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Estimating Deep Web Data Source Size by
Capture-Recapture Method

Jianguo Lu · Dingding Li

Abstract This paper addresses the problem of estimating the size of a deep web data

source that is accessible by queries only. Since most deep web data sources are non-

cooperative, a data source size can only be estimated by sending queries and analyzing

the returning results. We propose an efficient estimator based on the capture-recapture

method. First we derive an equation between the overlapping rate and the percentage

of the data examined when random samples are retrieved from a uniform distribution.

This equation is conceptually simple and leads to the derivation of an estimator for

samples obtained by random queries.

Since random queries do not produce random documents, it is well known that the

estimation by random queries has a negative bias. Based on the simple estimator for

random samples, we adjust the equation so that it can handle the samples returned

by random queries. We conduct both simulation studies and experiments on corpora

including Gov2, Reuters and Wikipedia. The results show that our method has small

bias and standard deviation.

Keywords Deep web, estimators, capture-recapture.

1 Introduction

The deep web [5] is the web that is dynamically generated from data sources such

as databases or file systems. Unlike the surface web where data are available through

URLs, data from deep web data sources are guarded by search interfaces.

Estimating the size of a deep web data source is an important component of data

source sampling which obtains a profile or summary of a data source [10] [11] [22] [36]

[38]. Data source sampling has attracted much attention in numerous contexts, such as

distributed or integrated information retrieval, data source selection and categorization,

and peer-to-peer information retrieval. Given the proliferation of web data sources and
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web services, quite often there are many similar data sources serving the same purpose.

There is a need to select the one that is most comprehensive. While data providers do

have the details such as the size of the data source, the same information may not be

available to a third party.

Estimating the data source size is also an indispensable step when crawling a deep

web data source for the purpose of indexing, backup, and downloading. There has been

extensive research on deep web crawling and data extraction by issuing queries [28] [30]

[2] [25] [32] [33], and all of them need to decide as to when most of the data have been

harvested. Without knowledge on the data source size, it is difficult to decide when to

stop the crawling process, and how to evaluate the performance of the data extractors.

Since most of the deep web data sources can be accessed only by queries, the

estimation is based on the queries issued and the results (either complete documents

or document ids) obtained. This kind of query based data size estimation has been

widely studied [3] [4] [6] [7] [9] [11] [34] [36] [38] [40]. One of the basic techniques is the

traditional capture-recapture method [1] [12] [14] [35] in ecology. The idea is that if

one takes several samples from a population, there would be some overlapping between

the samples. According to the overlapping information, various estimation methods are

proposed and applied in areas including data collection size estimation.

Our first contribution in this paper is the derivation of a simple equation between

the overlapping rate and the percentage of the data examined. The equation holds only

when the queries are fired many times, which is common in query based sampling, but

may not be feasible for estimation problems in ecology. Although the equation itself

can not be directly used in size estimation due to the assumption of the availability

of uniformly distributed random samples, the simplicity of the equation leads to the

derivation of a real estimator for samples obtained by queries.

One challenge in data size estimation is the difficulty in obtaining random samples

from a data source, partially because documents have unequal probabilities of being

retrieved. It is well known that random queries do not return random documents, and

that sampling by random queries will consistently result in negative bias [4] [9] [34] [40].

Shokouhi et al observed that there is a fixed relationship between the estimation and the

actual size, and proposed the use of regression to adjust the estimation result obtained

by an estimator for random samples [34]. However, this estimator is not consistent– it

will overestimate when the sample size is large as we will analyze in Section 5.4.

Based on our simple estimator for random samples, our second contribution is to

adjust our estimator so that it can handle the samples returned by random queries.

When documents have unequal probabilities of being captured, the degree of hetero-

geneity can be used to modify the estimation. Our simulation study shows that our

estimator works very well if the degree of heterogeneity is known. We also conducted

experiments on various corpora and show that our method compensates for this kind

of query bias [6] very well.

Many data sources, especially large search engines such as Google, rank the match-

ing results and return only top k elements. This kind of rank bias [6] can be tackled by

downloading and analyzing the documents [4]. Since our method does not download

the documents, it can’t overcome the rank bias. For ranked data sources, it works well

only when there are not many overflowing queries, i.e., the queries match more than k

documents.

Our method is not intended for estimating huge databases such as general purpose

search engines, where ranking and overflowing queries are common and can not be

ignored. Rather, it is for unranked data sources, or ranked data sources with low density
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of overflowing queries. These data sources are typically of a smaller size. Compared with

the methods for ranked data sources, our estimator is rather efficient–we do not need

to download and analyze the documents.

Another restriction of this paper is that we focus on textual data sources that

contain plain text documents only. This kind of data source usually provides a simple

keywords-based query interface, instead of multiple attributes as studied in [39].

2 RELATED WORK

2.1 Basic concepts of capture-recapture method

Capture-recapture method was originally developed in ecology and used to estimate the

size of an animal population [1] [31]. In the estimation process, animals are captured,

marked, and released in several trapping occasions. The data collected during the

process, including the number of capture occasions, the recaptured animals, and the

distinct animals captured, allow one to estimate the total population. This estimation

process corresponds nicely to the query based estimation of data collection sizes, where

a trapping occasion corresponds to sending a query and retrieving a set of documents

from a data source.

If all the documents have an equal probability of being matched by a query, and

all the matched documents are returned, we have the simplest model for which many

estimators have been developed. The classic estimator is the famous Petersen estimator

[31] that can be applied only to two capture occasions:

n̂Petersen = n2U2/d2, (1)

where n2 is the number of documents retrieved by the second query, U2 is the number

of unique documents retrieved just before the second query, and d2 is the number of

duplicate documents that are captured after the second query.

This estimator can be derived using maximum likelihood method. The problem of

this estimator is that d2 could be zero when n2 and U2 are not large enough. According

to the birthday paradox, in general n2, U2 should be greater than
√

n, where n is the

actual size of the data source, in order to have overlaps between the results of two

queries. Unfortunately, many queries do not have that many matches.

One approach to solving the problem is by obtaining two large samples, each are

produced by many queries instead of just one query [9].

Another approach is expanding the estimator to multiple capture occasions or

queries, and taking the weighted average of the estimations. i.e.,

n̂ =

∑q
i=2 winiUi/di∑q

i=2 wi
(2)

When weight wi = di, it is the classical Schnabel estimator [31] for multiple cap-

tures:

n̂Schnabel =

∑t
i=1 niUi∑t

i=1 di

(3)

When weight wi = diUi, it is the Schumacher estimator: [35]

n̂Schumacher =

∑t
i=1 niU

2
i∑t

i=1 diUi

(4)
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Unlike two capture occasions, the MLE (Maximum Likelihood Estimator) for mul-

tiple capture model does not have a closed form solution. Without surprise, both Schn-

abel and Schumacher estimators are approximate estimators. However, they are widely

accepted as good estimators with very small bias and variance when animals (or doc-

uments) are captured with equal probability.

In reality, individuals, be it documents or animals, seldom have equal capture prob-

ability. For animals, young animals may be easier to be captured because they are more

active. For documents, large documents may be easier to be retrieved by a query be-

cause there are more words in those documents.

For this kind of heterogeneous population where each individual has a unequal

catachability, the estimation is notoriously difficult [1]. MLE technique can no longer

be used to derive an estimator because there can be as many as n+1 parameters: n

and and capture probabilities p1, p2, . . . , pn. Estimating this many parameters from the

capture data is not possible. Although there are several empirical estimators proposed

for this model, including the Jacknife estimator [31] and Chao [12] method, both can be

only applied to small population with hundreds of elements, and require large sample

size.

2.2 Estimators for data collections

Data source size estimation methods can be classified into two categories. One relies

on the sample set(s) of documents and the lexical analysis of those documents [3][4][9],

while the other analyzes the document ids only [6][16][34][38][40].

2.2.1 Methods based on document analysis

Estimation methods based on document analysis date back to a sample-resample

method proposed by Si et al [36]. More recently fairly sophisticated methods such

as [4] [3] [9] are proposed.

Taking Broder et al’s work [9] for example, they first try to establish the sizes of

two subsets of the corpus. A subset is the documents that are indexed by a query pool,

which may contain millions of queries such as all the eight digit numbers. Since the

query pool is rather large, it is impractical to fire all the queries to decide the number of

documents that can be retrieved using the query pool. Hence, from the query pool a set

of sample queries are randomly selected and sent to the data source. All the matched

documents are downloaded and analyzed to obtain the weight [9] of each query. Based

on the average weight of the queries from the sample, the number of the documents

that can be obtained by the query pool can be estimated by multiplying the average

weight by the query pool size. Once two such subsets of the documents are obtained,

the Petersen estimator (Equation 1) is used to estimate the total corpus size.

Obviously this approach is rather inefficient and sometimes infeasible because

– Some deep web data sources may not support the downloading of the documents.

For example, Amazon book search web service will return the basic information of

the books, instead of the entire books. For this kind of data sources, it is impossible

to use the returned documents to obtain the source profile.

– Even when the documents are downloadable, the estimation process is very expen-

sive. In addition to the downloading of the documents, obtaining random documents
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may incur further costs. For example, one of Bar-Yossef et al’s methods [3] needs

to fire 2000 queries in order to obtain one random document.

– The approach is not stable. Quite often the links provided by a deep web data

source may not be active, and this may disrupt the estimation process.

2.2.2 Methods based on document ids

This paper focuses on another category of estimation methods, which rely on the

returning documents ids instead of the entire documents. Document ids can be in

various forms such as ISBN numbers for books in Amazon, URLs for web pages indexed

in Google, or file names in our experiments. Compared with the bulk of the documents

downloaded, this type of estimator only needs to know the document identifiers, which

will save network traffic tremendously.

This approach originated from the Capture-Recapture method, which is extensively

studied and widely used in estimating the population of wild animals [1]. The basic

idea is to capture a collection of animals as randomly as possible, mark them and

release them. Then capture another sample and count the duplicates with the previ-

ous captures. With this data various approaches are proposed to estimate the animal

population size.

Liu et al proposed using the Capture-Recapture method to estimate a data source

size [26]. More recently, Carverlee et al [11] discussed the problem in the setting of a

distributed environment. The estimator they used is the traditional Peterssen estima-

tor.

Shokouhi et al [34] proposed to use multiple capture-recapture method, or Capture

with History (hereafter CH) method, to estimate a data source size. Using regression

method, they developed a new estimator based on the traditional Schumacher and

Eschmeyer estimator [35] as shown in Equation 4.

Bharat and Broder used a large query pool to estimate the sizes of search engines

and the web [6]. In particular, they identified various biases, especially the query bias

and ranking bias, during the estimation process. Gulli and Signorini [16] improved the

method described in [6].

2.3 Compensate the bias

Capture-recapture based methods tend to underestimate the size of a data source due to

several reasons. One is the assumption that documents (or the wild animals in the case

of animal population estimation) are of the same probability of being captured. When

using random queries to capture documents, the retrieved documents are actually not

randomly selected.

Various methods have been proposed to compensate this kind of bias. In the tradi-

tional capture-recapture research, people proposed various estimators [1] [12] to cope

with the population that have unequal catchability. In data source estimation, Bar-

Yossef and Gurevich strive to obtain random samples [3][4] by downloading and ana-

lyzing the texts.

Shokouhi et al [34] corrected the bias of the CH method using regression (CHreg

hereafter). They conjecture that there is a fixed relationship between the initial es-

timation, which is obtained by capture-recapture methods, and the actual data size.



6

Based on this hypothesis, they use a training data set to obtain an equation between

the initial estimation and the actual size using non-linear regression.

Xu et al [40] tried to compensate the bias by modeling the document capture

probabilities with logistic regression.

3 AN ESTIMATOR FOR RANDOM SAMPLES

When random samples are obtained from a uniform distribution, the collection size can

be estimated fairly accurately using various estimators such as Equation 4. However, it

is difficult to adjust Equation 4 for samples obtained by queries due to its complexity.

Hence we derived a simple equation as follows:

P ≈ 1−OR−2.1 (5)

where P is the percentage of the samples obtained from the data source, OR (Over-

lapping Rate) is the ratio between the accumulative total number of data items and

the unique data items in the samples.

More precisely, suppose that a data source has an actual size n. When a sequence

of samples is obtained randomly from the data source, suppose that there are t accu-

mulative data items, and u number of unique items. The overlapping rate OR is t/u

and P is u/n.

3.1 Simulation study

Before deriving Equation 5, we run a simulation study in the context of a variation of

urn model [21] with replacement.

Urn model: Consider an urn that contains n balls, each is labeled with a unique

number from 1 to n. Randomly select k balls, where k ¿ n, from the urn, record the

ball numbers that are drawn, then put back the balls into the urn. Repeat the process

for i times, in which stage u(i) unique balls are selected, which constitutes P (i) percent

of all the balls in the urn. The overlapping rate OR(i) is t(i)/u(i).

The question is: What is the relationship between P and the overlapping rate OR,

if there is any?

We first run an urn model simulation to reveal the relation.

Urn model simulation: In this experiment, n is the total number of data items

in the data source, and k is the size of each sample. In each step, we generate k random

numbers that are uniformly distributed within the range between 1 and n. Add those

numbers to the result set and record the overlapping rate OR and hit rate P . Repeat

the process until the cardinality of the result set is close to n.

Figure 1 draws a relationship between P and OR for step lengths ranging from 1

to 40 where n, the total of number data items, is 5,000. We tested other values of n

and observed similar results.

The simulation indicates that the hit rate P is a function of the overlapping rate

OR, independent of the step length k. This prompts us to derive the equation between

P and OR.
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Fig. 1 Urn model simulation. n=5,000.

3.2 Derivation

P (i), the percentage of the data obtained up to i-th iteration, can be also interpreted

as the probability of one particular document that is captured in all i iterations. We

start with:

P (1) =
k

n
(6)

P (2) =
k

n
+

k

n
− k

n
∗ k

n

. . .

P (i) = P (i− 1) +
k

n
− P (i− 1) ∗ k

n
(7)

Solving the equations (6) and (7) we obtain the following:

P (i) = 1−
(

1− k

n

)i

= 1−
(

1− u

n

ik

u

1

i

)i

= 1−
(

1− P (i) ∗OR(i)

i

)i

Moving OR(i) to the left hand side of the equation we have:

OR(i) =
i ∗

(
1− (1− P (i))

1
i

)

P (i)
(8)

The question we want to ask is: whether OR is a function of P? For example, given a

predetermined P=10%, what is the OR at that point? Since i is assumed to be a large
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number and P is fixed, the corresponding OR can be derived as follows:

OR = lim
i→∞

i ∗ (1− (1− P )
1
i )

P

=
1

P
lim

i→∞
1− (1− P )

1
i )

1

i

=
1

P
lim

i→∞
∂(1− (1− P )

1
i )

∂ 1
i

=
1

P
lim

i→∞

∂(1− (1− P )
1
i )

∂(i)

∂(
1

i
)

∂(i)

=
1

P
lim

i→∞

∂(1− (1− P )
1
i )

∂( 1
i )

×
∂(

1

i
)

∂(i)

∂(
1

i
)

∂(i)

=
1

P
lim

i→∞
∂(1− (1− P )

1
i )

∂

(
1

i

)

=
1

P
lim

i→∞

(
−(1− P )

1
i × ln(1− P )

)
(by ∂αx

∂x = αxlnα)

=
−ln(1− P )

P
lim

i→∞

(
−(1− P )

1
i

)

= − ln(1− P )

P

Hence we have Equation 9:

OR = − ln(1− P )

P
(9)

Note that although both OR and P are dependent on i, k, and n, what Equation

9 shows is that when i is large, no matter what values i, k , and n take, OR solely

depends on P .

Another view to understand Equation 9 is that in the sampling process there are

various ways, either by increasing i or k, to reach a certain value of P . When i is large,

Equation 9 states that no matter how P is obtained, OR is a function of P only.

Equation 9 can be also illustrated by drawing Equation 8 as in Figure 2, where OR

is a function of both P and i. It shows that while the relation between P and OR is

volatile when i is small, it tends to be stable with the increase of i. We can see that the

threshold value for i is dependent on P . Although in the above derivation i in theory

should be a large number, our empirical experiments showed that 100 is good enough.
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Fig. 2 Plot for Equation 8 with i as X axis, P as Y axis, and OR as Z axis. With the increase
of i, the relation between P and OR becomes stable.

To estimate the value of P based on OR, we need to inverse Equation 9. Since P

is smaller then 1, we can postulate the regression equation as follows:

P = 1− αORβ

ln(1− P ) = lnα + βln(OR)

By running linear regression on the above equation with data generated from Equation

9 when P is smaller than 0.5, we have

ˆln(1− P ) = 0.005448767− 2.108591182ln(OR),

R2 = 0.999791835

i.e., α̂=1.005463639, and β̂=2.108591182.

Here R-square is very close to one, and the standard errors for the intercept and

slope are close to zeroes (0.000748673 and 0.00453560 respectively). Thus, we derive

the following approximation for the relation between P and OR when P is smaller

than 0.5:

P = 1−OR−2.1 (5)

One of the reasons to restrict P to be smaller than 0.5 is that in estimation applica-

tions, the samples in general do not need to be very large. Another reason is that when

P is small, Equation 9 and 5 can fit very well as illustrated in Figure 3. However, when

P (and OR) becomes larger, there is a small discrepancy between these two equations

as shown in Figure 3 (A).

3.3 Varying k

In the derivation of Equation 5 we assume that all the captures have a fixed size k. We

need to show that Equation 5 also holds for varying k size as long as k ¿ n. This will

make the equation more applicable in practice, since in many cases each capture may

return varying number of elements.
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Fig. 4 Simulation with random step length and the comparison with Equation 5. Two simu-
lations (Simulation 1 and Simulation 2) are run on the same condition, i.e., n=5000, stepSize
is a random number between 1 to 100.

We conducted another simulation which is the same as the previous one described

in Section 3.1 except that now in each capture the number of elements is a random

number, i.e., in each step we generate a random number stepSize within range 1 and k,

then we generate stepSize number of random numbers within [1, n]. The relationship

between P and OR is similar to the study in Section 3.1. In the next section more

simulations on varying step lengths are conducted to confirm this result. Figure 4

shows the results of two runs of the simulation with exactly the same condition, and

the comparison with Equation 5.

3.4 A naive estimator

Based on Equation 5, a native estimator is given below:

n̂ =
u

1−OR−2.1
(10)

where u is the number of distinct documents retrieved.
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Fig. 6 Estimation result using our OR method (i.e. Equation 10) and Schumacher and Es-
chmeyer method. n=2,000. In each iteration k elements are selected, where k is a random
number between 1 and 40.

Although the estimator works only for random samples from a uniform distribution,

which is rare in practical applications, it leads to the derivation of the estimator for

unequal catch probabilities as described in the next section.

Figure 5 shows the results of the estimation using Equation 10, where the elements

are selected randomly with uniform distribution in the range of [1, 5000]. Here the

actual size n is 5000. When both i and k are small (i < 20, k < 20), many of the

estimates are infinite and are not shown in the chart. This can be explained by the

Birthday Paradox that the sample size should be larger than
√

n to produce collisions,

or make overlapping rates greater than 1. With the increase of k and i, the estimate

becomes stable and accurate.

3.5 Comparison with Schumacher and Eschmeyer method

We also compared our method (OR method) described in Equation 10 with the tra-

ditional Schumacher and Eschmeyer method [35] described in Equation 4. Table 1
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Table 1 Details of the simulation and the stepwise estimation result by SE( Schumacher &
Eschmeyer) method and OR method. n=2000, step size ranges between 1 and 40.

i k(i) d(i) u(i) n̂SE n̂OR

1 3 0 3 ∞ ∞
2 6 0 9 ∞ ∞
3 37 0 46 ∞ ∞
4 23 2 67 1,359 1,119
5 8 1 74 1,086 924
6 10 0 84 1,425 1,182
7 35 0 119 3,808 2,336
8 38 0 157 8,311 3,051
9 10 1 166 5,359 2,748
10 31 3 194 3,317 2,384
11 38 0 232 5,456 3,376
12 32 3 261 4,253 3,143
13 14 2 273 3,693 2,933
14 28 1 300 4,240 3,285
15 18 1 317 4,400 3,426
16 32 10 339 2,614 2,442
17 27 6 360 2,360 2,261
18 34 9 385 2,097 2,054
19 39 3 421 2,420 2,235
20 32 7 446 2,347 2,193
21 24 7 463 2,221 2,109
22 17 5 475 2,155 2,064
23 39 8 506 2,204 2,076
24 21 7 520 2,125 2,024
25 6 0 526 2,181 2,066
26 6 2 530 2,160 2,053
27 18 3 545 2,217 2,097
28 28 6 567 2,258 2,112
29 38 13 592 2,164 2,039
30 19 3 608 2,232 2,092
. . .

explains the details of one simulation where n=2000. k(i) is the number of elements

captured in the i-th step, d(i) is the duplicate elements in the i-step, u(i) is the unique

elements captured up to the i-th step. Figure 6 is the plot of the data in Table 1.

Table 2 summarizes the MSE(Mean Squared Error), variance, and bias for various

sample sizes ranging between 20% and 50% of n. For each sample size 50 simulations

are done and the MSE et al are calculated from the 50 simulations. It can be seen that

our OR method is systematically better than Schumacher and Eschmeyer method.

Table 2 Comparison of SE (Schumacher and Eschmeyer ) method and OR method. The
actual size is 2,000, and the step size is a random number between 1 and 40. The data is
obtained by 50 runs.

Sample size (%) n̂ MSE Var Bias

SE OR SE OR SE OR SE OR
20 2239 2000 138,909 61,335 81,582 61,334 239.43 0.87
30 2105 1959 48,645 28,579 37,612 26,975 105.04 -40.04
40 2070 1990 18,323 10,507 13,286 10,415 70.97 -9.64
50 2052 2017 11,789 7,106 9,031 6,782 52.52 17.99
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Fig. 7 Capture frequency of news groups documents by queries: (A) is the scatter plot when
documents are selected by queries. In total 13,600 documents are retrieved. (B) is the first 100
captures in figure (A). (C) is the histogram of (A). (D) is the log-log plot of (C).

4 ESTIMATOR WHEN DOCUMENTS ARE SELECTED BY QUERIES

Equation 10 is derived on the assumption that documents are selected randomly from

uniform distribution. Although we can select random queries, picking out a set of ran-

dom documents is by no means an easy task [3][6][37]. When samples are not randomly

selected with a uniform distribution, there is a tendency that the estimation is nega-

tively biased in traditional capture-recapture method [1] and in data size estimation

[34][4][6]. Almost all the methods underestimate the size consistently.

Prompted by Equation 5, we conjecture that there is also a fixed relation between

P and OR in real data sources, with a modified equation:

P = 1−ORα, (11)

where α is a value, between 0 and -2.1, that is to be determined by the corpus under

investigation. The previous section has shown that if the documents can be sampled

with a uniform distribution then α = −2.1. Before describing the method to calculate

α for documents obtained by queries, we need to understand the non-uniform sampling

first.

4.1 The unequal catching probability

To reveal the cause of the negative bias, we conducted an experiment to show how

documents are captured when random queries are issued. In this experiment 20,000
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documents in 20 Newsgroups [24] are sorted according to their file sizes, and are num-

bered through 1 to 20,000 in a decreasing order. Then we retrieve documents by firing

single word queries that are randomly selected from the Webster dictionary. In Figure

7, (A) depicts the 13,600 documents that are selected by queries, and includes dupli-

cates. To give a better view of the (A), (B) depicts the first 100 documents that are

captured.

To understand the plot better, we draw the histogram of retrieved documents as

in sub-figure (C), where the bin size is 100. It shows that the largest one percent of

the documents (i.e., the largest 200 documents) are captured around 2,300 times. The

second largest 200 documents are retrieved around 1,000 times. Many small documents,

i.e., the documents with larger IDs, are rarely retrieved by queries. The histogram

demonstrates that the capture frequency follows the power law, as its log-log plot in

Figure 7 (D) shows.

Since the capture frequency follows the power law, in the following simulation

studies, we will generate random numbers following Pareto distribution to simulate

the capture frequency.

4.2 Measure the heterogeneity

One way to measure the degree of heterogeneity of the capture probability distri-

bution is coefficient of variation (CV) [12]. Assume that the documents in the data

source have different but fixed probabilities of being captured, i.e., p = {p1, p2, . . . , pn},∑n
j=1(pj) = 1. Let p1, p2, . . . , and pn have mean p̄ =

∑
pi/n = 1/n. The coefficient of

variation of the probabilities p is defined as

γ =

√∑n
i=1(pi − p̄)2/n

p̄

Figure 8 shows how documents are captured when CV varies, where x-axis is the

capture sequence, and y-axis is the document ID. If a marker appears at the position

(10, 1000), it means that the document labeled 1000 is retrieved in the 10-th capture

occasion. Here we suppose that in each capture we will retrieve only one document.

Figure 8 (A) has a small CV, hence almost all the documents are retrieved with similar

probability. With the increase of CV, certain documents, most probably large ones, are

retrieved more frequently, hence resulting in higher overlapping between the query

results. We can see that when CV=2.6, among the 50% of the small documents with

document IDs greater than 10,000, only a few of them are retrieved in 200 captures.

If we continue to use the estimator in Equation 10, a higher CV will induce a larger

negative bias. Hence we need to adjust α in Equation 11 according to the value of γ.

4.3 Estimate α using CV

To reveal the relationship between α and γ, we conducted a simulation study that

produces a set of pairs (γ, α). We first generate random numbers that follow Pareto

distributions with different exponents and cutoff values. Each distribution will have a

different value for γ.

For each distribution, i.e., each γ, we randomly select some elements from the

population, and keep record of the values for P and OR. After certain amount of
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Fig. 8 Scatter plots for various CVs. 200 random numbers within the range of 1 and 20,000
are generated in Pareto distribution.
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Fig. 9 Relationship between CV (γ) and α.

elements are selected from the population, we obtained α = ln(1−P )/ln(OR) according

to Equation 11.

Figure 9 shows the relationship between α and γ. From the figure it is obvious that

α is dependent on γ.

Next we need to find a formula to describe the relation. Note that α ranges between

0 and -2.1. When γ = 0, it is a uniform distribution, hence α = −2.1. When γ increases,

α will become closer to zero. Given those observations, we postulate that the following

relation between α and γ holds, where a and b are to be determined.

α =
−2.1

1 + aγb
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To find the values for a and b, we run linear regression again on

ln(−2.1/α− 1) = lna + blnγ.

with the values for α and γ that are obtained in the simulation. The regression produces

ln(−2.1/α− 1) = 0.1644 + 2.1408lnγ, R2 = 0.9743

i.e., â= 1.1786, b̂=2.1408.

Thus we derived the equation

α =
−2.1

1 + 1.1786γ2.1408

Hence,

P = 1−OR−2.1/(1+1.1786γ2.1408) (12)

and

n̂ = u
(
1−OR−2.1/(1+1.1786γ2.1408)

)−1
(13)

4.4 Simulation study

To evaluate the behavior of the estimator described in Equation 13, we carried out a

simulation study that includes 30 combinations of the following

– Six different CVs, i.e., 6.04, 3.83, 2.86, 2.32, 1.24, and 0.66.

– Five different sample sizes in terms of the fraction of data source size n, i.e., 0.05,

0.25, 0.45, 0.65, and 0.85.

For each combination, we run 100 trials, and record in Table 3 the mean estimation

of the data size n̂ and its standard deviation. In each trial, we randomly generate

numbers in the Pareto distribution within the range 1 to n, where n = 100, 000. Other

values for n are also tested and similar results are obtained . We adjust the exponent

of the Pareto distribution and cutoff value so that various CVs are produced. For each

CV and sample size we run 100 trials and obtained the estimation n̂. Table 3 gives the

simulation result.

From the table we can see that both the bias and standard deviation are rather

small for all of those combinations, although in general smaller CVs demonstrate a

smaller bias. In particular, small sample size such as 5% of n can also produce a rather

accurate estimation, although the standard deviation is larger than that of the bigger

sample sizes.

4.5 Estimate CV

One estimator for CV based on capture history is given by Chao et al [12]:

γ̂2 = n̂1

∑n
i=1 i(i− 1)fi

t(t− 1)
− 1, (14)

where n̂1 is the initial estimation for the data source size, fi is the number of documents

that are captured exactly i times, and t is the total occurrences of captured documents.

Given that α is a value ranging between 0 and -2.1, we set the initial estimation for n1

as:

n̂1 = u/(1−OR−1.1). (15)
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Table 3 Simulation study for Equation 13 with various CV and sample size. Mean n̂ and
standard deviation (SD) are based on 100 runs. n=100,000.

Sample size(/n)
CV 2 0.05 0.25 0.45 0.65 0.85

6.04 mean n̂(×105) 1.0481 0.9935 1.0086 1.0367 1.0613
SD(×104) 1.1102 0.9952 1.0073 1.0340 1.0582

3.83 mean n̂(×105) 1.0669 1.0220 1.0198 1.0327 1.0509
SD(×104) 1.1355 1.0243 1.0180 1.0300 1.0471

2.86 mean n̂(×105) 1.0747 1.0284 1.0234 1.0300 1.0423
SD(×104) 1.1958 1.0317 1.0227 1.0272 1.0389

2.32 mean n̂(×105) 1.0589 1.0262 1.0231 1.0275 1.0370
SD(×104) 1.1809 1.0267 1.0218 1.0252 1.0337

1.24 mean n̂(×105) 1.0447 1.0205 1.0188 1.0203 1.0243
SD(×104) 1.2247 1.0248 1.0177 1.0169 1.0206

0.66 mean n̂(×105) 1.0116 1.0068 1.0080 1.0140 1.0176
SD(×104) 1.2388 1.0159 1.0068 1.0113 1.0143

5 EXPERIMENTS

This section evaluates our estimator in Equation 13 using standard corpora. Experi-

ments are implemented using Lucene [18] on local data. We did not estimate the size

of the real deep web data sources because the total number of documents in a real

web data source is usually unknown or inaccurate, hence it is impossible to evaluate

the estimation methods. An online demo of our estimation method is also available at

http://cs.uwindsor.ca/∼jlu/estimate.

5.1 Data

We run our experiments on a variety of data collected from various domains. They

are of different sizes ranging between 30 thousands to 1.4 millions. The corpora are

Reuters, Gov2, Wikipedia, and Newsgroups, which are summarized in Table 4. These

are standard test data used by many researchers in information retrieval. The file sizes

of the corpora roughly follow the power law distribution. The vast majority of the

files have very small sizes. On the other hand, there are also very large files, albeit

the number of such files is small. Figure 10 shows the log-log plots of the occurrences

against the file sizes of the documents in the corpora.

– Wikipedia is the corpus provided by wikipedia.org which contains 1.4 millions of

English documents.

– Gov2 is a TREC test data collected from .gov domain during 2004, which contains

25 million documents. We used two subsets of the data for efficiency consideration.

– Newsgroups corpus includes posts in various newsgroups. We used two subsets of

the corpus, named NG 1 and NG 2, respectively.

– Reuters is a TREC data set that contains 806,790 news stories in English

(http://trec.nist.gov/data/reuters/reuters.html).



18

0 1 2 3 4 5 6
−15

−10

−5

0

log(fileSize) (KB) 

lo
g(

oc
cu

rr
en

ce
s)

 (
%

)

Wiki
Gov2_1
NG
Reuters

Fig. 10 File size distributions of the four corpora.

Table 4 Summary of test corpora. ’Number of words’ is the number of unique words that
appear in both the documents and the Webster dictionary.

Corpus
name

docs Size in
MB

Avg
size(KB)

mean
#words

SD of
#words

Wiki 1,475,022 1950 1.35 284 285
Gov2 1 1,077,019 5420 5.15 396 409
Gov2 2 1,075,270 5241 4.99 389 407
NG 1 1,372,911 1023 0.76 294 223
NG 2 30,000 22 0.73 290 180
Reuters 806,791 666 0.85 125 82

5.2 Evaluation metrics

The method is evaluated in terms of relative bias, i.e., how far away the estimation is

from the actual value, and relative standard deviation, i.e., how close those estimations

are with each other.

Let n denote the actual size of the collection, n̂ the estimation. Suppose that there

are m number of estimations. The expectation of n̂, denoted as E(n̂), represents the

mean of m estimations, i.e., E(n̂) = (n̂1 + n̂2 + ... + n̂m)/m. Relative bias (RB)

E(n̂)− n)/n is to measure how close the estimations are to the actual size of the data

source. Relative standard deviation (RSD) characterizes the variations of estimations,

i.e., how close the estimations are to the center of the estimations. It is defined as

RSD =
1

E(n̂)

√√√√ 1

m

m∑

i=1

(n̂i − E(n̂))2

5.3 Experimental setup

In the experiments, each query is a single word randomly selected from the Webster

dictionary, which consists of 60,000 entries. For each query we will count all the matched

documents. When a popular word, e.g., a stop word, is selected, it may match with

most of the documents and make the overlapping rate extremely low, especially when
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the number of queries are small. Hence, we remove the top two percent of the most

popular words from the query pool.

Our first experiment recorded in Table 5 studies 30 combinations of six data col-

lections and five sample sizes in terms of query numbers that include 50, 100, 200, 400,

and 800.

For each combination 100 trials are run, each with randomly selected queries from

the Webster dictionary. For each set of 100 estimates generated, bias and standard

deviation are computed. To have a clear comparison among corpora of different sizes,

we record the bias and standard deviation relative to the data collection size.

Table 5 shows that smaller sample sizes (when the number of queries is 50) cause

significant overestimation. This is in accordance with our simulation study as illus-

trated in Figures 5 and 6. When sample size is too small, some queries may not have

overlapping matches at all, hence resulting in overestimation. Also, the variance is large

in both simulation studies and real data experiments. However, when the number of

queries is equal or greater than 100, the estimation results are in general rather ac-

curate. In particular, when the sample size increases, the standard deviation becomes

smaller as expected.

In the file size distributions of the corpora experimented, some corpora have heavier

tails than others, as shown in Figure 10. For example, Gov2 has a flatter slope and

heavier tail than Reuters, indicating that Gov2 has more large files than Reuters. A

greater portion of large files will lead to higher degree of heterogeneity for capture

probability, because those large files will be sampled repeatedly while the small files,

albeit they are the majority of the corpus, are seldom sampled. Thus flatter slope will

cause lower values of |α̂|, which is confirmed by our experiment. In Table 5, Gov2

consistently has a smaller value of |α̂| than that of Reuters.

5.3.1 Impact of sample size

Our second experiment reported in Table 6 focuses on Reuters corpus with more sample

sizes. Again, each data item is obtained from 100 trials, each with a different set of

words randomly selected from the Webster. In addition to bias and standard deviation,

we also record the estimated values for γ and α. We can see that more queries will

produce better results, and converge to the actual n.

5.3.2 Impact of vocabulary

Previous experiments use the words selected from the Webster dictionary. Our next

experiment tests the impact of vocabulary. We build three other vocabularies that

consist of the words from very different domains:

– newsgroups: about 20k newsgroups postings;

– wsdl: about 2k web service description files;

– ohsumed: about 50k medical documents.

Table 7 shows that four different vocabularies have little influence on the estimation

result. In addition to the data reported here, we also experimented with other vocab-

ularies from different areas, and observed similar behaviors.
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Table 5 Bias and standard deviation of the estimation over 100 runs. In each run queries are
randomly selected from the Webster dictionary. Sample size is the fraction of n.

Number of queries
Corpus 50 100 200 400 800

RB -0.09 -0.15 -0.11 -0.02 0.11
Wiki RSD 0.28 0.14 0.12 0.08 0.05

Sample Size 0.07 0.11 0.18 0.31 0.47
mean α̂ -1.08 -1.05 -0.99 -0.91 -0.83

RB 0.09 -0.18 -0.22 -0.13 0.05
Gov2 1 RSD 0.99 0.48 0.28 0.21 0.18

Sample Size 0.07 0.12 0.19 0.31 0.49
mean α̂ -1.09 -1.06 -1.00 -0.90 -0.81

RB 0.19 -0.12 -0.17 -0.09 0.03
Gov2 2 RSD 1.33 0.50 0.29 0.24 0.17

Sample Size 0.09 0.13 0.21 0.33 0.49
mean α̂ -1.10 -1.06 -0.99 -0.89 -0.82

RB 0.30 0.08 0.13 0.21 0.28
NG 1 RSD 0.64 0.28 0.16 0.10 0.05

Sample Size 0.09 0.12 0.23 0.39 0.57
mean α̂ -1.09 -1.06 -1.01 -0.95 -0.90

RB 0.45 0.14 0.06 0.12 0.21
NG 2 RSD 0.78 0.30 0.13 0.10 0.06

Sample Size 0.06 0.11 0.18 0.30 0.49
mean α̂ -1.1 -1.09 -1.05 -1.00 -0.95

RB 0.74 0.03 0.00 -0.04 -0.06
Reuters RSD 3.08 0.27 0.18 0.12 0.06

Sample Size 0.03 0.04 0.07 0.13 0.23
mean α̂ -1.11 -1.11 -1.10 -1.09 -1.08

Table 6 Impact of sample size on Reuters Corpus. Data are obtained from 100 trials.

queries mean sample size mean n̂ RB SD mean γ̂ mean α̂
50 22,335 1,476,418 0.830 1,757,016 0.81 -1.11
100 37,884 902,351 0.118 301,139 0.81 -1.11
200 67,503 816,023 0.011 170,302 0.82 -1.10
400 119,537 755,362 -0.064 82,819 0.84 -1.09
800 237,623 754,529 -0.065 55,199 0.85 -1.08
1600 478,303 778,159 -0.035 40,524 0.89 -1.06
3200 930,729 796,311 -0.013 25,271 0.93 -1.04

Table 7 Impact of vocabulary on Reuters corpus. 200 query terms are randomly selected from
different domains. Data are obtained from 100 trials.

vocabulary E(n̂) RB SD
webster 803,578 -0.004 156,320

newsgroups 860,436 0.066 46,134
wsdl 931,883 0.155 94,160

ohsumed 870,843 0.079 18,286

5.4 Comparison with other methods

Compared with Broder et al.’s method [9], which is computationally much more ex-

pensive, most of our results are better than the best reported 0.22 relative bias. Broder

et al.’s method also suffers from large variance.
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Table 8 Comparison of OR and CHreg methods. Each data item in the table is obtained
from 100 runs.

Corpus CHreg OR
Wiki RB 0.91 -0.15

RSD 0.03 0.14
Gov2 1 RB -0.41 -0.18

RSD 0.01 0.48
Gov2 2 RB -0.41 -0.12

RSD 0.01 0.50
NG 1 RB 1.35 0.08

RSD 0.04 0.28
NG 2 RB 0.08 0.14

RSD 0.01 0.30
Reuters RB 0.56 0.03

RSD 0.03 0.27

For the logistic method described briefly in [40], they tested on data collections with

smaller sizes, which in general will result in a smaller bias than larger data collections.

Even with those small data sets, the mean absolute error ratio (relative bias) reported

in the paper is 0.15, which is higher than our method in most cases.

Sokouhi et al.’s CHreg method is the closest to ours in that their method is also

based on the multiple capture-recapture method. In addition, they also use document

ids only, hence saving the effort of document downloading and parsing. Table 8 shows

the comparison of the two methods. For OR method, 100 queries are issued and all

the matched documents are accounted for. More queries will produce more accurate

estimations. For CHreg method, the parameters are set as described in the paper [34],

i.e., 15000 queries are issued and only the top k documents, where k = 10, are selected.

We find that both the value of k and the ranking method affect the estimation result

greatly. We used the ranking method that produces the best estimation, i.e., the default

ranking by Lucence search engine. Larger k will result in larger positive bias.

From Table 8 it can be seen that our OR method has much smaller bias in most

of the cases. CHreg works well only when the data source is small, i.e., corpus NG 2

which contains 30,000 documents. The standard deviation of CHreg method is smaller

because in each run it uses a large portion of the words (5,000) out of a vocabulary of

size 60,000. In the contrary OR method uses only 100 queries.

We also tried Chao’s classical estimation method in ecology [12]. As noted in the

literature and confirmed by experiments on our data, the method works well only when

the sample size is large and CV square is small. For example, when CV is around one,

the sample size needs to be 4 × n. Obviously this is too costly for data source size

estimation.

6 CONCLUSIONS

This paper proposes a novel method to estimate the size of deep web data sources by

sending random queries and analyzing returned document ids.

Our first estimator in Equation 10 is meant for uniformly distributed samples. It

is analytically derived and empirically verified by simulation. The simulation study

shows that it has smaller bias and variation than the classical Schumacher et al.’s

estimator[35][14].
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Our second estimator in Equation 13 is derived for samples obtained by queries. It is

verified by extensive simulation studies with various degrees of heterogeneity of catching

probability and different sample sizes. In applications on various data collections, the

estimator also demonstrates a small bias and variance compared with other estimation

methods for data collection size.

In addition to the accuracy of the estimation, one salient feature of our method is

its efficiency. We only need to issue random queries, instead of carefully selected ones.

In most of the cases, only 100 queries are needed, although more queries will result in

higher accuracy.

One limitation of our method is the assumption that all the matched document

IDs can be retrieved. Very large data sources, such as general-purpose search engines,

usually impose a limit on the maximal number of matched results that can be returned

for practical consideration. When a query matches more documents than the limit k,

i.e., when the query overflows, the matched documents are ranked and only the top-k

are returned. This strategy will cause the rank bias. While our method solves the query

bias quite well, the rank bias is not tackled in this paper. Nonetheless, our method has

a wide area of applications such as 1) data sources that do not impose a return limit; 2)

data sources that are not very large, hence most queries will match less than k number

of documents; and 3) data sources that do not rank the returning results.

Our study shows that when there are not many overflowing queries, our method still

works well by ignoring the overflowing queries. When the density of overflowing queries

is high, filtering out those queries will induce another bias, because rare words usually

introduce higher overlapping rate. Hence our method is only applicable to ranked data

sources with low overflowing density. From this perspective, our method is suitable for

relatively small text databases, depending on the result limit. To estimate the size of

large search engines such as Google, throwing away overflowing queries is no longer an

option since most of the random queries will match more pages than the 1000 limit

Google sets.

On the other hand, with the proliferation of web services and programmable web

interfaces, which typically contain data sources of relatively small size, there is a grow-

ing demand for probing those data sources to learn their profiles, such as their size.

We also expect that the method can be applied in other areas where ranking bias does

not exist, such as the estimation of the number of values of an attribute in a database

relation [17].

It is not easy to obtain the detailed performance comparison with the methods

based on document analysis [9][3][4][6]. All those works target very large data sources

such as the size of the major search engines and the entire web, while we provide a

convenient estimator for relatively small data sources. Compared with this group of

work, the main advantage of our method is its efficiency-it does not need to download

and analyze the documents; does not need to carefully select the uncorrelated queries;

and does not need to send out many queries.

Future work on document id based estimators may focus on correcting the rank

bias so that our method can be applied to very large data sources. In addition, we

need to investigate biases caused by other sources, such as duplicate documents and

documents that do not contain English words.
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