
Challenges in Crawling the Deep Web

Jianguo Lu1, Yan Wang2

1 School of Computer Science, University of Windsor, Canada
jlu@uwindsor.ca

2 School of Information, Central University of Finance and Economics, China
dayanking@gmail.com

1 Introduction

The deep web is considered full of rich content that is much bigger than the
surface web [1]. Nowadays almost every web site comes with a search box, and
many of them such as twitter.com provide in addition a programmable web
API. First of all it would be nice if those deep web documents were search
engine visible. Not surprisingly general search engines such as Google [4] [9] and
Bing [10] try to index some of these un-crawled territory. In addition, numerous
applications want to tap into the rich deposit of data to build distributed search
engines [11], data integration applications, vertical portals [12] etc. While the
deep web data providers are happy to serve the data to ordinary users and
even application programs, they may not want to be overloaded with automated
crawlers whose target is to index or even worse to download the entire database
to set up their own operation. The downloading problem is exacerbated when
the data is served from the cloud by a web service that enables automated access
to the data. In addition, the downloading may not be done once for all. Quite
often a data source is downloaded or scanned many times to keep the freshness
of the data [12]. Although data providers can thwart robot visiting by judging
from its visiting pattern, the monitoring and detection of such downloading is
by no means an easy task [13].

Thus an intriguing question that is of interest to both deep web data providers
and crawlers is how difficult it is to harvest most of the data records inside a
deep web data source by sending appropriate queries. In fact, the selection of the
queries sits in the key role to answer the question. For a textual deep web data
source, a primitive method of query selection for a crawler could be randomly
selecting query from a dictionary. However this method is not efficient because
a large number of rare queries may not match any document or there could
be many overlapping returns which occupies too much network traffic. It is
proved that, without an elaborate query selection method, only random queries
(even no empty returns) will cause approximate 9 times repeated retrieval when
90% unique documents of the data source are covered. Thus, some well-crafted
query selection methods are designed by researchers [4,16,17,31,18,32,33,34] to
significantly reduce the redundant returns and save network transmission. On
the other side, facing the crawlers with state-of-the-art query selection methods,
the data providers further increase the difficulty of retrieving data by setting a



return limit, i.e., only part of matched document by a query can be returned.
It is shown that the return limit plus ranking support can extremely exacerbate
the efficiency of crawlers in later section of this chapter. To our knowledge, so
far, there is no satisfying query selection method to dealing with the problem.

In this chapter, our study is the query selection for textual data sources,
ignoring much of the engineering challenges such as extracting meaningful data
from HTML pages. We more focus on the analysis of the difficulty of crawling
textual deep web data sources from the viewpoint of query selection, i.e., whether
it is possible to reach the bottom of the deep web, if not, how deep we can reach
in a deep web data source. Meanwhile, the related work are introduced, i.e., how
existing research work addressed this difficulty.

The rest of the chapter is arranged as follows: in section 2, a graph model
is presented to describe the crawling process for textual deep web data sources;
in section 3, with the graph model, the query selection problem is introduced
and formally defined; in section 4, categorizing deep web data sources into four
models according to the difficulty of crawling; in section 5 and 6, the hardness
analysis of crawling and related work are demonstrated according to the cate-
gory; in section 7, more discussions and some conclusions are presented.

2 Textual deep web crawling

The crawling of the surface web has been well studied since the advent of the
Web, and has become a mature technique used in industry. The deep web crawl-
ing, given its similar goal and similar crawling process, seems to be a trivial
problem which can be solved by borrowing what we have learnt in the surface
web crawling. Why is the deep web crawling an issue in the first place?

The deep web can be modelled as a bipartite graph G = (D,Q,E), where
nodes are divided into two separate sets D and Q, i.e., the set of documents D
and the set of queries Q where |D| = m and |Q| = n. Every edge in E links a
query and a document. There is an edge between a query and a document if the
query occurs in the document.

The deep web crawling problem is to find the queries so that they can cover
all the documents. If we regard queries as URLs in surface web pages, the deep
web crawling process is very much the same as the surface web crawling: starting
from some seed URLs (terms), we obtain the web pages. From those web pages,
more URLs(terms) are collected and subsequently issued to the web server again.
This process repeats until all the pages are traversed. Figure 1 gives an example
of a deep web that is represented as a bigraph, where D = {d1, d2, . . . , d9}
and Q = {q1, q2, . . . , q7}. The brute-force crawling process can be illustrated
as follows. Suppose that the seed query is q1. After q1 is sent, document d2 is
retrieved and more queries q3 and q6 are found from the document. We can
put these newly found queries in a queue and send these queries in sequel. The
process is repeated until all the documents are found.

The algorithm works fine for the surface web but not the deep web due to
the following key difference: in the surface web crawling each URL will return
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Fig. 1: Deep web as a bipartite graph

only one page while in deep web crawling each term will return multiple pages.
A surface web page has an unique identifier, i.e., the URL, while a deep web
document has many terms to access it. Because of the multiplicity of the returns
it is inevitable that many of the returns are redundant, and there is no way
to exclude these duplicates locally before retrieving them from the server. Such
redundancy is costly because it occupies network communications.

Essentially the brute force method needs to send out all the queries that can
be found. Suppose the graph is connected and we can find all the queries, the
average cost per document retrieved is

〈d〉 =
v

m
.

When the queries are single terms, the cost is the average length of the
documents. More formally, we can define the volume of a graph as follows.

Definition 1 (Volume) Suppose there are m number of documents and n num-
ber of queries. Let di denote the degree of the document node i , for i ∈ {1, 2, . . . ,m},
and fj the degree (or document frequency) of the query node j for j ∈ {1, 2, . . . , n}.
The volume v of the documents D is

v =

m∑
i=1

di =

n∑
j=1

fj .

The mean degree of D is

〈d〉 = v/m.



If the brute force crawling policy is used, all the queries will be issued and
the total cost is the volume of the graph. The redundancy is huge in general due
to the fact that documents can have many queries, thus they can be retrieved
many times. If a query can consist of multiple terms, the number of queries in a
document is significantly large than the number of terms inside a document. The
brute force algorithm will induce roughly 〈d〉 overlapping rate, i.e., on average
each document is retrieved 〈d〉 number of times, where 〈d〉 is the average degree
of the documents. This redundancy is the source of the problems in deep web
crawling.

3 Query selection problem

Since sending all the queries is not an option, we need to select a subset of the
queries Qs ⊆ Q. When queries in Qs are sent and the matched documents are
retrieved, a subgraph, denoted by (DS , QS , ES), of (D,Q,E) is formed, where
DS ⊆ D is the set of the retrieved documents, ES ⊆ E is the set of edges that
connects the queries and documents. Let ns = |Qs|, ms = |Ds|, vs = |Es|. The
crawling cost is

〈dS〉 =
vS
mS

(1)

The query selection problem is to find a Qs such that 〈dS〉 is minimal while
satisfying the constraint ms = m, i.e., all the documents are covered by the
selected queries.

The performance of a crawler, for both the surface web and the deep web, is
normally measured as the coverage or weighted coverage over the cost to reach
that coverage [29] [16] [8]. In the deep web, the cost can be measured in terms of
a few factors, such as the number of queries sent (i.e., n ) [30], the accumulative
total number of documents retrieved (i.e., v), or some combination of both based
on some weighting scheme[16]. Most of the research on the deep web crawling
focusing on minimizing the number of queries to be sent, in the belief that the
network traffic of sending the queries constitutes the major cost of the web
crawling.

In reality it is the query sessions, not the number of queries, that determines
the crawling cost. Many data sources paginate the results and return only a small
number of matches, say p of them, for each query. If documents beyond the first
p results are required, the same query needs to be sent again. For instance, in
Bing web service, if a query q has 200 matches, they will be paginated into 20
sections, each query session with keyword q can only obtain one of the sections.
In order to obtain all the 200 matches, for the same query 20 query sessions
are required. So the number of query sessions grows linearly with the number of
documents retrieved.
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Fig. 2: A solution of the deep web crawling. The darker nodes and edges are in
the solution graph. The lighter ones are for illustration purpose and they are not
part of the graph.

Example 1 (subgraph) Figure 2 shows a solution Qs = {q2, q6, q7} and the
corresponding subgraph.

〈dS〉 =
vs
ms

=
1 + 5 + 5

9
=

11

9
.

The other solution Q′s = {q2, q3, q5, q7} has a lower average degree:

〈dS〉 =
vs
ms

==
1 + 3 + 1 + 5

9
=

10

9
.

Although Q′s has more queries, it is considered a better one because of its
low redundancy. Based on this observation it is more accurate to measure the
crawling cost in terms of v, the total number of documents retrieved, instead of
the queries sent. In order to discuss the cost independent of the data source size or
return limit (i.e., only part of matched documents can be returned), we measure
the cost by the ratio between the accumulative total number of documents (v)
that have been crawled and the distinct documents among them (m), i.e.,

〈dS〉 =
vS
mS

(2)

Intuitively, we want to measure that for each new document retrieved, on average
how many redundant URLs have to be downloaded over the internet.

4 Models of textual deep web data sources

”The science and practice of deep web crawling is in its infancy” [29]. Crawling
a deep web data source is a challenging task, even for textual content with one
input field. There is not a panacea that works for all kinds of data sources– dif-
ferent kind of data sources behaves differently and needs its own way of crawling.
According to the crawling difficulty, here we categorize deep web data sources



into four different models by means of the concepts of the probability of document
being captured and document ranking

First of all, the probability of a document being captured is defined as follows:

Definition 2 (Probability of document being captured) Given a bipartite graph
G = (D,Q,E) derived from a data source containing m documents, let pi (1 ≤
i ≤ m) denote the probability of the document node i being captured by random
edges from E, then we have

pi =
di
v
,

m∑
i=1

pi = 1.

Since each edge can be considered as the action of issuing the corresponding
query, the concept of the probability of document being captured is used to
measure how easy a document can be returned by queries in Q.

In many data sources, for a query, all matched document will be returned
according to a ranking, in which each document has a rank number. A matched
document with a smaller rank number will be returned earlier than the one with
a bigger rank number. The ranking is called document ranking and data sources
with document ranking are called ranked data sources.

With the two concepts, we can classify data sources into several models by
the crawling difficulty as follows:

Model M0 Every document has the same probability of being captured (e.g.,
∀i, j, pi = pj), and all the matched documents are returned;

Model Mh Heterogeneous data source where documents have varying captur-
ing probabilities (e.g., ∃pi 6= pj , i 6= j);

Model Mr Ranked data source that has a return limit;
Model Mhr Heterogeneous and ranked data sources.

Fig. 3: Models of data sources.

Our category is based on such an intuition i.e., the difficulty of crawling a data
source is not much if its document can be easily returned by random queries from



Q. The relationship between these models can be depicted by Figure 3, where
Mx → My indicates that My is harder to crawl than Mx. To be more precise,
in order to reach the same coverage by using random queries, My will require
higher cost than Mx. The figure shows that models Mh and Mr are harder to
crawl then M0, while Mh and Mr are two orthogonal dimensions that add the
complexity to the problem. Model Mhr inherits the complexity from both Mh

and Mr. Therefore it is the most challenging case in our classification.

Obviously, heterogeneous data or ranking matched documents plus return
limit can significantly increase the difficulty to retrieving documents from a
target data source. For heterogeneous data, from the definition of pi, we can
see that long documents (that contain more terms) has higher probability being
captured than the short documents. It means that long documents are easier to
be retrieved repeatedly and it will cause higher cost. For the ranks of matched
documents plus the return limit, they could make only documents with small
rank numbers returned, which could lead to a very low coverage and a very high
cost. In the later section, we will discuss how these factors have an effect on
crawling in details.

Although the assumptions of M0 can hardly occur in real applications, it
is the starting point for understanding other models as illustrated in Figure 3.
In addition, the result of M0 also serves as a lower bound for crawling cost
when random queries are used. Model Mh is rather common in data sources,
because there are unranked data sources, and more importantly, because many
data sources are not very large. When a data source is of moderate size, many
queries match less than k documents. Therefore the data source will return most
of the matches even though the matches are ranked.

5 Query selection on Model M0 and Mh

In the Web, most of deep web data sources belong to Mh models, which has
no ranking on matched documents and the return limit (in fact, maybe there
is a document ranking but the data source still belongs to Mh model if all
matched documents are returned). This is also the reason that many research
work [6,30,4,16,17,31,18,32,33,34] about query selection focuses on data sources
in Mh. In this section, we first discuss the difficulty of crawling Mh data sources
from analysing the case of M0, then some previous related work are introduced.

5.1 Hardness analysis

There is a diminishing return when crawling continues. Typically the relationship
between the harvest and the cost can be depicted in a shape like Figure 4, albeit
the exact diminishing speed is hardly studied in theory. On the side of empirical
study, different diminishing speeds are reported in various experiments [16]. We
find that the diminishing speed is in fact solely dependent on the stage of the
crawling. More precisely, we give the following theorem:
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Fig. 4: Coverage P as a function of overlapping, i.e., the average degree 〈d〉 with
respect to the query set. Two curves are drawn from Equations 7 and 8, depicting
the homogeneous documents M0 and heterogeneous documents Mh respectively.

Theorem 1 Let P denote the percentage of the data that has been harvested,
and 〈d〉 the average degree of the collected documents with respect to the random
queries. Then

〈d〉 ≈ −ln(1− P )

P
. (3)

when fj << m and the documents are homogeneous, i.e., they are of the same
probability of being matched. The equation becomes exact when m→ +∞.
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Fig. 5: Random graph when queries are selected randomly.

Equation 3 reveals that the percentage of the documents retrieved is solely
dependent on the average degree of the graph, or the overlapping rate. We use
Figure 5 to explain the relationship between 〈d〉 and P . The figure is created
when three queries are randomly selected. In this graph the darker edges and



nodes are the ones selected. They constitute the graph under construction while
the lighter edges and nodes are drawn so that we can view what is the original
graph. In this graph 8 documents are covered, among them d9 is covered twice.
Hence the mean degree d = 9/8. Since the original graph has 9 document nodes,
the percentage of the documents being covered is P = 8/9. Note that this small
example is for illustration purpose only–the data is too small to coincide with
Equation 3.

Derivation Let us first consider the most simple scenario when every document
has the same probability of being connected to an edge. At the outset, there are
m document nodes and zero edge. When query j is issued, or equivalently, fj
number of edges are added randomly to the graph, the probability of a document
i not being covered by any edge is (1 − 1/m)fj . Without loss of generality, let
us assume that the return of a query is small relative to the corpus size, i.e.,
fj � N . In this case the sampling with replacement can be approximated by
the sampling with replacement. After n number of queries are fired, v number
of random edges are added to the graph. The probability of document i is still
isolated is:

S =

(
1− 1

m

)v

≈ e−
v
m (4)

Note that Equation 4 becomes exact when m → +∞. S can be also inter-
preted as the fraction of the nodes that are isolated in the graph. Let u denote
the number of documents that are covered by some queries. u/m is the fraction
of the documents that are already captured, i.e., P = u/m = 1− S. Rearrange
Equation 4 we obtain:

ln(1− P ) = − v

m
= − v

u

u

m
= −〈d〉P

Hence

〈d〉 = − ln(1− P )

P

Theorem 1 is useful to estimate the cost of downloading. More often we need
to use the inverse of the equation to estimate the fraction of the data harvested
based on the cost. Unfortunately Equation 3 does not have a simple analytical
solution for P . Although Lambert-W function can be used to approximate the
solution when P is large, for smaller P there is a big discrepancy even when
the expansion contains hundreds of terms. Hence there is a need to find an
approximation for P .

In real applications queries have varying number of matches. Given a se-
quence of queries (q1, q2, ..., qk), whose document frequencies are (m1,m2, . . . ,mk).
For query qj , a document i that is not matched by the query is 1−mj/N . For now
we are assuming that every document has equal probability of being matched.
Let P(i) denote the probability of a document i that is captured after these k



number of queries, u the number of documents retrieved, P the fraction of the
documents retrieved. u = PN . Then

P =

N∑
i=1

Pi/N = Pi

=1−
k∏

j=1

(1− mj

N
)

≈1− e

∑k
j=1 mj

N

=1− e

∑k
j=1 mj

u
u
N

=1− eOR×P (5)

Although it is derived from a simplified document graph where only dis legomena
(terms that occur only twice) are used, the result remains the same for other
queries as long as the query cardinality is much smaller than N . In the derivation
above, 2 is the cardinality of the query and it can be replaced by any other
number, and result remains true. Hence we have the following

Apply Taylor expansion we have

〈d〉 = − ln(1− P )

P
= 1 + P/2 + P 2/3 + ... (6)

A more accurate approximation of Equation 3 is obtained empirically by
running regression on the data generated from Equation 3:

P ≈ 1− 〈d〉−2.1 (7)

Implications An observation we can make based on Equation 6 is that when P

is very small,

∞∑
i=2

P i/(i+1) is neglectable compared with P/2. Hence P increases

almost linearly with 〈d〉. With the increase of P , the cost increases at a faster
speed. If we are harvesting as much data as possible from many data sources,
instead of exhaustively siphoning all the data records from one single data source,
Equation 3 gives a guideline as for when it is the good time to jump to another
data source for a fixed crawling resource.

Since 〈d〉 can be calculated easily from the crawling history, Equation 7 is
particularly useful to estimate how much data have been downloaded and when
the crawling process shall stop. Another surprising observation we can make is
that large queries induce the same overlapping rate as small queries, since the
document frequencies fj of the queries do not occur in the equation. While it
is true that large queries will save the number of queries, it will not save the
duplicates retrieved.

From Figure 5 it can be seen that 〈d〉 is rather small to capture a high
percentage of the documents. As a rule of thumb, in order to harvest 50 % of



the documents, the overlapping rate is only about 1.3. If on average each page is
accessed three times, you can deduce that those accessed pages constitute 90%
of the total population. This result is rather disturbing for data providers– it
seems that people can download most of the data with ease.

Fortunately, the assumption for Theorem 1, i.e., all the documents can be
obtained randomly with uniform distribution, does not hold in general. In real
deep web data sources, web pages are of different sizes, causing them of different
probabilities of being captured by queries. One opinion regarding the size of
documents on the web is that it follows a power law with exponent around two,
with the minimal value around 1k. For such data, it is shown that [35]

P = 1− 〈d〉−1 (8)

The comparison between Equations 8 and 7 is illustrated in Figure 4. Roughly
speaking, to obtain 90% of the data the average degree is around 9 in the case of
heterogeneous data, and 3 for homogeneous data. What impacting downloading
much more is the return limit as we will explain in Section 6.

5.2 Existing methods

So far, most of research work about query selection in deep web crawling con-
centrate on data sources in Mh [6,30,4,16,17,31,18,33,34] since not only the data
sources in Mh model are ubiquitous in the Web but also the cost of random
queries can be significantly improved. In general, these research work can be di-
vided into two kinds. One is incremental method and the other is sampling-based
method.

Ntoulas et al. [16] proposed an incremental adaptive method for crawling
textual data sources. An incremental method selects queries from the down-
loaded documents and the number of documents increases as more queries are
sent. Their method first model the query selection problem as set-covering prob-
lem [36],which is NP hard problem. In such model, the data source is represented
by a binary document-term matrix, each column and each row stand for a term
and a document respectively. Each entry is ”1” iff the corresponding document
contains the corresponding term, otherwise, it is zero. Finally, the query selec-
tion problem is to select a set of columns that can cover all rows with minimal
cardinalities.

The method in [16] iteratively selects the query returning most new doc-

uments per unit cost and it is represented by the formula
Nnew(qj)
Cost(qj)

. For each

query, its cost consists of the costs for sending qj , retrieving the hyperlinks of
the matched documents, and downloading them.

Since there is no prior knowledge of all the actual document frequencies of
the queries in the original data source DB, this method requires the estimations
of the actual document frequencies based on the documents already downloaded.
With the estimated document frequencies of all queries in the downloaded docu-
ments, the number of matched new documents of each query will be calculated.



Madhavan et al. [4] developed another incremental method for textual data
sources. Because the system is an industry product, it needs to consider how
to select seed queries. Since they need to process difference languages, their
approach does not select queries from a dictionary. Instead, Their system detects
the feature of the HTML query form and selects the seed queries from it. After
that, the iterative probing and the query selection approach are similar to those,
that proposed in [16].

Their query selection policy is based on TF-IDF that is the popular measure
in the information retrieval, which measures the importance of a word. Madhavan
et al.’s method adds the top 25 words of every web page sorted by their TF-IDF
values into the query pool. From the query pool, they remove the following two
kinds of terms: 1) eliminate the high frequency terms, such as the terms that
have appeared in many web pages (e.g., > 80%), since these terms could be from
menus or advertisements; 2) delete the terms which occur only in one page, since
many of these terms are meaningless words that are not from the contents of the
web pages, such as nonsensical or idiosyncratic words that could not be indexed
by the search engine. The remaining words are issued to the target deep web
data source as queries and a new set of web pages are downloaded. Then this is
repeated again in the new iteration.

Currently, the authors of [18,34] presented another two incremental methods.
Different from the previous incremental methods, they first modelled the query
selection problem as reinforcement learning problem. In this model, a crawler and
a target data source are considered as an agent and the environment respectively.
Then its selection strategy will be dynamically adjusted by learning previous
querying results and takes account of at most two-step long reward.

For sampling-based methods, Barbosa et al. [30] first proposed one that
siphons the deep web by selecting queries with highest frequencies from the
sample document collection. Unlike the incremental method, a sampling-based
crawling method selects queries from a fixed or near fixed sample which is usually
derived from the first batch of downloaded documents.

This method selects the highest frequency queries from the term list, which
are expected to lead a high coverage. It is composed of two phases: phase 1
selects a set of terms from the HTML search form and randomly issues them to
the target deep web data source until at least a non-empty result page is returned.
By extracting high frequency terms from the result pages, their algorithm creates
a term list. Then it iteratively updates the frequencies of the term and adds new
high frequency terms into the list by randomly issuing the term in the list until
the number of submissions reaches the threshold. In phase 2, the method uses
a greedy strategy to construct a Boolean query to reach the highest coverage,
it iteratively selects the term with the highest frequency from the term list,
and adds it to a disjunctive query if it leads to an increase in coverage. For
example, if 10 terms (q1, . . . , q10) are selected, the final issued disjunctive query
is q1 ∨ . . . ∨ q10.

In [17,33,31], the authors also presented sampling-based query selection meth-
ods. In [17], the authors also modelled the query selection as set covering problem



as [16]. The difference from [16] is that all queries are directly generated from
a document sample of the target data source once for all. A greedy algorithm
is used to select queries, which only need to run on a small document sample
and a small set of terms that occur the documents of the sample. In [31], the
authors followed the query selection framework in [17], their main contribution
is to make use of the distributions of document sizes and term frequencies to
optimize the quality of queries from the sample and thus improve the mapping
results in the target data source.

6 Query selection on Model Mr and Mhr

In the late decade, more and more data sources rank the matched pages and re-
turn only top k documents for queries, which certainly belongs to Mhr since they
contains since they contain various lengths of documents. Thus, an effective and
efficient query selection method for crawling them is what the industry needs.
However, to our knowledge, there is no satisfying query selection method to deal-
ing with the data sources in Mhr due to the difficulty. As the previous section,
we give the hardness analysis first and then some related work are demonstrated.

6.1 Hardness analysis

Many data sources rank matched documents and return only top k documents
for queries. When the data source is large, most of the queries will match more
than k documents, yet the returns are still limited by k. This will make the
query selection almost an impossible task—large queries whose cardinality are
larger than k can only trawl the top layer of data, while small queries (queries
whose cardinalities are smaller than k) are hard to obtain. More importantly,
using small queries may cause the document-query graph disconnected.

Large queries A naive way to solve the query selection problem could be
using large queries such as popular words or disjunctions of multiple words.
In literature large queries are often preferred. For instance, [30] selects large
queries directly, [16] uses set covering method that will lead to the selection of
large queries due to their cost model, and [4] uses tf-idf to select queries, where
term frequency plays a major role in query selection.

This line of work is based on the assumption that all the matched documents
are returned to the user. In reality, most data providers rank the matched doc-
uments and only return the top k documents, where k typically ranges between
10 to 1000. For instance Google only returns at most 1000 documents, even if
the query matches with much more pages. We shall not confuse return limit
with paginated query sessions. In the case of Google search, a query can match
with one million documents, among them only top 1000 can be returned. This
1000 is the return limit. They can be returned but these 1000 documents are not
returned all at once within one query session. Instead, the first query session
will return 10 matches.
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Fig. 6: In ranked data sources, large queries can only retrieve a portion of the
data.

Note that with this limitation, only top k/fmin percent of the documents
can be harvested [38], where fmin is the cardinality of the smallest query. That
is to say, the larger the query, the smaller percentage of the documents you can
harvest. More formally, we have

Theorem 2 Given a statically ranked data source whose return limit is k. If
every query returns more than fmin number of documents, then the maximal
percentage of the documents can be retrieved is

k

fmin
(9)

The static ranking can be the page ranking, or rankings based on the time
stamp, file size, or alpha-numeric ordering. Although many data sources, espe-
cially advanced search engines, use a combination of static ranking (such as page
ranking) and relevance ranking, many simple deep web sites use static ranking
only. Therefore it is worthwhile to study the crawling problem for such ranking
policy.

This counter-intuitive phenomenon can be illustrated using Figure 6, which
shows the growth of the coverage over the number of documents retrieved for
the classical 20 news groups corpus (NG20 hereafter)3 that contains 19997 doc-
uments. The queries are all the 190 popular words from Webster dictionary with
document frequency ranging between 1000 and 5000. More popular words are
also tried and they result in even lower coverage. Two return limits, 200 and 500,
are experimented. In the case of k = 200, in total 38,000 document are retrieved,
among them only 1183 are distinct ones. In the case of k = 500, overall 95,000
documents are retrieved and among them 4265 are unique.

This experiment shows that even for such a small corpus, the harvest stag-
nates after a small portion of the documents are retrieved. Notice that in both

3 Available at http://qwone.com/ jason/20Newsgroups/



cases 〈d〉, the ratio between the total retrieval and the unique documents are
very large, indicating that most queries in later stage return only redundant
documents. For comparison purpose, we also plotted the coverage for queries
randomly selected from Webster, where k=200. Surprisingly, random queries per-
form much better than popular words due to the large amount of small queries
whose document frequencies are within the value of k.
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Fig. 7: Large queries can not reach the bottom of the deep web. In total 6000
documents are captured, including duplicates. Panel A: k=200, df = 1000 ∼
5000. Panel B: k=500, df = 1000 ∼ 5000. Panel C: k=200, df is unrestricted.

Table 1 and Figure 7 show that the range of documents retrieved are inversely
proportional to the size of the query (fj). For instance, in the case of k = 500,
for the first query understand, f1 = 1002, and it covers the documents in the
range of 1 and 3300. For the second query said which can match 2295 documents
(more than twice of the first query), the range of covered documents is between
1 and 1300 (less than half of the first query).

Small queries Since large queries are not effective in crawling ranked data
sources, small queries (queries whose cardinalities are smaller than k), seem to
be the obvious choice. One may think that by using small queries we can harvest
most of the data with ease. However, it is extremely challenging to learn the small
queries and their document frequencies. What is worse, the documents may not
be covered or connected even if we know aprior all the small queries. By Erdos-
Renyi random graph model, a random graph is almost surely connected if the
average degree d > ln(m) [39]. In the same vein we have

Theorem 3 When 〈d〉 = log(m), the probability of capturing all the documents
is close to 1 when m→ +∞.



Table 1: Queries, their document frequencies(fj), and new returns when k=200
and k=500

query matches(fj) new (k=200) new(k=500)
understand 1002 200 500
said 2295 123 353
until 1159 70 259
time 4221 46 135
free 1170 40 196
year 1681 38 157
government 1439 20 99
place 1359 18 91
right 2950 1 29
else 1679 16 84
once 1278 3 56
he 4040 1 9
available 1326 20 153
few 2006 4 19
bit 1289 53 129
system 2118 2 37
lot 1688 21 44
. . .

Fig. 8: Document graph constructed from all the dis legomena (terms whose
df=2) in corpus NG20. It shows there is a large component and many small
isolated data islands.



When small queries only are used, the average degree may not be larger than
log(m), hence the crawling task is doomed to fail. Figure 8 shows such a graph
constructed from NG20 corpus when all the dis legomena are used. There are
about half of the documents not covered by any query and not drawn in the
graph. For covered documents we can see that they are scattered in many small
and isolated data islands. It is challenging to learn these queries and the fre-
quencies of these queries.

With the increase of document frequency, the large component becomes big-
ger and the islands are absorbed by the large component gradually. Only when
very large queries are used can all the documents be retrieved. Since the graph
is not connected, we can not reach most of the documents even using the brute
force crawling method. If the seed query hits an island, the algorithm stops at
the island by retrieving only a few documents. If the seed query hits the large
component, we can download all the documents in the large component, leaving
all the islands alone.

One misconception is that it is easy to learn most of the (small) queries
from a sample set of documents, since there are large number of small queries
by Zipf’s law. Roughly speaking, supposing the vocabulary size is V , there are
about V/2 number of hapax legomena and V/6 number of dis legomena. Given
the sheer size of small queries, one may conclude incorrectly that these queries
are good enough to harvest all the documents. However, this is not the case in
both theory and practice. According to Heaps’ law, the number of terms grows
with the size of corpus, although with sub-linear speed. Hence it is impossible to
learn the entire vocabulary of a corpus by taking a sample of it. The empirical
experiments say that if the sample size is 1%, the fraction of the vocabulary can
be learnt is around 10%(=

√
0.01) according to Heaps’ law.

6.2 Related work

From the above analysis, we can recognize the difficulty of crawling textual data
sources in Mr or Mhr. This is why there are no solid research work to address
the problem. Thus, we just introduce some close related work here.

In [16], although the authors mentioned that the ranking and the return limit
could have a severe effect up on their method, they did not provide a practical
method to dealing with them. The authors only presented an ideal ratio-based
query selection algorithm to avoid their effect, which assumes a random ranking
for matched documents i.e., the matched documents returns randomly.

In [32], Valkanas et al. first propose a breadth crawling method for a certain
deep web data source, i.e., only retrieving the top-k results for all potential
queries instead of download all document inside it. They extended the selection
strategy in [16] into

Efficiency(t) =
(1− ω) ∗ Pnew(t) + ω ∗RankingGain(t)

Cost(t)

by inserting the ranking gain value of query, where ω is a weight and Pnew is
the fraction of estimated new documents that query t is expected to retrieve



(over over all downloaded documents without the return limit). For each se-
lection iteration, the term with maximum Gain(t) will be sent as the next
query. The purpose of this method is to build a small copy of the original data
source based on all top-k documents by approximating the ranking function
employed by it. Intuitively, for a query t, its efficiency of crawling can be ac-
curately calculated if its Pnew and ranking can be estimated well. The ranking
gain RankingGain(t) for each query is used to measure how similar an approx-
imated ranking would be to the actual one, and bigger ranking gain means less
accuracy (RankingGain(t) = 0 if the approximated ranking is complete same
as the actual).

In [40], although the authors discussed the ranking and the return limit, their
contribution is not to crawling deep web data sources in Mr or Mhr. Instead,
they tried to build a TFIDF-based ranking function that ranks matched doc-
uments by queries for data sources without ranking support. There are similar
literature [41,42].

7 Discussions and Conclusions

In deep web crawling a query returns multiple documents that result in dupli-
cates. Reducing this redundancy is a unique problem in deep web crawling, and
the source of the challenges in deep web crawling. The major cost is the net-
work traffic which could be measured by the number of queries for small data
sources. For large data sources such as online social networks where most of the
queries match a large number of documents, the matched documents are often
paginated and returned by multiple query sessions. Therefore the query cost is
the number of query sessions, which is proportional to the accumulated number
of documents retrieved, or the overlapping rate.

In Model M0 the crawling cost (the overlapping rate) is a function of the
percentage of the data retrieved, independent on the types of queries (e.g., large
or small queries) used. For homogeneous data sources (Model M0) where each
document has equal probability of being captured by queries, it is rather easy to
harvest most of the data. For heterogeneous data sources (Model Mh), the cost
to downloading the data is higher, but still affordable.

In ranked data sources (Model Mr or Mhr) only the top k documents are
returned, causing that the documents ranked low may never be returned if large
queries are used. Therefore to the contrary of common practice small queries, or
the queries whose document frequencies are commensurate to k, should be pre-
ferred according to our analytical analysis and empirical experiments. Although
large queries are effective in the beginning of the crawling process, they have zero
contribution to reach high coverage. For instance, if the document frequency of
a query is 2k, then it can only retrieve the top half of the data source. Therefore
it has zero contribution to the retrieval of the remaining half data. To retrieve
the other half, smaller queries have to be used.

Ranked data sources requires small queries that matches less than k number
of documents. Selecting queries of appropriate size is a daunting task because



of the well known over-estimation and large variance problem. For instance, if
the sample size is 1/k of the total database, every query that occurs once in
the sample (hapax legomenon) is estimated to have k matches. But in reality
its document frequencies can be anywhere between 1 and k. When the total
data base is very large, any feasible sample will be much smaller than 1/k of
the original size. In that case even the terms only occurring once in the sample
may have document frequencies much larger than k. That means even the hapax
legomena in the sample may return only duplicate documents.

When learning the queries from sample is not feasible, the other alternative is
to crawl the documents and collect the new terms in newly retrieved documents.
Regardless of the high cost of this approach, it will work only when the graph
is connected. Our empirical experiments show that when only small queries are
used, the graph is not connected and there are many small isolated islands albeit
one large component does exist. This result is supported by the random graph
theory.

There are a few implications from our results. For unranked data sources, or
small ranked data sources, it is rather easy to download most of the data. For
large ranked data sources with a small return limit, it is impossible to download
most of the data even with unlimited computing resources. Data providers can
design the data source carefully by setting the return limit based on the data
source size so that the downloading is infeasible.
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