28] C. Lund and M. Yannakakis, On the hardness of approximating
minimization problems, Journal of the ACM 41(5) (September
1994), 960–981.

[29] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen,
and A. Halevy, Google’s deep-web crawl, in: VLDB, 2008, pp.
1241–1252.

[30] F. McCown, J.A. Smith, and M.L. Nelson, Lazy preservation:
Reconstructing websites by crawling the crawlers, in: Proc. of
the 8th Annual ACM international Workshop on Web Informa-
tion and Data Management (WIDM), 2006, pp. 67–74.

[31] K. Morita, E. Atlam, M. Fuketra, K. Tsuda, M. Oono, and
J. Aoe, Word classification and hierarchy using co-occurrence
word information, Inf. Process. Manage. 40(6) (November
2004), 957–972.

[32] M.L. Nelson, J.A. Smith, and I.G. del Campo, Efficient, Auto-
matic Web Resource Harvesting, ACM Press, New York, NY,
USA, pp. 43–50, 2006.

[33] A. Ntoulas, P. Zerfos, and J. Cho, Downloading textual hidden
web content through keyword queries, in: Proc. of the Joint
Conference on Digital Libraries (JCDL), 2005, pp. 100–109.

[34] C. Olston, Marc najork: Web crawling, Foundations and
Trends in Information Retrieval 4(3) (2010), 175–246.

[35] V.T. Paschos, A survey of approximately optimal solutions
to some covering and packing problems, ACM Comput. Surv.
29(2) (June 1997), 171–209.

[36] www.ProgrammableWeb.com, 2007.
[37] S. Raghavan and H. Garcia-Molina, Crawling the hidden web,

in: VLDB, 2001.
[38] D. Shestakov, S.S. Bhowmick, and E.-P. Lim, DEQUE: Query-

ing the deep web, Journal of Data Knowl. Eng. 52(3) (2005),
273–311.

[39] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Intro-
duction to Algorithms, 2nd edn, MIT Press and McGraw-Hill,
2001.

[40] P. Wu, J.-R. Wen, H. Liu, and W.-Y. Ma, Query selection tech-
niques for efficient crawling of structured web sources, in:
ICDE, 2006, pp. 47–56.

[41] S.B. Yao, Approximating block access in database organiza-
tions, ACM Comm. 20(4) (1977), 260–261.

[42] G.K. Zipf, Human Behavior and the Principle of Least Effort:
An Introduction to Human Ecology, Addison-Wesley, Reading,
MA, 1949.

