Inductive Logic Programming Beyond Logical
Implication

Jianguo Lu”*
Institute for Social Information Science, Fujitsu Laboratories Ltd.

Department of Computer Science, Fudan University

Jun Arimal

Institute for Social Information Science, Fujitsu Laboratories Ltd.

Abstract

This paper discusses the generalization of definite Horn programs be-
yvond the ordering of logical implication. Since the seminal paper on gener-
alization of clauses based on ¢ subsumption, there are various extensions in
this area. Especially in inductive logic programming(ILP), people are us-
ing various methods that approximate logical implication, such as inverse
resolution(IR), relative least general generalization(RLGG), and inverse
implication(II), to generalize clauses. However, the logical implication is
not the most desirable form of generalization. A program is more general
than another program does not necessarily mean that the former should
logically imply the latter. Instead, a more natural notion of generaliza-
tion is the set inclusion ordering on the success set of logic programs. We
observe that this kind of generalization relation is especially useful for
inductive synthesis of logic programs. In this paper, we first define an
ordering between logic programs which is strictly weaker than the impli-
cation ordering. Based on this ordering, we present a set of generalization
rules borrowed from unfold/fold program transformation method and ILP.
We also give some strategies to apply those rules.

1 Introduction

This paper discusses the problem of synthesis of logic programs from a small
set of positive random examples. Since the seminal paper on generalization
of clauses based on # subsumption[Plotkin70] !, there are various extensions

*Address: Department of Computer Science, Fudan University, Shanghai 200433, P. R.
China. Email: jglu@ms.fudan.sh.cn.

tAddress: Institute for Social Information Science, Fujitsu Laboratories Ltd., 140,
Miyamoto, Numazu-shi, Shizuoka 410-03, Japan. Email: arima@iias.flab.fujitsu.co.jp.

1Tt is defined as: given two clauses C1 and C, C 6 subsumes Cy if there exists a substitution
o such that Cyo C Cs.

in this area. Especially in inductive logic programming(ILP), it is extended
at least in the following two dimensions. One is to extend from comparing two
single clauses to two clauses with background theory[Plotkin71][MF], and to two
programs[Buntine].

Another dimension is to extend the ordering to be considered, i.e., in what
sense an object is more general than another object. Two of the extremes are 6
subsumption and logical implication. The weakness of the § subsumption is that
it goes up too quickly along the generalization hierarchy. The strength is that it
has good properties such as the 6 subsumption ordering in clauses forms a lattice.
That means for any two clauses, the least general generalization exists and is
unique. In addition, we have efficient methods to compute the least general gen-
eralization. The weakness and the strength of the logical implication ordering is
just the opposite. Hence, lying between the two extremes there are a spectrum
of orderings being investigated. The inverse resolution(IR)[MB], and satura-
tion[RP] are two of the examples. Especially, some people argued that the notion
of implication is the most desirable form of generalization since the concept of
an inductive conclusion is defined in terms of logic consequence. Consequently,
lots of efforts are devoted to the investigation of orderings that approximate the
implication ordering [ALLM, MF, ALLM, MF, Idestam-Almquist93].

However, generalization under implication ordering is not satisfactory in two
aspects. Conceptually, the word generalization does not entail that only the
implication ordering (or some ordering stronger than implication) should be
used. Another choice is the set inclusion ordering under semantics of program.
In practice, a program is more general than another program does not necessarily
mean that the former should logically imply the latter. There are many cases
that generalization under implication relation is not adequate. To illustrate this,
we have the following example:

Example 1 Suppose we have the Examples E1, E2, and E3 as follows.

B: parent(a,b).
parent (c,d).
parent (e,f).
grandparent (X,Y) : -parent (X,U), parent(U,Y).
ancestor (X,Y) :-parent (X,Y).
El: ancestor(X,Y):-grandparent(X,Y).
E2: ancestor(X,Y):-parent(X,V), parent(V,Y).
E3: ancestor(X,Y):-parent(X,U),ancestor(U,Y).

Suppose B is in the background theory. E2(and E3) does not imply E1 under
the background theory. Hence E2(and E3) can not be obtained from E1 by means
of LGG#, RLGG, inverse resolution, or inverse implication. However, under the
least Herbrand semantics, E2 and E1 are equivalent, and E3 is a properly more
general program than E1 in the sense that the model of E3 is a super set of the
model of E1.

As this example illustrates, it is often more adequate to do generalization
based on semantics of our descriptional language itself(i.e., the logic program

semantics) than pure logic semantics. In other words, we need to do generaliza-
tion not restricted by the implication ordering. Instead, we need to go beyond
implication.

In the following sections we will first define three kinds of generalization
orderings between programs instead of clauses or clauses under a background
theory, and introduce the ordering »g on which our generalization method is
based. We will show the relationship between those orderings, and their rela-
tionship with the usual orderings. This discussion is to illustrate in what sense
our generalization method goes beyond logical implication.

In section 3 we present a set of rules of generalization based on unfold/fold
program transformation[TS].Those rules include both deduction and induction
operations. The use of some restricted form of deduction operations is justified
by the fact that they preserve the >g ordering. Section 4 introduces some
strategies to apply the transformation rules. Section 5 gives some examples to
illustrate our approach.

2 Generalizations

Generalizations are based on some kinds of orderings. Different orderings will
result in different generalizations. Before presenting our method of generaliza-
tion, it is necessary to introduce various notions of orderings between programs
so that we can know the ordering on which our generalization is based and its
relationship with other orderings.

The programs referred in this paper are sets of definite Horn clauses. In the
discussion we assume the language has potentially sufficient number of constant
symbols. The immediate consequence operator Tp maps Herbrand interpreta-
tions to Herbrand interpretations. It denotes one-step deduction using program
P. The function corresponding to deductions of any number of steps is denoted
by [P], and is defined by [P](X) = U2, (Tp + Id)*(X), where 1d is the identity
function and (f + ¢)(X) = f(X) U g(X). The success set SS(P) is { A: A has a
successful SLD-derivation for P }. HB denotes the Herbrand base. It is known
that [P](¢) = SS(P) = lfp(Tp). The exact definitions of the above concepts
can be found in [Lloyd].

As for the notions of generalizations in logic programs, there are three layers:
generalization between clauses without background theory, between clauses with
background theory, and between programs 2. They can be defined from either
proof theoretic or model theoretic approach. In each layer there are some kinds
of orderings, two of the most fundamental are based on 6 subsumption, >
3 and logical implication, >=7. They are usually defined for clauses with or
without background theory. In the domain of logic programming, we have to
study the ordering between programs. From the model theoretic point of view,

2Each is a special case of the latter layer.

3 Although >4 is defined in terms of clauses instead of programs, it can be extended to the
latter case as: For two programs Py and Py, P >¢ P> iff for every clause D; in P, there exists
a clause C;j in P; such that C; »¢ D;.

[M88] studied the equivalence relations between logic programs. Similarly, some
orderings between programs can be defined as follows:

Definition 1 For any two programs P, and Ps,
1. Py =, Py if Tp,(X) D Tp,(X) for every X C HB.
2. Py >4 Py if [P](X) D

3. P1 = Py if [P1](8) D [P](9).

Note that Py =, Py iff SS(P1) D SS(P=). It is easy to see that >rp,, =4 and
>~ are transitive and reflexive. For an arbitrary ordering > x, if both P »x @,
and @ =x P, then we say P and Q are equal under this ordering (denoted as
P~x Q). Weuse P =x Q to denote P =x @ and Q #x P. In the sequel,
we use lggx to denote the least general generalization under the ordering = x,
if it exists. An important relationship between two orderings is their relative
strength. We say an ordering > x is stronger than >y if whenever P > x @ then
P =y @, where X and Y denote arbitrary subscripts. >=x is strictly stronger
than =y if > x is stronger than >y and >y is not stronger than >x. A weaker
ordering means more programs are involved in the generalization hierarchy, hence
it will generate more specific generalization. So, generally speaking, the weaker
the ordering, the more desirable of the corresponding generalization.

[P2](X) for every X C HB.

Theorem 1 >r7, s strictly stronger than =4, and >4 is strictly stronger than
Tk

>, corresponds to a particular case of the generalized subsumption in [Buntine].
As for the correspondence between the usual notions of orderings and the above
notions, we can summarize with the following theorem.

Theorem 2 The arrows go from a stronger ordering to a weaker ordering:

Zf —— » Tp

1 - T+
A
bl

Figure 1

A question that naturally arises is: what is the more desirable ordering based
on which we can synthesize programs from a small set of random examples? As
illustrated by the above figure and Ezxample 1, we argue that there is no reason

why the straightforward notion of set inclusion ordering between semantics of
logic programs (i.e., =), instead of # subsumption or implication, should not
be used as a basis for generalization.

There is one obstacle to directly using =, as the basis of generalization.
Often we wish to compare two programs although they use different predicate or
function symbols. Also in practice, we need to discuss generalization in different
languages *. For example, for the factorial programs P1 and P2,

P1: fac(1,1).
fac(X,Y):-dec(X,U) ,fac(U,V) ,mul (V,X,Y).

P2: fac(1,1).
fac(X,Y) :-newp(X,1,Y).
newp(1,X,X).

newp (X,ACC,Y) : -dec (X,U) ,mul (X,ACC,V), newp(U,V,Y).

We would like to consider P1 and P2 are equal, rather than that Py =, P;.
Hence,

Definition 2 (=g) Given programs Py, Ps. L is the subset of the underlying
language which consists of only the predicates occur in both Py and Py. Py >g Ps
if SS(PL)NLDSS(P)N L.

Theorem 3 If P, =, Ps, then Py =5 Py. Thus, =g is strictly weaker than =g
and >q.

Generalization of clauses under >4 is well studied. It is known that for every two
clauses, lggq exists, and it is unique for reduced clauses. However, for the order-
ing =7 and >g, many unknowns are left >. Below we investigate the ordering >g
in some more detail. Least general generalization of any two programs under the
ordering =g exists, and it is not unique (even under logical implication). On the
other hand, if we require both the input and the output of the generalization are
single definite clauses, then the least general generalization of any two clauses
under the ordering >s does not exist. Another unpleasant property of »g is
that for every two programs (or clauses) P; and P,, it is undecidable to test
whether P; =g Ps. Although the ordering »g seems almost intractable, it is a
more natural notion of generalization. In the following of this paper we present
one method to do generalization under >g.

3 Rules

Following [Muggleton 91], we view the generalization as a program transfor-
mation process. Given two positive examples E; and E, ¢, and a background
theory B, the first step of generalization is to form BU{E1, E2} (denoted by Fy).

4For instance, we need to introduce (or delete) new definitions (see the next section).

51ggr does not exist even for clauses without background theory [Niblett].

8Here for the purpose of clarity, we only consider the case that only two positive examples
are involved. The extension to more examples are straightforward.

Starting from Py, by successively applying one of the following transformation
rules, a transformation sequence Py, ..., P, is generated.

In the set of rules presented below, both deduction (unfolding) and induction
(folding and anti-unification 7) operations are used. This is the key difference
between our method and the other approaches in ILP. The use of some restricted
form of deduction operation can be justified by that although it goes down the
implication chain, it preserves the semantics of the logic program. This can be
depicted in the following:

Ch

C4 C4
Figure 2 Figure 3

In the pictures above, each C;41(Cj, ;) is the result of resolution from C;(Cy)
and D;(D}). Current approaches perform generalizations in a manner as illus-
trated in figure 2: They go bottom-up along the inverse of the resolution chain
(For instance, along the arrows from C4 to C1 in figure 2). They will not be able
to tell the relationship between clauses C% and C in figure 3, although it may be
true that C; »g C%. Our method allows going down the resolution chain when
necessary (along the arrows from C} to Cy in figure 3), and then going up(from
04 to 01)

Before presenting the rules, we have some concepts to be defined.

In the following discussion we assume the programs (and examples) do not
contain function symbols(i.e., programs written in Datalog). This assumption
is not restrictive as we know that function symbols can always be removed by
flattening [Rouveirol]. This assumption is necessary to get more specific gener-
alizations. If some predicates are represented as function symbols instead, then
some previously possible folding/unfolding operations would become impossible.
This will result in more general generalizations.

Definition 3 (nearly-matching) Suppose the lgg of Cy, Cy under 0 subsumption
1s C' with the corresponding substitutions 61 and 0y. Two clauses Cy and Cy are
nearly-matching if C6, = C1,C0, = Cy, 61 and 0y are 1-1 mappings.

"In the literature the words generalization and anti-unification are often used interchange-
ably. Here we will use anti-unification to denote a more restricted case as defined in rule 3.

Example 2 For the following clauses,

C1l: a(nl,n5) :- p(ni1,n2),p(n2,n3),p(n3,nd),p(nd,nd).
C2: a(ml,m4) :- p(ml,m2),p(m3,md).
C3: a(nl,n5) :- p(ni1,n2),p(nd,n5).

C1 and C2 are not nearly-matching, C2 and C3 are nearly-matching.

Now we are ready to give the rules to produce generalization beyond impli-
cation. Those rules are given in the style as in [PP][TS] 8. The unfolding and the
definition rules are the same as in [PP]. Examples of the applications of these
rules are in section 5.

Rule 1 (Unfolding) Let Py be the program {E1, ..., Er,C, Ert1, ..., Es}, and let
C be the clause H:-F, A, G, where A is a positive literal and F and G are (possibly
empty) sequences of literals. Suppose

1. {Dy,...,D,} are all the clauses in P; with 0 < j < k, such that A is
unifiable with hd(Dy), ..., hd(D,), with most general unifier 01, ...,0,, re-
spectively, and

2. C; is the clause (H : —F,bd(D;),G)0;, forie {1,2,...,n}.

If we unfold C wrt A using D1, ..., D, in P}, we deriwe the clauses C1, ..., Cy,
and we get the new program {Ey,...,E, Cy,...,Cy, Ery1, ..., E}.

The unfolding rule is essentially a deduction operation. However, it is a
semantics preserving operation (i.e., Pry1 ~g Px) due to the requirement in
condition 1 that the Dy, ..., D, are all the clauses that define the predicate A.

Rule 2 (Folding) Let Py, be the program {Ey, ..., By, C1,...,Cp, Ert1, ..., Es} and
let {D,...,D,} be a subset of clauses in program Py, Suppose that there exists
a positive literal A such that, for i € {1,...,n},

1. hd(D;) is unifiable with A via most general unifier 0;,

2. C; is the clause (H : —F,bd(D;),G)0;, where F and G are sequences of

literals,
3. {Dl, e Dn} N {Cl; ;Cn} = ¢

If we fold C1, ..., Cy, using Dy, .., Dy, in P;, we derive the clause H :- F,A,G, call
it C, and we get the new program Pxy1 = {E1, ..., E.,C, Erq1, ..., Es}.

This rule differs the usual folding rule in program transformation. Here we
omit the condition that for any clause D of Px not in {D1, ..., Dy}, hd(D) is not
unifiable with A. Hence, it is a generalization operation, essentially the same as
the absorption in [RP]. Here we use a more complicated form than absorption
(multiple literals can be folded together) because this rule is sometimes also

8Here we only list a part of the relevant rules.

intended to be used as usual folding operation. In condition 2, #; has to be
applied to the whole clause because of the multiple literal case. Condition 3
is necessary to ensure Priq1 >=s Pr. A simple instance is that, without this
restriction, self-folding may occur, and will result in a more specific program.

Rule 3 (Anti-Unification) If E1 and Es are nearly-matching, we may get pro-
gram Pgyy by replacing the clauses {E1, E2} in Py by the least general general-
wzation of By and Ey under =g.

This restricted case of {ggs is used because we do not want to go up the
generalization hierarchy too quickly.

Rule 4 (Definition) We may get program Pyyi by adding program Py with
clauses p(...) : —Body;,i € {1,...,n}, such that the predicate symbol p does not
occur in Py, ..., Pg.

Here, unlike the intraconstruction[MB][RP], we have a more general rule that
the body of the newly introduced clause (the Body;) can be any conjunction of
literals. After applying this rule, Pyy1 ~s Px. Hence this is not a generaliza-
tion operation. However, since the introduction of new definitions will make
subsequent folding or anti-unification possible, different definitions will result
in different foldings(anti-unifications), or, different generalizations. In the next
section, we will give some heuristics to use this rule.

Theorem 4 (Correctness) Let Py, ..., P, be a transformation sequence of def-
inite programs constructed by using the rules listed above. P; >s Py, for i €
{1,2,...,n}. And in general, P; 1 Py, P; #¢ Po.

The correctness of the system follows directly from the results of program
transformations. Another question is the power of the system. The incomplete-
ness is obvious, i.e., not every more general or equivalent program can be derived
from given examples.

4 Strategies

Following the usual practice in program transformation, we also take the "rules +
strategies” approach. Besides the usual strategies in standard program transfor-
mation[PP], here we need some additional strategies that are specific for program
generalization instead of program transformation.

The general algorithm is:

Strategy 1 (General strategy) Given a program Pj. Initially, it is Py which
consists of background theory B and positive examples F1 and E-.

1. If anti-unification or folding is applicable for examples or newly introduced
definitions, then arbitrarily do anti-unification or folding, until neither
anti-unification nor folding is possible. Exit.

2. Otherwise, use the strategies 2 or 3, go to step 1.

Strategy 2 Unfold as much as possible until the folding or anti-unification rule
s applicable, or until strategy 3 can be applied.

The next strategy controls how to introduce new definitions. Before intro-
ducing this strategy, we need some definitions.

Definition 4 (linking terms) Given a clause C : H : —Ay, ..., Apm, B1, ..., B;.
The linking terms of the sequence of atoms Ay, ..., Apm in C are the terms that
occur in both Ay,...,Am and H : —Bq, ..., B;.

Definition 5 Guen two clauses
Cl : H1 : _Alla ~~~:A1m; Bll; vy Bli~
02 : H2 : —Agl, ...,Agn, le, ceny BZi«

Suppose Cy : Hy : —Bi1,...,By; and C4 : Hy : —Bsy, ..., Bs; are nearly-
matching with C' as theirlgge, and 81 and 0y as their corresponding substitutions.
Suppose the number of the linking terms of A11, ..., A1m and that of Asq, ..., Asp
are equal, denote them as t1,...,tx and si1,...,sg, respectively. If {t191_1|Vl €
{1, k}} = {si07 ' VL € {1, ... k}} = {Xi|Vl € {1,...,k}} C domain(0,), then
we say A1, ..., Aim and Ay, ..., Ay, are factors of Cy and Cs. {X|l € {1, ..., k}}

are called factored variables.

Note that due to the fact that here §; and 6, are 1-1 mappings, we can have
the inverse of the substitutions.

Strategy 3 Let P; contains the following two clauses:
E1 . H1 . _A11; ...,Alm, Blla ceny Bli~
E2 . H2 . —A21, vy A2n, BQl, vy BQZ'.

Suppose Ai1,..., Aim and Asq, ..., As, are factors of Ev and Ey. X1, ..., Xk
are all the factored variables. Then we can have the following definition for new
predicate:

genp(Xy, ..., Xg) : —GenAyy, ...,GenAip,.
genp(Xy, ..., Xg) : —GenAay, ..., GenAag,.

where GenAy; = Auﬂl—lo’, GenAqgg = Agkﬁz_la,

Je{l,...m}, ke {l,...,n}, o is a I-1 mapping with constants as its domain,
new variables as its range.

This definition of genp can be added to P; to form a new program Pjii.

By folding, we can get the following program Pji:

E1 . H1 . —genp(Xl, ceny Xk)gl, Bll; sy Bli~
E2 . H2 . —genp(Xl, ceny Xk)gz, BQl, sy BQj.
genp(Xy, ..., Xg) : —GenAyy, ..., GenAp,.
genp(Xy, ..., Xg) : —GenAay, ..., GenAagy,.

This strategy shares some similarity with the intraconstruction operation
in [MB][RP], and the generalization strategy in [PP]. The differences with the
intraconstruction as described in [RP] are: firstly, we have a stronger applicable

condition such that the newly introduced predicate has the same arity in two
clauses. Secondly, we have a more general clause introduced(i.e., constants are
changed into variables), so that the subsequent absorption is possible. The
generalization strategy in [PP] introduces a single clause genp() : —... which is a
least general generalization of two clauses in an unfolding tree. The hyper least
general generalization in [FIG] introduce a new predicate for two literals having
the same arity.

5 Examples

It is easy to see that now we can solve the problem in example 1. Suppose the
initial program F; is as follows. By existing methods in ILP that we are aware
of, there is no way to generalize it to the desired definition of ancestor. In our
method, the solution is quite simple.

Example 3 The ancestor problem:

P0O: grandparent(X,Y):-parent(X,U), parent(U,Y).
ancestor (X,Y):-parent (X,Y).
ancestor (X,Y) :—grandparent (X,Y) .

P1: grandparent(X,Y):-parent(X,U), parent(U,Y).
ancestor (X,Y) :-parent (X,Y).
ancestor (X,Y) :-parent (X,U), parent(U,Y).

P2: grandparent(X,Y):-parent (X,U), parent(U,Y).
ancestor (X,Y):-parent (X,Y).
ancestor (X,Y):-parent (X,U), ancestor(U,Y).

By unfolding, we have P1 from P0. By folding, we have P2 from P1.

The next example shows the unfolding rule used in recursive definition. If
we directly use the definition rule to generalize the following program, we will
get a more general program.

Example 4 The ancestor problem(continued): Suppose the initial program is

Po.

PO: ancestor(X,Y) :-mother(X,Y).
ancestor(X,Y) :-mother(X,U), ancestor(U,Y).
ancestor(X,Y) :-father(X,U), father(U,Y).

P1: ancestor(X,Y) :-mother(X,Y).
ancestor(X,Y) :-mother(X,U), mother(U,Y).
ancestor(X,Y) :-mother(X,U), father(U,V), father(V,Y).
ancestor(X,Y) :-mother(X,U), mother(U,V), ancestor(V,Y).
ancestor(X,Y) :-father(X,U), father(U,Y).

P2: ancestor(X,Y) :-mother(X,Y).
ancestor(X,Y) :-mother(X,U), genp(U,Y).

ancestor (X,Y) :-genp(X,Y).

ancestor (X,Y) :-genp(X,V),ancestor(V,Y).
genp(X,Y) :-mother(X,U), mother(U,Y).
genp(X,Y) :-father(X,U), father(U,Y).

P1 is obtained from PO by unfolding. P2 is obtained from P1 by definition
introduction and folding. Now we have a program P2 which does not logically
imply the program P0. If we directly use the rule de finition to generalize the
program PO, we will get a more general program P (i.e., P >=g P») which logically
implies PO.

P: ancestor(X,Y) :-genp(X,Y).
ancestor (X,Y) :-genp(X,V),ancestor(V,Y).
genp(X,Y) :-mother(X,Y).
genp(X,Y) :-father(X,U), father(U,Y).

Due to lack of space, here we only show how to apply the unfolding rule.
The transformation rules are more powerful than it looks like. Especially, by
using strategy 3, our method can effectively perform generalization under the
implication ordering. For example, for programs PO and P as below,

P0O:ancestor(nl,nb) : -parent (n1,n2) ,parent (n2,n3),
parent (n3,n4) ,parent (n4,n5) .
ancestor (ml,m4) : -parent (m1,m2) ,parent (m2,m3) ,parent (m3,m4) .
P: ancestor(X,Y):-parent (X,U) ,parent (U,V) ,parent (V,Y).
ancestor (X,Y) :-parent (X,U) ,ancestor(U,Y).

By using the structure analysis method[Idestam-Almquist95], P can be ob-
tained from P0. By using strategy 3, we can have similar results. The difference
is that here we do not need to hypothesize a new positive example according to
the similarity between the structure of the two existing examples.

6 Discussions

Unlike some approaches in ILP that represent examples by a large number of
ground facts, we represent the examples by a few number of clauses which em-
body some kind of computation trace. People may argue that the representation
of positive examples such as ancestor(c,d) :-grandparent(c,d) is quite arti-
ficial. This form of representation can be justified as follows.

e From theoretical point of view, it is desirable to study the generalization
of various forms of representations.

e Our setting is automatic synthesis of logic programs from examples. From
practical point of view, the number of examples required by the system
should be as few as possible, and random examples should be allowed. To
compensate the loss of information in limited number of examples, some
kinds of computation trace (or explanation) must be given.

e It is natural to express examples in clauses instead of facts. Sometimes
it is even easier than the ground fact form °. Especially, in the realm
of programming by demonstration [Cypher], there are various methods to
give traces by providing friendly user interface.

e This kind of representation may occur as an intermediate result during
the process of saturating the ground facts '°. Also, it may result from
flattening a fact ''. In this sense, our method presented in this paper is
independent on our specific setting.

Our work shares some ideas in explanation based learning (EBL)[DM]. Es-
pecially, a similar ordering is used in [NMS]. In EBL, the basic steps are expla-
nation and generalization, where the explanation is deductive derivations, and
share some commonality with the unfolding operation. The difference is that
here the unfolding operation has some specific requirements so that the general-
ity is preserved. More generally, their focuses are different: we are studying the
generalization between programs, while EBL focus on improving the efficiency
of a problem solver.

Another work which makes a clause longer before doing generalization is
saturation[RP]. This approach differs ours in that the result of saturation still
logically implies the original clause.

This is an initial report on our study on the generalization beyond implica-
tion. Further work to be performed can be viewed in the following three aspects.

Study of other orderings beyond implication Although the >g ordering
is more satisfactory than >, it is neither the unique nor the most desirable
ordering beyond implication. For instance, as we might have noticed, it
may be true that Py U Py =5 lggs(Pi, P2). This shows that sometimes
lggs 1s too specific. For another instance,

Example 5 (The non-terminating problem) Given programs P1 and P2
as follows:

P1: ancestor(X,Y):-parent (X,Y).
P2: ancestor(X,Y):-parent (X,Y).
ancestor (X,Y) :-parent (X,Y) ,ancestor(X,Y).

Here P2 >g P1, but we won’t be glad to have P2 as a generalization of
P1.

So, to characterize the correct generalization in ILP, the concept of finite
failure set should be incorporated in the definition of the desirable ordering.

?Consider the example: It would be easier for a user to write fac(5) =1%2%3%4x%5 than
fac(5) = 120.
10For instance, if programs succ and multiply are defined in the background theory, then a
path structure of the saturation of fac(3,2) could be
fac(3,6) : —s(2,3),s(1,2),m(3,2,6),m(2,1,2). This is the same as our form of representation.
1 For instance, [LLM] represent the positive factorial example as factorial(sss0, sss0x (ss0%
s0)). Its flattened form is similar to our representation.

Study of the >s ordering Within the scope of the study of the >g ordering,
we realize that the program transformation approach as presented in this
paper is not the unique way. Another approach is to find a decidable order-
ing which approximate »g. We expect that for a subset of logic programs,
this kind of ordering can be reduced to the # subsumption ordering by
means of function expansion.

Due to the fact that expansion (and saturation) may be infinite in general,
we may need to use higher-order logic programs[Miller] to represent the
result of expansion of recursive programs. Another benefit of using higher
order language is that we can describe generalizations in a more formal
way[Hagiya].

Study of the transformational approach Within the range of this paper, a
problem is that it is hard to decide when to stop the unfolding operation.
We will investigate more strategies and construct a system to do more
experiments.

Acknowledgments

We would like to thank the anonymous referees for their very helpful com-
ments. The first author wish to thank professor Masateru Harao and professor
Masami Hagiya, for sharing their ideas on generalization problems, thank the
Japan Society of Promotion of Science and the Education Ministry of Japan,
for supporting his visits to the University of Tokyo and the Kyushu Institute
of technology, and thank National Science Foundation of China, for partially
supporting the research.

References

[ALLM] Aha, D. W., Lapointe, S., Ling, C. X., Matwin, S., Learning recursive relations
with randomly selected small training sets. In Proceedings of the Eleventh Inter-
national Machine Learning Conference (pp. 12-18). New Brunswick, NJ: Morgan
Kaufmann. 1994. (NCARAI TR: AIC-94-024).

[Buntine] Wray Buntine, Generalized subsumption and its applications to induction
and redundancy, Artificial Intelligence, 36(2):149-176, 1988.

[Cypher] Allen Cypher, Ed., Watch What [Do: Programming by Demonstration, The
MIT Press, 1993.

[DM] DeJong, G., Mooney, R., Explanation-based generalization: an alternative view,
Machine Learning, 1, 145-176, 1986.

[FIG] K. Furukawa, M. Imai, and Randy Goebel, Hyper least general generalization
and its application to higher-order concept learning, draft.

[Hagiya] Masami Hagiya, Programming by example and proving by example using
higher-order unification, 10th Conference on Automated Deduction (M. E. Stickel
ed.), Lecture Notes in Artificial Intelligence, Vol.448, 1990, pp.588-602.

[Idestam-Almquist93] Peter Idestam-Almquist, Generalization of Horn clauses, PhD
Dissertation, Department of Computer Science and Systems Science, Stockholm
University and the Royal Institute of Technology, 1993.

[Idestam-Almquist95] P. Idestam-Almquist, Efficient Induction of Recursive Defini-
tions by Structural Analysis of Saturations, in Proceedings of the Fifth Work-
shop on Inductive Logic Programming (ILP95), Department of Computer Science,
Katholieke Universiteit Leuven, Belgium, 1995.

[LLM] S.Lapointe, C.Ling, S.Matwin, Constructive Inductive Logic Programming,
Proceedings of The Third International Workshop on Inductive Logic Program-
ming [LP’93 April 1-3, 1993 Bled, Slovenia. 255-264.

[Lloyd] Lloyd, J.W., Foundations of logic programming, Springer-Verlag, 1934.

[MB] S. Muggleton and W. Buntine. Machine invention of first-order predicates by
inverting resolution. In S. Muggleton, editor, Inductive Logic Programming, Lon-
don, 1992. Academic Press.

[M8&8] Maher, M.J., Equivalence of logic programs, Foundations of Deductive
Databases and Logic Programming, Morgan Kaufmann, 1988.

[MF] Muggleton, S., Feng, C., Efficient induction of logic programs. In Proceedings of
the First Conference on Algorithmic Learning Theory, Tokyo., 1990. Ohmsha.

[MP] Marcinkowski, J., L. Pacholski, Undecidability of the Horn clause implication
problem. Proceedings of the 33 Annual IEEE Symposium on Foundations of Com-
puter Science, Pittsburgh, 1992. 354-362.

[MR] Muggleton, S., L. De Raedt. Inductive logic programming: theory and methods.
Journal of Logic Programming, 19,20:629-679, 1994.

[Muggleton] Muggleton, S., Inverting the resolution principle. In Machine Intelligence
12. Oxford University Press, 1991.

[Miller] Miller, D., A logic programming language with lambda-abstraction, function
variables, and simple unification, in Proceedings of the international workshop on
Extensions of logic programming, Tubingen 1989. LCNS 475.

[Niblett] Niblett, T., A study of generalization in logic programs, In Proceedings of
the third European working session on learning, Pitman, 1988.

[NMS] Numao, M., T.Maruoka, and M.Shimura, Inductively Speeding Up Logic Pro-
grams, Machine Intelligence 13, Oxford University Press 1994, pp. 371-385.

[Plotkin70] Plotkin, G. D., A note on inductive generalization, Machine Intelligence 5,
Edinburgh University Press 1970, pp. 153-163.

[Plotkin71] Plotkin, G.D., A further note on inductive generalization, Machine Intel-
ligence 6, Edinburgh University Press 1971, pp. 101-124.

[PP] Pettorossi, A., M. Proietti, Transformation of logic programs: foundations and
techniques, J. Logic programming, 1994, 19(20), pp. 261-320.

[Rouveirol] Rouveirol, C., Flattening and saturation: two representation changes for
generalization, Machine learning 14, pp. 219-232, 1994.

[RP] Rouveirol, C., Jean Francois Puget, Beyond inversion of resolution, in Bruce W.
Porter and Ray J. Mooney(eds.) Machine learning: Proceedings of the seventh
international conference on machine learning, 1990. Morgan Kaufmann. pp. 122-
130.

[TS] Tamaki, H., Sato, T., Unfold/fold transformation of logic programs, in: S. A.
Tarnlund (ed.), Proceedings of the 2nd international conference on logic program-
ming, Uppsala, Sweden, 1984, pp. 127-138.

