

Migrating E-commerce Database Applications to

an Enterprise Java Environment

Terence C. Lau Jianguo Lu Erik Hedges Emily (Xuemin) Xing
Centre for Advanced Studies

IBM Canada Laborato y r
Lautc@ca.ibm.com

Department of Computer
Science

University of Toronto
jglu@cs.toronto.edu

Department of Electrical &
Computer Engineering
University of Waterloo

ehedges@swen.uwaterloo.ca

E-Commerce Product
Development

IBM Canada Laboratory
exing@ca.ibm.com

ABSTRACT

As technology evolves over time, a common
problem is the migration of software applications
from one technology base to another. This paper is
a practical experience report based on IBM
Net.Commerce to WebSphere Commerce Suite
(WCS) migration. It identifies the problems and
issues in the migration of applications using
traditional database access (SQL) to applications
using the Enterprise Java Bean (EJB) programming
model, and presents a practical methodology in
facilitating such migration. It also describes a tool
built on this methodology that has been released on
IBM’s alphaWorks site. From the experience so
gained, this paper points to a number of future
enhancement areas in the methodology and
associated technology research.

Keywords: E-commerce, Migration, Database re-

engineering, Enterprise Javabean, SQL,
Net.Data, JSP, Relational-object mapping.

1 Introduction
Many new large distributed applications are being
developed using the Java 2 Enterprise Edition
(J2EE) platform[1]. The J2EE platform allows
developers to create robust three-tier applications
by providing middle tier services to communicate
with a variety of clients and backend services.

A middle-tier server such as the EJB server has
significant advantages over a classical two-tier
client/server model. The two-tier model requires
the client to have extensive knowledge of how to
access backend systems (e.g. a relational
database) and forces the client to implement any
necessary business logic to manipulate data
retrieved from the backend system. The middle-
tier is designed to shield clients from interaction
with backend system and allows for the

development of thin-clients that don’t have to
perform any heavy processing.

J2EE also has significant advantages over
creating your own middle tier. Developing a
middle tier server without the J2EE framework
would require the developer to worry about client
connectivity, database access, and transaction
management among other issues. J2EE provides
services to take care of these issues and lets the
developer concentrate on implementing business
logic.

The J2EE platform is also popular because it is
based on open standards (XML, Java, Java
Naming and Directory Interface etc.) and is being
adopted by a variety of third party solution
providers (Broadvision, IBM, etc.) in their web
servers and distributed application development
platforms.

We have examined the problem of migrating
clients of client/server applications that use SQL
statements to retrieve data to a new Enterprise
Java based package with a developed
programming model to access similar data. This
problem becomes significantly more difficult
when extensive schema changes are made
between the old and new versions. Without
significant knowledge of the developed client
components and the schema changes it would
take the developer a long time to figure out which
component contains access to similar data in the
new version. To figure out which component to
use the developer would have to consult system
documentation and potentially dig into the
programmed source of the components to
understand relationships. This is not an ideal
situation when the goal is to have simple client
components that present a layer of transparency
to the developer.

We present
client migra
building a N
Tool that is c
migrating e-
IBM’s Web
earlier versio
WCS V5.1).

There are sev
we develope
that facilitat
Commerce S
tool has be
Second, bas
common pro
to EJB-based

J2EE Server

EJB Container

Web Container

Web BrowserJava Server Page and
JavaBean Components

Shopping
Session Bean

Order Entity
Bean

Product Entity
Bean

Customer
Entity Bean

Database
Server

Figure 1: J2EE Architecture Example
a practical methodology to aid the
tion problem and our experience in
et.Data to JavaServer Page Helper
urrently being used by developers of

commerce websites developed using
Sphere Commerce Suite, from its
ns to its most recent version (IBM

eral contributions of our work. First,
d a methodology and a migration tool
e the transition of IBM Websphere
uite from one version to another. The
en released in IBM alphaWorks.

ed on the experiment, we identified
blems for migrating legacy systems
 architecture for future works.

2 Background

2.1 Enterprise Java
The J2EE platform is an architecture for
developing, deploying, and executing
applications in a distributed environment.[1] A
general J2EE architecture layout is shown in
figure 1.

The J2EE Server provides all the necessary
services to enable communication between the
clients, the middle tier services and the database
server (e.g. HTTP communication enabling
clients to invoke a Java Server Page).

Enterprise Beans
Enterprise beans are server-side components that
run in an Enterprise Java Bean (EJB)
container[4]. The Enterprise Beans control data
access and contain the business logic of the server

application. The container manages features
important to a distributed application such as
transaction management, security, database
connection pooling etc. There are two kinds of
enterprise beans: session beans and entity beans.

An entity bean is a persistent object that
represents an item in a storage system such as a
Relational Database Management System. Using
the example from , Product Entity Bean
represents a row in the product table of the
database. The entity bean provides methods to
select, add, modify, and delete underlying data.
Methods that return a set of rows we call “Finder
Methods” (e.g. search for a particular record
based on matching the primary key).

Session beans on the other hand are not persistent
and may have only one client. They are
instantiated at the request of the client and are
terminated when the client session terminates.
They perform a task for that client and do not
directly represent shared data in the database.
Session beans can however, access and update
such data.

Java Server Pages
Java Server Pages (JSPs) enable Enterprise Java
applications to create dynamic content for
browser-based clients. JSPs are a presentation-
centric method of developing servlets (Java
programs that are run by a web server and whose
output can be directed to a client browser). JSPs
support a reusable component model using
JavaBean components and Custom actions (not
explored here).

Using JavaBean components web page designer
can focus on presentation while an application
developer can develop specific components to
process data and return data to be used in the
page. JavaBean components can also be used
elsewhere in the application, as they are reusable
and portable.

2.2 Net.Commerce and Websphere
Commerce Suite

IBM WebSphere Commerce Suite and its earlier
versions (Net.Commerce) [3] are platforms for
building E-Commerce applications, supporting
functionalities ranging from product catalogue
browsing, payment processing, to product
promotion, auction, and etc. Started in 1995,

Net.Commerce has gone through five major
revisions and was renamed as Websphere
Commerce Suite (WCS). The most recent
revision (IBM WCS 5.1, November 2000)
extensively enhanced its underlying technology,
from the database schema to the programming
model. With emphasis on clear programming
structure and conformance with the Enterprise
JavaBean (EJB) model, IBM WCS V5.1 has
improved significantly from its earlier versions.
Existing customers who want to transit to the new
version of IBM WCS will need the help of tools
and guidance of some methodology to move their
legacy e-commerce applications to the new
environment.

The IBM Net.Commerce and WCS V.4
Programming Model
The early versions of Net.Commerce and IBM
WCS V.4 have a programming model built on
C++ and use commands, tasks and overridable
functions. Commands are C++ components
servicing major functions, like placing an order.
Tasks represent subunits of work within a
command, such as checking inventory or
calculating the price for an order. Overridable
functions are the C++ components that actually
perform the work of the tasks. Customers usually
implement their own business logic by replacing
the WebSphere Commerce Suite-provided
overridable functions with their own. When
results and responses are presented to users,
Net.Data macros are invoked to access the
database, retrieve the appropriate information and
then present it on Web pages.

The IBM WCS 5.1 Programming Model
The WebSphere Commerce Suite, Version 5.1
programming model is based on WebSphere
Application Server, Java technology and EJB.
The Net.Data display functions in Net.Commerce
and IBM WCS Version 4.1 are completely
replaced by JSP, and the C++ command/ task/
overridable function structure is replaced by a
single WebSphere command structure that uses
Java technology and EJB.

The Transition Tasks
The transition of Net.Commerce and IBM WCS
V.4 to WCS V.5 consists of three parts:

(1) Migrate the software stacks

The software stacks include the system
and application software packaged with
WebSphere Commerce Suite, Version
5.1 to provide basic system functions
and third-party application function.
They include the operating system, the
database system, the web server, the
security system etc.

(2) Migrate the IBM WCS infrastructure
The IBM WCS infrastructure consists of
the basic components shipped with the
product. Customers build their specific
solutions on this infrastructure. The
infrastructure includes: the tools for
building a website based on WebSphere
Commerce Suite, the runtime
infrastructure, the IBM WCS database
schema, the IBM WCS class library and
object entities.

(3) Migrate the customer assets.
Customer assets are those assets
accumulated, populated, customized or
extended by customers in their
commerce sites. These assets include
database information, pages designed
specifically for the Web site, database
schema extensions, and new or
customized business logic in commands
and overridable functions. [3]

The transition to IBM WCS Version 5.1 involves
the conversion of the following major assets:

(1) Data is migrated to the WebSphere
Commerce Suite Version 5.1 database
format and schema, and accessed using
the new object models of EJB and
dataBeans.

(2) Net.Data macros are replaced by JSP.
The SQL in Net.Data macros are
replaced with JSP calls to WebSphere
Commerce Suite, Version 5.1 data or
business EJB. Business logic within a
Net.Data macro should be moved into a
command to isolate view from model.

(3) Business logic will be converted from
C++ to Java commands: Overridable
functions are replaced by EJB task

commands. C++ commands are replaced
by EJB controller commands.

The work in this paper has a particular relevance
in (2) of the above list, namely the migration of
the Net.Data macros to JSP.

3 Generalized Process and
System

Our process contains two main phases: (A)
Information collection and (B) Analysis of
Database Application and JavaBean
Recommendation.

During Phase (A) the following information is
collected and mappings are established between
common elements:

(1) Database schema mapping information
between the source and target system

(2) Command mapping information between
the source and target system

We define a command as a component
of the source system that accomplishes a
particular task and has a comparable
counterpart in the target system (e.g.
addUser command).

(3) Target system EJB Object (entity beans)
and database relation information

(4) Target system JavaBean components and
Enterprise bean relations

(5) Target system command and JavaBean
relations

During Phase (B) the following processes take
place:

(1) An application unit (e.g. a source file)
with database access is parsed and
converted into a representation that only
stores the SQL statements contained in
the application unit

(2) Each SQL statement is analysed to see
which tables from the source schema are
used

(3) I
t

(4) I
c
(

(5) I
o

(6) I
a
s
c
(

(7) U
J
i
t

Figure 2
and proc
system.
relation
system di

1.
 S

ou
rc

e
Sy

st
em

D
at

ab
as

e

2.
 T

ar
ge

t
Sy

st
em

D
at

ab
as

e

3.
 S

ou
rc

e
Sy

st
em

C
om

m
an

ds

4.
 T

ar
ge

t
Sy

st
em

C
om

m
an

ds

6.
 T

ar
ge

t E
JB

Sy
st

em
10

. T
ar

ge
t

C
la

ss
 L

ib
ra

ry
D

oc
um

en
ta

tio
n

7. Source
Program

5. Command
Mapping C. Object-DB

Relationship
Analyser

D. JavaBean
Hierarchy &
Information
Analyser

E. Source-Target Relationship
Synthesizer

G. Heuristic Recommendation
Engine

11
. P

re
vi

ou
s

M
ig

ra
tio

n
Ef

fo
rts

H. Recommendation
Generator

8. Target Program
code fragments

9. Recommendation
Report

A. Database
Schema Mapper

F. SQL
Analyser

Figure 2: System Diagram
dentify what those columns map to in
he target schema from (A1)

dentify EJB Objects that use those
olumns from the target schema using
A4)

dentify JavaBeans that make use of the
bjects from (B4) using (A4)

f there are commands that run before or
fter the SQL execution in the source
ystem, find the equivalents of these
ommands in the target system using
A2)

sing this information (B6) the set of
avaBeans can be reduced if the user can
dentify which JavaBeans are used by
hese commands in the target system.

depicts in detail the various data sources
esses involved in our migration-aid
We will now explain the purpose and
between the various elements in the
agram figure 2.

Prior to the first use of the tool the target
application source code is analysed. The Object-
DB analyser (Item C) extracts information from
the target application to determine relations
between Entity Beans and the underlying
database. This is accomplished by parsing
through relevant source code from the target
application and needs only to be run once
providing the underlying source remains static.
In general, an Entity Bean will exist for each table
in the database and provide read/write access to
data elements as well as to perform searches on
the data. We call this relationship the Primary
relationship between the table and the related
Entity Bean (a secondary relationship exists if the
Entity Bean uses data from other tables in any
search methods). All of the “finder methods” of
the entity beans are also recorded.

We then examine the client JavaBean
Components to determine their usage of entity
beans (Item D) and any containment relationships
that exist between the JavaBean Components.
This process is also run once and needs only to be

re-run when the underlying JavaBean code
changes.

During initialisation of the migration tool all the
underlying reasoning data necessary is read into
the system. The Database Schema Mapper (Item
A) process accepts as input the source-to-target
database schema mapping relationship as
specified in a configuration file. This relationship
states what target database table/column(s) map
to what target database/column. The process
generates an internal structure representing this
mapping relationship. The relationship between
the source database tables and target database
tables can be 1-to-1, 1-to-many, or many-to-1.

The Source-to-Target Relationship Synthesizer
(Item E) amalgamates the underlying reasoning
data so that it is possible given a table from the
source application to determine all the possible
JavaBean components from the target application
that could have access to similar data in the target
system.

After initialisation the tool accepts as input a
source file and extracts all the SQL statements
contained in the file. The SQL Analyser (Item F)
extracts the column(s) and tables used in a
particular SQL statement. The following
example illustrates the recommendation process:

Given the following SQL statement:
SELECT A,B,G,H
FROM X,Y
WHERE X.A = Y.G

The SQL Parser extracts the tables from this
SELECT statement (X,Y). Applying the database
schema mapping information to our tables we get:
(source tables) X,Y
-> X',Y',Z' (target tables)

We then determine the entity beans associated
with the target tables:
X’,Y’,Z’ (Target system table)
-> X_EntityBean,
 Y_EntityBean,
 Z_EntityBean

We then determine the set of JavaBean
components that use these entity beans:
X_EntityBean, Y_EntityBean, Z_EntityBean
-> A_JavaBean,
 B_JavaBean

The number of entity beans that a particular
JavaBean component uses is used to rank the
recommendations. The logic being that the more
data coverage that the component has, the better
chance that it will have a combination of methods
that will return data similar to the data retrieved
from the SQL statement.

This set of ranked JavaBean components is
passed off to the Recommendation Generator
(Item H) that produces the output to the user in
the form of a report or to a GUI.

4 Net.Data to JSP Migration
Helper Tool

We have developed a tool to aid the migration of
Net.Data macro files used in client e-commerce
projects to Java Server Pages. The tool was
developed following the architecture and
processing model outlined in the previous section.

IBM Websphere Commerce Suite provides a
complete set of tools and interfaces to develop a
large-scale e-commerce project (both business to
consumer and business to business applications).
The most recent version of IBM WCS (V5.1)
released this year adopts a new technology base
that represents a commitment to an open
architecture based on the Java and Enterprise Java
programming model. Previous versions of IBM
WCS were based on an architecture using C++
commands and Net.Data macros for presenting
HTML to the user. [3]

The process of converting a commerce site using
Net.Data macros to a site using JSP templates is
by no means an automated task. There are many
design decisions and code conversions to be
carried out by the developers responsible for the
migration (particularly when developing business
logic components). Thus Net.Data Migration
Helper Tool is a reference tool that helps the
development team plan their Net.Data migration
and gives them guidance on where to begin. The
tool can be used at two points in the migration
process:

(1) When the migration planners are trying to
determine how much work needs to be done
on each file in order to create a project
schedule for migration. The tool will give a
high level view of how many functions each

Net.Data file has, and how many standard
and customised tables are involved.

(2) When the developer is working on creating a
particular JSP template to replace a Net.Data
file. The tool acts as a reference for the
mapping between IBM WCS Version 4 and
Version 5 tables, for the functions in the file
and recommended beans that should be used
to perform the same function in a JSP.

4.1 Net.Data Scripting language
IBM’s Net.Data product enables developers to
create dynamic web pages using data from
relational database systems and other back-end
systems. Net.Data has a macro language that
enables a developer to specify the layout of Web
pages, calls functions that are defined by the

ma

Net
dec
3Th

The
in.
lay

%fu
 S
sal
 F
 W
shl
san
 %

 %ROW{
 <center>
 HTML formatting information for
rows returned from the SELECT statement
 </center>
 %}
 %}
%}

The SQL statements that we analyse are generally
found in the function blocks of a macro.

4.2 Objective of the Tool and Rationale
Because of the significant differences between
Net.Data and JSP, and the fact that customers
might want to make functional changes during the
migration, the objective of the tool is not to
perform complete automatic conversion of one
Net.Data macro to a JSP. Rather, it is a “helper
tool”. Although the conversion process will
require human involvement, the tool will
significantly reduce the total effort of the
developers. Developers’ experience indicates that
a good recommendation list could save significant
amount of effort and time during the first part of
the conversion process.

The rationale for this approach is two-fold:

First, from an implementation feasibility point of
view, an automated translator from Net.Data to
Java is extremely difficult. Net.Data macros and
JSPs are very different in form and
implementation. It is not easy to pinpoint ahead
the mapping from an SQL in a Net.Data macro to
a particular data bean. Allowing the users to
participate in the mapping will make the tool
much more useful.

%{Comment %}

%Define ...

%Include ...

%Message ...

%Function ...

Input block

Output block

Declaration Part

Presentation Part

Figure 3 - Net.Data language
cro, and defines variables and functions.[2]

.Data macros contain two parts: the
laration part and the presentation part. Figure
e illustrates the structure of a Net.Data macro.

 function block is what we are most interested
A common function block has the following
out:

nction(dtw_odbc) name(){
ELECT distinct safname, samname,
name, shrfnbr, satitle
ROM shopper, shaddr
HERE sashnbr=shrfnbr and
ogid='$(SESSION_ID)' and
ick='$(SESSION_ID)'
REPORT{

Secondly, because of the many enhancements in
the WCS V5 that customers want to take
advantage of, they very likely prefer not to
perform an automated translation of the Net.Data.
The database schema has extensive enhancement
from IBM WCS V4 to V5, as well as the function
and the design of some major components such as
catalog/product display, pricing, and ordering is
quite different in V5. It is neither too practical nor
useful to capture and fix this information in one
shot, because customers very likely will
customize the product and need to modify this
information. A more practical approach is to let
the helper tool to provide more general
recommendation initially, and allow users to add

Figure 4: Tool Window View

B

A C

D

F
E

The left-hand pane is a full editor in to which the
Net.Data macro loads. The tool enables the user
to cycle through each of the SQL statements
found in the macro. The right-hand pane shows

the table and column mapping information and
the recommended set of data beans of the active
SQL statement.

in their “wisdom” to build up the tool’s
knowledge.

This approach also paves the way for a potential
powerful function, namely a learning capability
such that as the customers use the tool and
indicate their choices, the information will be
captured so that more specific recommendations
can be suggested in future uses. Customers
usually have collections of similar Net.Data
macros. After a lead developer trains the tool for
one macro, it can then give out very useful
recommendation for the rest of the collection to
other developers. Similarly, this tool can be used
to capture the experience of one customer
situation and pass it on to other similar situation.
The learning capability is not included in the first
release of the tool.

4.3 Tool Features
Figure 4 is a screen-shot of the tool.

The tool can produce a report for the loaded
Net.Data macro that lists all the SQL statements
in the macro, the function it came from, and the
recommended data beans and their related access
beans. It also points customised tables (not in the
standard IBM WCS schema) used in the SQL
statements (used for project sizing).

As an example, when a Net.Data page is loaded
into the tool the macro is parsed to extract all the
SQL statements. After that the SQL statement is
parsed and relevant information is extracted, such
as columns and tables that are used. A typical
sequence of activities by a user is as follows:

(1) Select the SQL statement in the Net.Data
macro (as depicted in the top-left pane).

(2) Note the V4 -V5 table correspondence in B

(3) Note the V4 -V5 column correspondence in
C

(4) Open recommendation pane, note related
DataBeans in D.

(5) Go through the list, select DataBeans of
interest in D and note detailed information of
related DataBeans in E

(6) Using information in F, compare against
getter methods in E to narrow down the
DataBean selection.

After going through the above steps, the possible
output JSP code corresponding to the name()
function in Net.Data file in Pane A, as deduced
from Panes D and E, might be:
……
<jsp:useBean id="addressbook"
class="com.ibm.commerce.user.beans.Address
BookDataBean" scope="page" />
<%com.ibm.commerce.beans.DataBeanManager.a
ctivate(addressbook, request); %>
</jsp:useBean>
<!-- HTML content -->
……
<center>
<h1> Shopping Cart for
<%=addressbook.getTitle() %>
<%= addressbook.getFirstName() %>
<%= addressbook.getMiddleName() %>
<%= addressbook.getLastName() %></h1>
……

4.4 Tool Deployment
The most current release of the tool was released
in June 2001 on IBM’s alphaWorks website[17].
Our primary target audience at this time is
members of the IBM WCS Service Teams
embarking on migration projects. They will be
primarily using the tool in the project pricing and
planning stages, and in facilitating the Net.Data
macros migration. It is also available to anyone
on an “as-is” basis.

Our database schema mapping information is
based on a stylesheet defined in XSL (Extensible
Stylesheet Language) that transforms IBM WCS
V4.1 data in XML format to the new V5.1
schema.

Our data collection process extricates the
relationships between the data beans, access
beans, and entity beans. Also, it establishes the
connection between the database and the
enterprise beans. Data beans are the JavaBean
components that our tool recommends to the user.
In order to fully understand how to use the

particular data bean and to confirm that it is the
right object for the task we provide a link to the
JavaDoc documentation of the data bean.

5 Related Work
There are several tools and methodologies to
migrate EJB applications from one platform to
another[6] [8]. In this paper, we further address
the migration of database applications to EJB
architectures, and the specific requirements for
the WebSphere Commerce Suite.

There are also tools for mapping database
applications to EJB architecture[7][5]. However,
they are in the level of mapping schemata to
Enterprise JavaBeans instead of migrating in the
SQL level. Those tools are more in the area of
object-relational mapping[11][10][9].

In database reverse engineering and schema
mapping [12][13][14], the common approach is to
map relational schema to object schema directly.
This paper addresses three additional aspects.
First, we map the relational schema to another
relational schema. Second, we extract and enrich
the schema mapping from the hand-coded schema
mapping data provided by IBM recoded in XSL
format. Third, we use the schema mapping to
translate the SQLs.

6 Conclusion and Future Work
We have presented a practical methodology to aid
the migration of applications using traditional
database access to those using the EJB
programming model, and applied it in a tool
developed for IBM WebSphere Commerce Suite.
This work has also identified a number of areas
which we believe will be fruitful for further
investigation in the future.

6.1 Improving the Recommendation
Algorithm

The recommendation ranking technique is fairly
simplistic in the current release of the tool and we
believe that it can be improved upon. We are
investigating how the following changes to the
Recommendation Engine will improve the quality
of the recommendations:

(1) Use the column usage information as the
basis for the data coverage analysis.

(2) Analyse the containment relationships
that between data beans and the
inheritance relationships between the
data and access beans that we have
recorded to see if these relationships
relate to actual usage of the beans and if
so, modify the ranking scheme to
account for this.

(3) Store user experience from previous
migration efforts to aid developers
encountering similar tasks in different
migration projects (: Item 11)

6.2 Going from Recommendation to
Translation

Currently the EJB client code in JSP is not
automatically generated. We are using query-
rewriting techniques to translate the SQLs to
fragments of EJB client code. Furthermore, in a
more general situation when EJB architecture is
not available yet, the EJB architecture and the
finder methods as well as the SQLs inside the
finder methods will be generated.

Acknowledgements
In developing the migration process and the
Helper Tool we had the valuable help and input
from the following people:

(1) Kostas Kontogiannis of the University of
Waterloo and John Mylopoulos of the
University of Toronto provided valuable
input to refine our approach.

(2) Members of E-Commerce Engagement Team
in the IBM Canada Laboratory, working to
migrate customer IBM WCS systems. Roger
Cheung, Laurent Chan helped us understand
the processes and challenges involved in
their migration process. Mark Crowley was
instrumental in getting the tool published on
IBM’s AlphaWorks website.

(3) Jim Caldwell, Mark Hubbard, George Klima,
Sharon Lymer, and Sam Wong of the E-
Commerce Development Team in the IBM
Canada Laboratory provided valuable

comments and suggestions on the functions
of the Helper Tool.

IBM, Net.Data, WebSphere Commerce Suite are
trademarks of International Business Machines
Corporation in the United States, other countries,
or both. Java and all Java-based trademarks and
logos are trademarks or registered trademarks of
Sun, in the United States, other countries, or both.
Other company, product, and service names may
be trademarks or service marks of others.

This paper intends to represent the views of the
authors rather than IBM.

Authors
Terence C. Lau is a senior research associate at
the Centre for Advanced Studies, IBM Canada,
with special focus and interest in business-to-
business e-commerce. Dr. Lau received a B.Sc.
from University of Hong Kong and Ph.D. in
computer science from University of Waterloo.

Dr. Jianguo Lu is a research associate of
University of Toronto, Department of Computer
Science and a visiting researcher at the Centre for
Advanced Studies, IBM Canada.

Erik Hedges is a visiting research student at the
Centre for Advanced Studies, IBM Canada. He is
currently working towards a Masters of Applied
Science in Electrical and Computer Engineering
at the University of Waterloo.

Emily(Xuemin) Xing is a software analyst in the
E-Commerce Development group of the IBM
Canada Laboratory. Ms. Xing received a B.Eng.
from Dalian University of Technology and M.Sc.
in computer science in Memorial University of
Newfoundland.

References
[1] Nicholas Kassem and the Enterprise Team,

Designing Enterprise Application with the
Java 2 Platform, Enterprise Edition, Sun
Microsystems, http://java.sun.com, October
3, 2000.

[2] IBM, IBM Net.Data Reference, Version
7,http://www4.ibm.com/software/data/net.da
ta/, June 2001 Edition.

[3] IBM, IBM WebSphere Commerce Suite,
Programmers Guide, Version 5.1 Second
Edition,http://www4.ibm.com/software/web
servers, March 2001.

[4] Sun, Enterprise JavaBeans 2.0
Specification, Sun 2001.

[5] IBM, VisualAge for Java 3.5, IBM, 2001.

[6] TechMetrix, Moving from IBM WebSphere
3 to BEA WebLogic Server 5.1, White
Paper, TechMetrix Research, September,
2000.

[7] In2j: Automated tool for migrating Oracle
PL/SQL into Java, www.in2j.com, April,
2001.

[8] Migration Guide, iPlanet Application
Server, Version 6.0, www.iplanet.com, May
2000.

[9] Andreas Behm and Andreas Geppert and
Klaus R. Dittrich, On the Migration of
Relational Schemas and Data to Object-
Oriented Database Systems, in Proc. 5th
International Conference on Re-
Technologies for Information Systems,
Oesterreichische Computer Gesellschaft,
Klagenfurt, Austria, J. Gyorkos and M.
Krisper and H. C. Mayr, 13--33, 1997.

[10] S. Bergamaschi and A. Garuti and C. Sartori
and A. Venuta, The object wrapper: an
object oriented interface for relational
databases, In Euromicro 1997.

[11] Chandrashekar Ramanathan, Providing
Object-Oriented Access To Existing
Relational Databases, PhD dissertation,
Mississippi State University, 1997.

[12] J. Jahnke and W. Schafer and A. Zundorf, A
Design Environment for Migrating
Relational to Object Oriented Database
Systems, In Proceedings of the International
Conference on Software Maintenance, IEEE
Computer Society Press, 163--170, 1996.

[13] Kyle Brown, Handling N-ary relationships
in VisualAge for Java, www.ibm.com/vadd,
August 2000.

[14] M. W. W. Vermeer & P. M. G. Apers,
Reverse engineering of relational database
applications, in Proceedings Fourteenth

International Conference on Object-
Oriented and EntityRelationship Modeling
(ER'95), Gold Coast, Australia, M. P.
Papazoglou, ed., SpringerVerlag, New
York--Heidelberg--Berlin, December 1995,
89--100, LNCS #1021.

[15] L. Yan, R. J. Miller, L. M. Haas and R.
Fagin. Data-Driven Understanding and
Refinement of Schema Mappings,
SIGMOD, May 2001.

[16] R. J. Miller, L. M. Haas and M. Hernández.
Schema Mapping as Query Discovery.
Proceedings of the Twenty-Sixth
International Conference on Very Large
Data Bases (VLDB), Cairo, Egypt, Sept,
2000

[17] Terry Lau, Jianguo Lu, John Mylopoulos,
Erik Hedges, Kostas Kontogiannis, Emily
Xing, and Mark Crowley, Net.Data to JSP
helper, IBM alphaworks,
http://alphaworks.ibm.com/tech/netdatatojsp
.

	Introduction
	Background
	Enterprise Java
	Net.Commerce and Websphere Commerce Suite

	Generalized Process and System
	Net.Data to JSP Migration Helper Tool
	Net.Data Scripting language
	Objective of the Tool and Rationale
	Tool Features
	Tool Deployment

	Related Work
	Conclusion and Future Work
	Improving the Recommendation Algorithm
	Going from Recommendation to Translation

	Acknowledgements
	Authors
	References

