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Abstract

Academic literatures, especially those in the field of computer
science, are often posted multiple times on the Web. Schol-
arly index engines, such as Google Scholar and CiteSeerX,
crawl such documents from the open web as well as publish-
ers. To improve the quality of the search result, there is a
need to detect and coalesce duplicate or very similar (here-
after called near-duplicate) papers. Near-duplicate detection
is computationally expensive. Pair-wise comparison of mil-
lions of papers is not feasible even for the most advanced
machines. We combine SimHash and Jaccard similarity to
discover near-duplicate documents in a CiteSeerX data set,
which contains 2,118,122 full-text academic papers. We ob-
serve that 12% documents in CiteSeerX have near-duplicates
with Jaccard similarity larger than 0.9. Then we study the
near-duplicates and summarize six leading causes. We also
compare these near-duplicates with those appeared only once
on the web. We find that the citation count grows almost lin-
early with the number of duplications.

Introduction
Academic literatures, particularly the ones in computer sci-
ence, often occur multiple times on the Web. Researchers
may post drafts on their personal websites. Then, the same
paper may occur in arXiv, or proceedings of conferences,
etc. In addition, such documents may occur in course web
pages. Each version may differ slightly, mostly in the pub-
lisher’s information, or slight difference in content. Docu-
ments with slight difference are called near-duplicates. The
threshold for the similarity depends on the application. This
paper regards two documents are near-duplicates if their Jac-
card similarity of their trigrams exceeds 0.9.

Detecting near-duplicates is an essential component of
a search engine. Although the detection of near-duplicate
of web pages has been studied extensively (Broder 1997;
Broder et al. 1997), there are only a few works focus on the
academic literatures (Williams and Giles 2013). The ques-
tions we want to answer are: 1) How many academic lit-
eratures on the web are near-duplicates? How similar are
they? 2) What cause these near-duplicates? 3) What are the
patterns of such multiple postings? 4) Whether multiple oc-
currences correlate to the citation number of the documents?
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To answer these questions, we need to conduct an ex-
periment on a large scale dataset. Our experiment is con-
ducted on CiteSeerX datasets, which contain over two mil-
lion full-text academic literatures. When detecting the near-
duplicates, we want to tolerate slight difference between
documents. Comparing the similarity in such a big dataset
is computationally expensive. Thus, an efficient algorithm
is required. In this paper, we first evaluate the state-of-art
SimHash algorithm on the academic literatures. For web
pages, it is reported to set Hamming distance k = 3 to
achieve 75% accuracy. We find that the accuracy is higher
in general for research papers. We also notice that the recall
of SimHash can be as high as 99% when retrieving the near-
duplicated literatures. By combining SimHash and Jaccard
similarity, we successfully discovered 271,906 distinct near-
duplicates with high accuracy, which contribute 12.84% of
the CiteSeerX dataset. By studying these near-duplicates,
we summarize 6 leading causes. And we also compare the
categories and publishing years of the near-duplicated doc-
uments with the one appeared only once on the web.

We also observe that paper with more near-duplicates are
cited more often. Moreover, it is interesting to see the cita-
tion counts grow almost linearly with duplicate occurrences.

Literature Review
Broder et. al. studied the near-duplicates on the AltaVista
search engine by calculating the MinHash of the docu-
ments (Broder 1998). After that, numerous improvements
have been proposed (Fetterly et al. 2003; Henzinger 2006;
Hajishirzi, Yih, and Kolcz 2010).

SimHash is one of the most widely used near-duplicates
detection algorithms, which is first introduced by Manku et.
al. in 2007 (Manku, Jain, and Das Sarma 2007). After test-
ing on three billion documents, the authors reported that the
optimal Hamming distance of SimHash is three, which is the
break-even point of precision and recall. Later on, Sood et.
al. (Sood and Loguinov 2011) studied the recall of SimHash.
They pointed out that SimHash can be faster and less space
consumption by sacrificing a small percentage of recall.

Although near-duplicates detection is well studied, most
of the existing works mainly focus on general documents,
especially the web page crawled by search engine. Only a
few works mention about the near-duplicates in academic
literatures. In 2013, Williams et. al. used SimHash to re-



move duplicate documents in CiteSeerX(Williams and Giles
2013) and obtained F-score 0.91. Later on, they released a
website called SimSeerX(Williams, Wu, and Giles 2014) for
locating near-duplicate papers. However, they did not sum-
marize the duplicate literatures.

Compared with the existing works, we give a better view
of the near-duplicates in academic literatures. Our experi-
ment discovers the near-duplicated documents with high ac-
curacy. Most importantly, we analyse the features of the
near-duplicates.

Near-Duplicates Detection
If two documents share terms in large quantities, we call
them near-duplicates. A common technique for near-
duplicate detection is to break documents into a sequence
of consecutive tokens called n-grams (Broder et al. 1997).
Then the similarity between the documents can be measured
by Jaccard similarity. Given two documents, the Jaccard
similarity between their shingles A and B is defined as

JS(A,B) =
|A ∩B|
|A ∪B|

(1)

When the Jaccard similarity of these two documents
JS(A,B) is larger than a threshold t, where t is a num-
ber that close to 1, we say these two documents are near-
duplicates.

Generally speaking, Jaccard similarity is a good measure
of the similarity of two sets (Henzinger 2006; Broder et al.
1997). Thus, in this paper, we treat Jaccard similarity as the
ground true similarity between documents.

However, calculating Jaccard similarity directly is very
costly, especially when we want to find near-duplicates in a
large-scaled dataset. Sampling based techniques, such as
MinHash(Broder 1997), has been proposed to reduce the
computation time. SimHash, proposed by Manku et. al
(Manku, Jain, and Das Sarma 2007), is one of the most
widely applied near-duplicates detection algorithm. It maps
the tokens of a document into a fixed bit fingerprint. Then
the similarity can be estimated by the Hamming distance of
the fingerprint. The algorithm can be described as follow:

• Split each document into n-grams (here we use trigrams);

• Initialize a K-dimensional zero vector V;

• Get a K-bit hash value for each trigram;

• For each hash value, if the i-th hash value is 1, then the
i-th-bit of V increases by 1; if the i-th-bit hash value is 0,
then the i-th bit of V decreases by 1;

• Then normalize V by marking the positive vectors as 1,
and all the other vectors as 0. Thus, the fingerprint V can
be stored as a K-bit integer.

After mapping each document into a K-bit fingerprint,
where K = 64 in most applications, the similarity between
two documents can be estimated by the Hamming distance
of their SimHash fingerprints. Instead of computing all the
possible pairs in the dataset, SimHash hash the fingerprints
into certain tables to reduce the computation time. Accord-
ing to Pigeonhole principle(Herstein 2006), if n items are

put into m containers, with n > m, then at least one con-
tainer must contain more than one item. Thus, we can build
an index for the SimHash values by splitting the K-bit fin-
gerprint into k + 1 sub-fingerprint. When we need to find
the near-duplicates of a document, we can find all the candi-
dates by fetching out all the related documents that have the
same sub-fingerprints.

Parameters
SimHash requires a detection threshold – Hamming distance
k between the similar documents. Two documents can be
treated as near-duplicates if the Hamming distance between
their fingerprints is less or equal to k. Most existing works
use k = 3, which is first reported by Manku when detect-
ing the near-duplicates among web pages (Manku, Jain, and
Das Sarma 2007). However, scholarly documents are differ-
ent from web pages. For example, web pages crawled from
different websites may share the advertisement in the text;
Academic documents do not overlap a lot due to the restric-
tion of copyright; Academic documents are normally longer
than web pages.

Next, we need to find out the performance of SimHash
algorithm on scholarly literatures. In this paper, we col-
lect a sample of 20,000 possible duplicated documents from
CiteSeerX by matching their metadata. Then, we break the
documents into trigrams and compute the pair-wised Ham-
ming distances of the SimHash and the corresponding Jac-
card similarities.
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Figure 1: Precision and Recall with different threshold t

Fig. 1 shows Hamming distance threshold k against pre-
cision and recall. From the top panel, we observe that given
a fixed detecting threshold t, the higher k is, the higher recall



we can achieve. For example, suppose we want to find near-
duplicated documents that overlap 90%, when k = 3 the re-
call is about 75%, which means about 25% near-duplicates
can not be found. In our work, we want to exam the features
of near-duplicated academic literatures, thus, we need to get
as many duplicated documents as we can. Therefore, a high
recall is demand, which means we need to set k as high as
possible.

However, a higher k may leads to two problems. The first
is the precision. A higher k means less accuracy. Bottom
panel of Fig. 1 shows that the precision decreases when a
higher k is selected. The rate of deterioration accelerates
when k becomes larger. The second, but larger problem is
the time complexity. Fig. 2 shows the run time against k for
different size of the datasets. Note that it is the execution
time on a powerful server. Runtime increases exponentially
with the growth of k. For a smaller data set that contains
20,000 documents, such growth of time is tolerable. For the
dataset which contains 2 million documents, it needs around
6 hours to run if k = 8 and needs many days to finish if
k = 20. Thus, in the later experiment, we set k = 8.

0 5 10 15 20 25

Hamming distance - k

10
-5

10
0

10
5

10
10

E
x
e
c
u
ti
o
n
 T

im
e
(s

)

size = 20k
size = 2.1M
estimated time

Figure 2: Runtime against Hamming distance k on different
sizes of dataset

Next, we need to set a detecting threshold t for Jaccard
similarity. Figure 3 shows precision and recall in different
t with k = 8. As we can see, to guarantee the high recall
of the near duplicates, particularly when documents do not
overlap a lot, we need to set t as high as possible. But, a
larger t could result in less number of near-duplicates. For
example, when t = 0.99, we find 0.83 million pairs of near-
duplicates. While t = 0.90, the number grows to 0.9 7 mil-
lion. Our goal is to find as many near-duplicated documents
as we can. In our work, we set t = 0.9 to balance the re-
call and the number of near-duplicates. With such setup we
have a recall equals to 0.985 and accuracy of SimHash is
0.9581%. Meanwhile, to further boost the accuracy of the
results, we calculate the Jaccard similarity of the document
pairs captured by SimHash, and then save those have Jaccard
similarity larger than detection threshold t.

Experiment and Results
Experiment Setup
CiteSeerX (Giles, Bollacker, and Lawrence 1998; Bollacker,
Lawrence, and Giles 1998) is a scholarly index engine which
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Figure 3: Relation between Jaccard similarity and precision
/ recall when k = 8

contains over 2 million full text academic literatures that
are crawled from the open Web. It provides an OAI col-
lection system that allows researchers download CiteSeerX
data. The CiteSeerX data contains metadata, PDF files and
corresponding text files that are extracted automatically us-
ing Prescript (Giles, Bollacker, and Lawrence 1998). In our
experiment, we collect all the available text files (2,118,112
in total) from CiteSeerX OAI, then break these files into tri-
grams. Go-Language has been used to support parallelism
computation. The program is executed on a PowerEdge
R720 server that has 24 cores and 256GB memory.

Results
With detecting Hamming distance k = 8, the program takes
6 hours and 37 minutes to finish. In total, we discover
604,596 pairs of near-duplicates, which contains 364,930
distinct documents. The near-duplicates have been sepa-
rated by their Hamming distance and Jaccard similarity in
Tab. 1 and Tab. 2. From Tab. 1 we can see that most near-
duplicated pairs have Hamming distance of 0. While it is
interesting to see that they distribute evenly among other val-
ues. Meanwhile, most pairs concentrate in the range 0.9-1
as shows in Tab. 2, which means two documents are either
very close or very different.

Hamming distance pairs # distinct documents #
0 397,112 79,461
1 19,767 35,666
2 23,165 42,147
3 24,441 43,903
4 25,437 45,998
5 26,483 47,368
6 27,237 48,576
7 29,298 51,362
8 31,656 54,790

sum 604,596 364,930

Table 1: Near-duplicates distribution by SimHash with k =
8

According to our previous evaluation, we can estimate the
population of near-duplicates showed in Fig. 4. Because dif-



JS range Pairs # distinct documents #
0.9 - 1.0 524,888 270,906
0.8 - 0.9 51,161 61,847
0.7 - 0.8 19,826 22,491
0.6 - 0.7 6,164 6,518
0.5 - 0.6 1,491 1,576
0 - 0.5 1,066 1,592
sum 604,596 364,930

Table 2: Captured pairs and documents grouped by Jaccard
similarity
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Figure 4: Estimated population of duplicated documents
against Jaccard similarity

ferent Jaccard similarity ranges have different recall values,
the estimations are augmented with different factors.

Discussion
Why do these near-duplicates appear multiple time on the
Web? What cause the near-duplicates? To answer these
questions, we randomly select the near-duplicates pairs and
manually verified them. We summarize 6 leading causes of
the near-duplicates as follow: 1) Same file publishes in dif-
ferent web pages. 2) Different stylesheet. Some literatures
are written with LaTex. Different stylesheet, especially the
format of citations and references, can cause slightly differ-
ence in the compiled PDF files. These near-duplicates of-
ten share large Jaccard similarities. 3) Different versions of
documents. Some documents, books or reference manuals,
have different published versions. 4) Error pages caused by
the incorrect crawling process. CiteSeerX crawls the doc-
uments from the Internet. When crawling a web page, the
server may not response correctly. Thus, an error page re-
turns and is stored in the CiteSeerX database. These error
pages from same website carry the same information, thus
resulting in near-duplicates. 5) Extraction error. PDF is a
common document format. CiteSeerX uses Prescript to ex-
tract raw text from PDF. However, not every PDF can be ex-
tracted correctly. Some PDF files have been extracted into
short text files which contains only certain keywords (Intro-
duction, abstract, References et.). 6) Class assignments also
appeared in the CiteSeerX. These documents are not exactly
academic literatures and should be removed from the collec-

tion.
We also notice that near-duplicates caused by incorrect

crawling and extracting process. These documents some-
time not share large similarities and are shorter than aca-
demic literatures. Meanwhile, they appear around one to
two hundred times, which makes them easy to be detected
and cleaned. It is possible to train a classifier to identify such
near-duplicates, which we leave as the future work.

Next, we investigate the distribution of the duplicate oc-
currences showed in Fig. 5. The top panel in Fig. 5 shows
the frequency of duplicate occurrences. From the plot, we
can see that the distribution of duplicate occurrences follows
a power-law. More than 100,000 documents only duplicate
once (duplicate occurrence = 2) and more than 10,000 doc-
uments have duplicate occurrences = 3. Only a few docu-
ments have hundreds of near-duplicates.

The bottom panel is the duplicate occurrences against
their ranks. It shows that the top one duplicated 807 times.
The next repeats 195 times. We find that these files con-
tain only one character. After that, there are a group of
“nonsense” documents that are generated artificially to test
Google Scholar’s crawling and indexing strategy. They are
repeated around one hundred times. These type of near-
duplicates may be caused by incorrect crawling processing.
Here, we removed these near-duplicates in the following ob-
servation.
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Figure 5: Distribution of near-duplicates.

Table 3 lists the top-10 duplicated documents in Cite-
SeerX. The most duplicated one is “Linearity and the pi-



calculus” by Kobayashi, which repeats 49 times. Following
is the “Serverless Network File Systems” and “Application
Performance and Flexibility on Exokernel Systems”. Inter-
estingly, we notice that the duplicated documents not just
include published books or papers, but also have some doc-
uments for the industry.

Then we list the difference of the document types between
duplicated and non-duplicated literatures. Figure 6 shows
the media types of the duplicated literatures. CiteSeerX split
the document into 7 categories, and we keep the three major
components and put the rest into “others”. From the fig-
ure, we can see that “in-proceedings” contributes 68.86% in
the duplicated documents and 60.96% in the non-duplicated
ones.

The percentages of “books” of duplicated and non-
duplicated documents are nearly the same( 0.25% ). While
“article” contributes 27.95% in the duplicated documents
and 35.45% in the non-duplicated ones. Category “others”
in the top is 2.95%, which is slightly smaller than the one in
the bottom.

book(0.25%)
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inproceedings(68.86%)

(A) Duplicated documents

book(0.26%)

article(35.45%)

others(3.34%)
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Figure 6: Categories of duplicated and non-duplicated doc-
uments.

Next, we study the features of the near-duplicates. The
top panel of Fig. 7 shows the distribution of publish years of
duplicated and non-duplicated documents. It is interesting
to see that they share the similar distribution. Documents
that are published in earlier years have a higher chance to be
seen, but they do not have many near-duplicates. The bot-
tom panel shows the box plot of duplicate occurrence against
publish years. We notice that older documents intend to have
more near-duplicates.
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Figure 7: Publish years of documents.

Citation number is another important index to evaluate
the quality of the literatures. We extract the citation count
from the CiteSeerX metadata and show the relation between
duplicate occurrence and citation count in Fig. 8. Panel
A shows the average citation counts over duplicate occur-
rences. Note that there are a few outliers due to the sparse
of the data when duplicate occurrences are large. Accord-
ing to the duplicate distribution in Figure 5(A), there are
only about 20 data points for duplicate occurrences that are
larger than 9. Thereby we ignore those sparse data and fo-
cus on the duplicate occurrences that are less than 9 in Panel
B. From panel B we can see that the citation count grows
linearly with the duplicate occurrence with Pearson Correla-
tion 0.8894, particularly when the data points are abundance.
Panel C is the box plot to show the dispersion of the data.

Conclusion
In this paper, we used SimHash and Jaccard similarity to de-
tect near-duplicates in CiteSeerX. We found that SimHash
needs to be set appropriate to balance the computational cost
and accuracy. By combining SimHash and Jaccard simi-
larity, we successfully retrieved most of the near-duplicates
with Jaccard similarity larger than 0.9. We reported Cite-
SeerX has 12.79% documents duplicated more than once.
This finding calls for further work to clean the CiteSeerX
data for the construction scholarly search engines.

We also analyzed the near-duplicates, studied their fea-
tures and made the observation of the relationship between
duplicate occurrences with different features. The most in-
teresting observation is that the citation count grows almost
linearly with duplicate occurrence. This observation is im-
portant for both researchers and practitioners in search en-



Rank Occurrence Type Document name
1 49 paper Linearity and the pi-calculus
2 16 paper Serverless Network File Systems
3 15 paper Application Performance and Flexibility on Exokernel Systems
4 14 paper A Fast File System for UNIX*
5 13 paper A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols
6 13 article Hints for Computer System Design
7 13 article Security Architecture for the Internet Protocol
8 12 paper Password Security: A Case History
9 12 paper End-To-End Arguments in System Design
10 12 article SWI-Prolog - Reference Manual

Table 3: Top-10 duplicated documents
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Figure 8: Citation count against duplicate occurrence. (A) average citation count against duplicate occurrence; (B) Zoom-in of
plot (A) ; (C) box plot.



gine industry. The gems of scientific works are often pub-
licly available on the web in multiple locations. For re-
searchers, it will be awarded if your publications are listed
publicly on the Web. For the construction of academic
search engines, we should crawl the open Web to find the
gems in science.
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