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Abstract—The number of triangles (hereafter denoted by ∆) is an important metric to analyze massive graphs. It is also used to
compute clustering coefficient in networks. This paper proposes a new algorithm called PES (Priority Edge Sampling) to estimate the
number of triangles in the streaming model where we need to minimize the memory window. PES combines edge sampling and reservoir
sampling. Compared with the state-of-the-art streaming algorithms, PES outperforms consistently. The results are verified extensively
in 48 large real-world networks in different domains and structures. The performance ratio can be as large as 11. More importantly,
the ratio grows with data size almost exponentially. This is especially important in the era of big data–while we can tolerate existing
algorithms for smaller datasets, our method is indispensable when sampling very large data. In addition to empirical comparisons, we
also proved that the estimator is unbiased, and derived the variance.

Index Terms—Graph sampling; Triangles; Streaming algorithms; Variance.
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1 INTRODUCTION

THE number of triangles (hereafter denoted as ∆) is an
important metric to reveal the complex structure of real-

world networks. It has been used in many applications in-
cluding community structure detection and graph clustering
[1], link prediction [2], spam detection [3], DNA sequence
analysis [4], microarray data analysis [5], word-learning [6],
and many others. Exact algorithms to compute ∆ in a large
network are costly. It was proven that the best algorithm has
a complexity of Θ(M3/2) , where M is the number of edges
in the input graph [7]. Therefore, various sampling-based
algorithms are proposed, e.g., in [8]–[18].

Sampling-based algorithms are especially important in
the era of big and hidden data. There are numerous massive
networks that have billions of nodes. For example, Facebook
as an online social network has over two billion users. Many
networks are dynamic, both users and connections between
users can change over time. Furthermore, networks are often
hidden behind access interfaces, and data in its entirety are
not available. Therefore, it is essential to design sampling-
based methods.

There are two types of methods that estimate trian-
gles and the closely related metric clustering coefficient.
One is the direct-sampling that has random access to the
nodes/edges of the input graph [8] [9] [19] [20]. The other is
the streaming model that scans the nodes/edges of the input
graph in an arbitrary order over a stream. Note that one
salient feature of the streaming algorithms is that the arrival
sequence may not be uniformly random. In the streaming
model, a constant number of passes over the stream are
used to estimate ∆. The key constraint is a limited memory
window [10] [11] [15]–[17] [21] [22]. When there is no
limit to the number of passes, it is called a semi-streaming
model [23]. This paper addresses the estimation of ∆ in the
streaming model.

We propose a new streaming algorithm, called PES

(Priority Edge Sampling). It is based on edge sampling
[11] [14] [12] [8], and gives higher priority to edges that
can form triangles. We prove that our estimator is unbi-
ased, and derive the variance of the estimator so that the
confidence interval can be obtained when an estimation is
given. Empirically, we compare it with the state-of-the-art
GPS-In [10], TRIEST [12], and MASCOT [14] algorithms ,
and demonstrate that PES outperforms them consistently
on most of the 48 real networks that we have experimented
with. More importantly, the performance gain increases with
the size of networks. The performance ratio can be as high as
11 for GPS-In, the best of existing algorithms, meaning that
GPS-In needs 11 times more samples to achieve the same
accuracy.

Performances of sampling algorithms are often data de-
pendent, especially on the structure of the graphs. To verify
our result in addition to empirical comparisons, we conduct
analytical comparisons. GPS-In cannot give an analytical
variance of the estimation because its sampling probability
changes in every step. Hence, the comparison between
PES and GPS-In cannot be analytical. To understand the
advantage of PES, we compare it with NES (Naive Edge
Sampling) that was proposed in [8] [12] [14] and similar to
MASCOT and TRIEST. The analytical comparison between
PES and NES can shed some lights on understanding the
difference between PES and GPS-In.

To summarize, our main contributions are that we have:
1) Given an efficient algorithm PES. 2) Proved the unbiased-
ness of the estimator and derived variances for PES and
NES; 3) Compared PES and NES analytically.

2 BACKGROUND AND RELATED WORK

Given a simple graph G(V, E), where V stands for the set
of nodes, and E the set of edges. Let N = |V|, M = |E|;
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TABLE 1: Summary of the notations

Notation Meaning
G(V, E) Input graph (undirected and no self-edges)
g A subgraph of G
N,M Number of nodes and edges in G
p, q Sampling probability
Λ # wedges in G
∆ # triangles in G
σ A wedge pool
n Size of pool σ
m Sample size
∆σ # triangles based on pool σ.
Λc # candidate wedges identified based on g
∆g # triangles based on g.
Φ # pairs of shared triangles in G
∆̂NES Naive edge sampling estimator
∆̂PES Priority edge sampling estimator

∆ and Λ denote the number of triangles and wedges in G,
respectively. A wedge W is a path (u, v, w) of length two,
where u, v, w ∈ V , (u, v) ∈ E , and (v, w) ∈ E . The wedgeW
is closed if (u,w) ∈ E . Otherwise it is open. A closed wedge
W is also called a triangle. Note that each triangle has three
closed wedges. Table 1 summarizes the list of the notations
used in the rest of this paper.

Each sampling method takes some sample nodes or
edges, or a combination of them, into a subgraph. Then,
the number of triangles in the subgraph is used to estimate
the triangle count. Depending on the way to take samples,
the estimator and its variance change. Intuitively, we want
to observe a maximum number of triangles while keeping
the sample size small. The bottom line is that we need to
observe at least one triangle in order to give an estimate.

2.1 Node-based methods

The most naive method of triangle estimation is to sample
three random nodes as a potential triangle, then check the
existence of edges among the nodes over a stream. It is
called triple sampling [16]. This approach needs to sample
4N3/(6ε2∆) number of triples to achieve an estimation
in interval ∆ ± ε∆ with 95 % confidence. Intuitively, the
complexity of three nodes combination isO(N3). Obviously,
it is not a practical method because the sample size is too
large to observe even one triangle. The cost is even higher
than direct counting of the triangles.

A more practical method is to sample a random edge
and a random node [15], then check whether three nodes
(one random nodes plus two nodes in the edge) form a
triangle. This method improves the previous triple sampling
by assuming one edge always exists in the triple. Hence, it
only needs to check the existence of other two edges. Still, it
needs to take 4MN/(3ε2∆) triples to have an estimation in
the same confidence interval as in triple sampling.

Large real networks are mostly sparse, hence the prob-
ability of having a triangle is still low among two random
pairs of nodes. One improvement to the above method is,
instead of choosing a random node in the entire graph,
selecting a random node from its neighbourhood. It is called
neighborhood sampling [13] [17].

2.2 Edge-based methods

The most straightforward edge sampling is to take edges
uniformly at random, then count the triangles in the
subgraph [9]. In the streaming model, the corresponding
streaming version of the algorithm is to take each edge with
an equal probability p over a stream and create a subgraph
g. The number of triangles in g is used to estimate ∆.
Obviously, the sampling probability of a triangle in such
method is p3. The size of g needs to be 1.5M/(ε2∆)1/3 to
obtain an estimation with an additive error ±ε∆ with 95 %
confidence [8]. When p is small, which is the case for very
large graphs, this algorithm is not efficient.

Instead of using equal probability among three edges,
there are methods to assign high probabilities for the second
and/or the third edge. For instance, post-stream graph priority
sampling (GPS-Post) [10] takes this approach by sampling
the third edge with a higher probability if it is in a triangle.

Another technique is to take edges from the neighbor-
hood of already sampled edges with higher probability. A
pair of connected edges (called a wedge) in the sample
can be a potential triangle, and its closeness is checked in
the rest of the stream [12] [14] [21]. Obviously, the prob-
ability of forming a wedge is p2 because two edges are
required to be sampled. [11] improves the previous method
as follows. When an edge closes a wedge in a sample, it is
unconditionally added into the sample; if it is connected to
some sampled edges, it is chosen with higher probability
q; otherwise it is taken with probability p. The number of
triangles in the sample is used to estimate ∆. Obviously,
this method samples triangles with different probabilities,
i.e., pq, q2, p, q, and 1. One shortcoming of this approach is
that how one can determine q - sampling probability of a
neighbor edge. To overcome such an issue, in our method q
is dynamically adjusted using reservoir sampling [24].

More recently, another elegant approach has been pro-
posed by [10] called in-stream priority sampling (GPS-In). It
preserves edges in a sample with different priorities. The
number of sampled wedges closed by an edge is used
as a measure to determine the priority of the edge being
preserved in the sample. For each new edge e, it first
counts the number of wedges closed by e in the sample
and computes its priority. Then, the edge is added into the
sample. If the number of edges in the sample exceeds the
size limit, an edge with lower priority is removed from
the sample. In each step, the estimator for ∆ is updated
if edge e completes some wedges in the sample. It has been
shown that GPS-In outperforms the existing methods [10].
Therefore, we consider GPS-In as the state-of-the-art method
in this context.

When random access to the input graph is available
the ideal method is wedge sampling. It selects some wedges
uniformly at random and checks their closeness to estimate
∆. Unfortunately, taking a wedge uniformly at random in
a large graph is costly. Three passes over an edge stream
are required to implement wedge sampling in the streaming
model [15]–[17].

Another direction is indirect sampling. Such methods
have been applied when the entire graph is not accessible.
They use traversal-based sampling techniques to take a
sample from the input graph [25] [26]. Moreover, several
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works have been conducted to compute clustering coeffi-
cient closely related to ∆ [26]–[29].

3 NAIVE EDGE SAMPLING (NES)
As a starting point for understanding our PES algorithm to
be described in the next section, we first present a naive
algorithm based on edge sampling, called NES (Naive Edge
Sampling). It is similar to TRIEST [12] and MASCOT [14].
Note that MASCOT was proposed to estimate the number of
triangles for each node in a graph (local triangle counting).
NES can be consider as its modification for estimating ∆
(global triangle counting). The details of NES are shown in
Alg. 1. For each edge in a stream, NES adds the edge into
subgraph g with probability p (Line 4). Then, the same edge
is used to check how many wedges in current g are closed
by it. ∆g records the sum of such closed wedges(triangles)
(Lines 5-7).

The algorithm differs from the one in [8] in that we do
not count the triangles in g. Instead, it checks the closeness
of wedges in g during the streaming process. Clearly, the
probability of forming a wedge in g is p2. Note that three
edges of a closed wedge can appear in six different orders
in a stream. In two of them, the third edge appears after the
first two and the associated closed wedge can be observed.
Thus, the probability of identifying a closed wedge is p2/3.
Because each triangle has three closed wedges, the sampling
probability of each triangle is p2/3 × 3 = p2. Note that
each identified closed wedge by NES is considered as a one
triangle because only one of three closed wedges of each
triangle can be identified in a stream.

Suppose δi be an indicator for the ith triangle in the
original graph G. Indicator δi is one when the ith triangle
is identified over the stream; otherwise it is zero. Recall
that ∆g is the number of triangles identified by NES based
on g over a stream. The expectation of ∆g is E(∆g) =
E(
∑∆
i=1 δi) =

∑∆
i=1 E(δi) =

∑∆
i=1 p

2 = p2∆. Thus, the
unbiased estimator for ∆ using NES is ∆̂NES =

∆g

p2 .

Algorithm 1: Naive Edge Sampling (NES)
Input: p
Output: ∆̂, RSE(∆̂)

1 begin
2 ∆g = 0, g = {}.
3 while new edge e do
4 Add e into g with probability p.
5 foreach wedge w ∈ g closed by e do
6 ∆g+ = 1.
7 end
8 end
9 ∆̂NES = ∆g/p

2.
10 RSE(∆̂NES)≈ ∆

−1/2
g .

11 end

Next we need to understand the variance of ∆̂
NES

.
Although MASCOT gave a similar algorithm, they only
give upper-bound of its variance. We derived the variance
of ∆̂

NES
and present it in the form of Relative Standard

Error (RSE=
√
var/∆) in Theorem 1. We use RSE instead

of variance that is commonly used. This is because variance
depends on the ground truth of ∆, which changes from data

to data. This is especially inconvenient when evaluating
multiple data sets–a larger variance in one data may be
better than a smaller variance in another data.

The variance of NES is adapted but different from the
direct sampling algorithm in [8] to accommodate the stream-
ing model. The main difference is that in NES, to identify a
closed wedge over a stream, first its two edges need to be
added into g; then its third edge needs to be visited in the
rest of the stream.

Theorem 1. The RSE of ∆̂
NES

is approximated by

RSE(∆̂NES) ≈ ∆−1/2
g . (1)

Proof. See Appendix A.

Theorem 1 shows that the variance depends on the
number of triangles in the sampled graph g. To reduce RSE
with the same subgraph size g, we need to sample more
triangles while keeping the same sampling probability for
the first edge. This prompts us to increase the sampling
probability for the second edge of a triangle.

4 PRIORITY EDGE SAMPLING (PES)

4.1 The algorithm

PES improves NES by increasing the probability of captur-
ing triangles in the sample graph. To do so, we maintain a
pool of wedges as well as a subgraph g. Edges that can form
a wedge in g will have a higher priority being sampled.
Hence, we call it Priority Edge Sampling. It is impossible
and not necessary to keep all the wedges. Instead, we main-
tain a small fixed-size pool of wedges σ. For each triangle,
the first edge will be sampled with probability p, which
is the same as NES. The difference is in the second edge.
When the second edge is scanned, the associated wedges
are added into σ with probability q. Later we will show that
q is normally much larger than p, especially when the graph
is large. The closeness of wedges in the pool is checked in
the rest of the stream. Therefore, PES identifies a triangle
with probability pq, which is greater than p2 in NES.

The details of PES are summarized in Alg. 2. Input p
is the sampling probability of edges, n is the pool size.
In our experiments, we simply set n = |g| for the conve-
nience of performance comparison. Λc counts the wedges
formed based on g such that the first edge is in g and
second edge not necessarily. Some of these wedges may
be added to σ with a changing probability q. Hence we
call them candidate wedges and denoted by Λc. ∆σ counts
the triangles formed from σ and g. When a new edge e
is visited, it is added into subgraph g with probability p
(Line 4). Then, the closeness of wedges in pool σ is checked
(Lines 5-8). Once a closed wedge is identified, the number
of triangles ∆σ captured so far is increased by 1 (Line 7).
Next, each candidate wedge formed using the new edge e
and edge f in g like w(e, f) is considered to be added into
pool σ with probability q (Lines 9-21). Note that probability
q is dynamically computed over the stream using n and Λc
(Line 14). We explain the steps in the following illustrative
example.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Algorithm 2: Priority Edge Sampling (PES)
Input: p, n.
Output: ∆̂, RSE(∆̂)

1 begin
2 Λc = 0, ∆σ = 0, σ = {}, g = {}.
3 while new edge e do
4 Add edge e into g with probability p;
5 foreach wedge w in σ closed by e do
6 label w as closed.
7 ∆σ+ = 1.
8 end
9 foreach wedge w(e, f) where edge f ∈ g do

10 Λc+ = 1.
11 if |σ| <n then
12 σ = σ ∪ {w}.
13 else
14 q = n/Λc.
15 if Random[0,1)< q then
16 Select random wedge w′ from σ.
17 if w′ is closed then ∆σ− = 1.
18 σ = σ − {w′}.
19 σ = σ ∪ {w}.
20 end
21 end
22 end
23 ∆̂PES = ∆σ/pq.
24 RSE(∆̂PES)≈ ∆

−1/2
σ .

25 end

4.2 Example

We illustrate PES with a toy graph in Fig. 1 with detailed
steps. Each row in the table represents one step. Column
e shows the edge stream. Column g displays the sampled
edges in subgraph g. In this example, each edge in the
stream is added into g with probability p = 0.2. When edge
(1, 4) arrives, PES adds it to g with probability p. Suppose
that it is not added, and g remains empty. Next edge in the
stream is (6, 8). Suppose that it is added to g this time. It can
not form any wedges in the fourth column.

The third edge (6, 7) is not added into g, but we still
check its neighbours in g for closed wedges and candidate
wedges. The candidate wedges constructed in each step
are demonstrated in the fourth column. When edge (6, 7)
is encountered in step 3, a wedge (7, 6, 8) is formed since
edge (6, 8) is already in the subgraph g. In the pool for
each wedge, we keep a label to show its closeness. The open
wedge (7, 6, 8) is denoted as (7, 6, 8)−. Column Λc records
the number of such candidate wedges. It can be larger than
the pool size. When edge (6, 11) arrives, it forms a candidate
wedge (8, 6, 11), hence Λc is increased by one, but it is not
added into the pool σ.

Not every candidate wedge is added into the pool. The
pool has a fixed size, functioning as a reservoir. In this
example, its capacity n = 2. The candidate wedge is added
into the pool unconditionally only when it is not full yet.
Hence, wedge (7, 6, 8) and the wedge in the subsequent step
(1, 6, 8) are added into the pool.

When the pool is full, the candidate wedge will replace
a random wedge in the pool with probability q. In step
9, edge (6,10) forms a candidate wedge (8,6,10) with edge
(6,8). Now the forth wedge (8,6,10) can not be added into σ
directly because the pool has reached its limit 2. Instead, we

1

2
3

4

5

6

7
8

9

10
11

(A) An example graph.

e g w(e, f), f ∈ g σ Λc q ∆σ

1 (1,4) φ - φ 0 - 0

2 (6,8) (6,8) - φ 0 - 0

3 (6,7) (6,8) (7,6,8) (7, 6, 8)− 1 1 0

4 (1,6) (6,8) (1,6,8) (7, 6, 8)−,(1, 6, 8)− 2 1 0

5 (6,11) (6,8) (8,6,11) (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

6 (2,3) (6,8) - (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

7 (9,10) (6,8) - (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

8 (1,2) (6,8),(1,2) - (7, 6, 8)−,(1, 6, 8)− 3 0.66 0

9 (6,10) (6,8),(1,2) (8,6,10) (8, 6, 10)−,(1, 6, 8)− 4 0.5 0

10 (1,5) (6,8),(1,2) (2,1,5) (8, 6, 10)−,(1, 6, 8)− 5 0.4 0

11 (6,9) (6,8),(1,2) (9,6,8) (8, 6, 10)−,(9, 6, 8)− 6 0.33 0

12 (1,3) (6,8),(1,2) (2,1,3) (2, 1, 3)−,(9, 6, 8)− 7 0.28 0

13 (8,9) (6,8),(1,2) (6,8,9) (2, 1, 3)−,(9, 6, 8)+ 8 0.25 1

(B) Steps on the graph in Panel (A) with p = 0.2, n = 2.

Fig. 1: Steps of applying our PES on a toy graph.

replace one of the wedges in the pool with a probability
q = n/Λc = 2/4. Suppose that by chance, this wedge
replaces (7,6,8) in the pool. The candidate wedge in Step 10
does not replace any wedge in the pool by chance. For the
candidate wedge (9,6,8) in step 11, suppose that it replaces
an existing wedge (1,6,8) in the pool. Step 12 has another
wedge being replaced.

The last edge in the stream is (8,9). It closes the wedge
(9, 6, 8)− that is obtained in previous steps. Hence, the label
of this wedge is changed to +; and ∆σ is increased by 1.
At this point, Λg = 8. This means eight candidate wedges
are identified in total over the stream; the probability of
preserving a wedge in σ is q = 2/8. Thus, the unbiased
estimator for ∆ is

∆̂PES =
∆σ

pq
=

1

0.2× 0.25
= 20. (2)

4.3 The unbiased estimator
We prove that ∆̂PES is unbiased as follows. Let δi be the
indicator function for the ith triangle in the input graph.
It is one when the ith triangle is sampled; otherwise it is
zero. For each triangle, the probability of sampling the first
edge is p, the probability of sampling the second edge is q.
Note that the closeness of a wedge is checked every time
when a wedge emerges in the pool. Hence the probability
of sampling a triangle is pq. The expectation of δi is pq and
the expectation of ∆σ is

E(∆σ) = E(
∆∑
i=1

δi) =
∆∑
i=1

E(δi) =
∆∑
i=1

pq = pq∆. (3)

Thus, the unbiased estimator is as follows.
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Theorem 2. The unbiased estimator for PES algorithm is as

∆̂PES =
∆σ

pq
. (4)

An interesting part of the algorithm is that q decreases
over time, and the sampling probability of the second edge
in Eq. 4 is the q in the final step, not the bigger q values in
earlier steps. Intuitively, edges sampled in earlier steps have
a higher probability of being replaced during the process.
The earlier the edge being scanned, the bigger the q is at that
moment. But it also has a higher probability being replaced
in a later stage. Hence the overall probability is the same as
the final q. Detailed proof is similar to reservoir sampling
[24] using inductive inference, and is given as follows.

For the last candidate wedge at arrival time Λc, it is
easy to understand that the second edge has a sampling
probability q = n/Λc. Other wedges arrived before also has
a sampling probability q, following reservoir sampling [24]
as explained in the following inductive inference:

When Λc = n + 1, the sampling probability for wedges
arrived before time n is:

1×
(

1

n+ 1
+

n

n+ 1

n− 1

n

)
=

n

n+ 1
. (5)

This is because that there is a probability of 1/(n + 1)
that the new wedge won’t replace any old wedge; and
there is a probability of n/(n + 1) that an old wedge will
be replaced. For each replacement, the probability of one
particular wedge not being replaced is n− 1/n.

Suppose that the old wedges are kept with probability
n/(n + x) when Λc = n + x. When Λc = n + x + 1, the
sampling probability for wedges arrived before time n+x+1
is

n

n+ x
×
(

x+ 1

n+ x+ 1
+

n+ x

n+ x+ 1

n+ x− 1

n+ x

)
=

n

n+ 1
.

(6)

4.4 The variance
The variance of the estimator is complicated because of the
involvement of two different sampling techniques–uniform
sampling and reservoirs sampling. In PES, a wedge as
a possible triangle is formed uniformly at random with
probability p over an edge stream; and it is preserved
with probability q in pool σ. Applying the variance on the
estimator we get

var(∆̂PES) = var

(
∆σ

pq

)
= var

( ∆∑
i=1

δi
pq

)

=
1

(pq)2

∆∑
i=1

∆∑
j=1

cov(δi, δj)

=
1

(pq)2

( ∆∑
i=1

var(δi) +
∆∑
i6=j

cov(δi, δj)

)
. (7)

Recall that δi is the indicator for the ith triangle as defined
before. By the definition of variance, var(δi) is E(δi) −
E(δi)

2. Therefore, the cost of the first term in Eq. 7 is
∆(pq − (pq)2). For the covariance, let Φ be the number of
pairs of triangles with a common edge. To identify such a
case by PES, the common edge should be added into g with

probability p. Otherwise, identifying the two triangles in
such a shared case is not dependent. Furthermore, the other
two edges need to be preserved in pool σ with probability
(n2−n)/(p2Λ2−pΛ). Thus, the probability of sampling such
a dependent pair is pq′2 where q′2 is (n2 − n)/(p2Λ2 − pΛ).
Recall that n is the size of pool σ. Each dependent pair has
five edges and the common edge should be visited before
the other four and needs to be sampled with probability
p. Clearly, the five edges can arrive in 120 different orders
in a stream; and in one-fifth of them, the common edge is
the first one in the stream. Because the edges are assumed
in a random order in the stream, each of 120 orders has
an equal chance to be identified by PES. Note that each
dependent pair (δi, δj) appears twice in the covariance term.
Thus, the cost of Φ dependent cases is 2Φ

5 (pq′2 − (pq)2).
Because the reservoir sampling is used to preserve wedges
in pool σ we need to consider the cost of (∆2 − 2Φ − ∆)
independent pairs. Obviously, the probability of selecting
a pair of independent triangles is p2q′2. By the definition of
covariance, i.e. E(δiδj)−E(δi)E(δj), the cost of independent
cases is (∆2 − 2Φ −∆)(p2q′2 − (pq)2). Substitute the costs
in Eq. 7 and after some math simplification, the variance of
the estimator is given by the following theorem.

Lemma 1. Let ∆ be the true number of triangles and ∆̂PES be
its estimation by PES. The variance of ∆̂PES is

var(∆̂PES) =
∆(1− pq)

pq
+

2Φ(q′2 − pq2)

5pq2
+

Φ′(q′2 − q2)

q2
.

(8)
here Φ is the number of pairs of shared triangles and q = n/pΛ
and q′2 = (n2 − n)/(p2Λ2 − pΛ), and Φ′ = (∆2 − 2Φ−∆).

The variance of the estimator depends on several metrics
including ∆, Φ, p and q. In practice, we do not have the
knowledge of these metrics. For example, ∆ is exactly what
we are estimating. Hence, in order to know the performance
of the estimator, we need to estimate the variance. Thus,
we simplify the variance to have better insight into it. To
do so, we translate the variance into RSE and use big data
assumption to present the following theorem.

Theorem 3. The RSE of ∆̂PES is approximated by

RSE(∆̂PES) ≈ ∆−1/2
σ . (9)

Proof. Translate var(∆̂PES) into the RSE=
√
var/∆. When

the input graph is large, approximations n − 1 ≈ n and
pΛ− 1 ≈ pΛ are valid. Thus, after some math work we get

RSE(∆̂PES) ≈
[

1

∆pq

(
1− pq +

2Φ

5∆
(q − pq)

)]1/2

. (10)

When graph is large sampling probabilities p and q is very
small and terms −pq and + 2Φ

5∆ (q − pq) in Eq. 10 are ignor-

able. Thus, Eq. 10 is simplified as
(
∆pq

)−1/2
. Replacing ∆

with its estimation based on Eq. 4, we obtain the theorem.

4.5 The best pool size
Choosing a proper pool size is important to obtain better
performance by PES. Note that PES increases the probability
of identifying a triangle in the sample by storing candidate
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TABLE 2: Properties of the networks in our experiments, sorted by graph size N .

Dataset N(×106) 〈d〉 C Type Dataset N(×106) 〈d〉 C Type
1. Ego-facebook [31] 0.004 43.69 0.519 OSN1 25. Youtube [31] 1.1 5.27 0.006 OSN
2. CA-GrQc [31] 0.005 5.52 0.629 COL2 26. Dblp [32] 1.3 8.16 0.170 COA
3. Wiki-vote [31] 0.007 28.32 0.125 OSN 27. Wiki-Polish [32] 1.5 55.17 0.01 WEB
4. AstroPh [32] 0.01 21.10 0.31 CIT3 28. Trec-wt10g [32] 1.6 8.33 0.014 WEB
5. CA-CondMat [31] 0.02 8.08 0.264 COA4 29. Wiki-Portuguese [32] 1.6 48.19 0.022 WEB
6. HepPh [32] 0.02 224.14 0.279 COA 30. Wiki-Japanese [32] 1.6 69.82 0.021 WEB
7. Enron-email [32] 0.03 10.02 0.085 ECO5 31. Pokec [32] 1.6 27.31 0.046 OSN
8. Brightkite [31] 0.05 7.35 0.110 OSN 32. As-skitter [31] 1.6 13.08 0.005 INT8

9. Facebook [32] 0.06 25.64 0.147 OSN 33. Wiki-Italian [32] 1.8 72.90 0.024 WEB
10. Epinions [32] 0.07 10.69 0.065 OSN 34. Hudong [32] 1.9 14.54 0.003 WEB
11. Slashdot-Zoo [32] 0.07 11.82 0.023 OSN 35. Hollywood [33], [34] 1.9 24.51 0.152 OSN
12. Livemocha [32] 0.1 42.13 0.014 OSN 36. Flicker [32] 2.3 19.83 0.107 OSN
13. Douban [32] 0.1 4.22 0.01 OSN 37. Flixster [32] 2.5 6.27 0.013 OSN
14. Gowalla [31] 0.1 9.66 0.023 OSN 38. Wiki-Russian [32] 2.8 44.20 0.015 WEB
15. Libimseti [32] 0.2 155.97 0.007 OSN 39. Wiki-French [32] 3.0 55.21 0.015 WEB
16. Digg [32] 0.2 11.07 0.061 OSN 40. Orkut [32] 3.0 76.28 0.041 OSN
17. Dblp-Coau [31] 0.3 6.62 0.306 COA 41. Wiki-German [32] 3.2 40.77 0.0088 WEB
18. Web-NotreDame [31] 0.3 6.69 0.087 WEB 6 42. USpatent [32] 3.7 8.75 0.067 CIT
19. Amazon [31] 0.3 5.53 0.205 COP 7 43. LiveJournal [31] 3.9 17.35 0.125 OSN
20. Actor [32] 0.3 78.68 0.166 COL 44. DBpedia [32] 18 13.89 0.0016 WEB
21. Citeseer [32] 0.3 9.03 0.049 CIT 45. Web-Arabic [33], [34] 22 48.70 0.031 WEB
22. Dogster [32] 0.4 40.03 0.014 OSN 46. Gsh-2015 [33], [34] 29 9.18 0.007 WEB
23. Catster [32] 0.6 50.32 0.028 OSN 47. MicrosoftAc.G. [35] 46 22.61 0.015 CIT
24. Web-Google [32] 0.8 9.87 0.055 WEB 48. Friendster [32] 65 55.06 0.017 OSN
1 Online Social Network 2 Collaboration 3 Citation 4 Coauthorship 5 E-communication 6 Web Graph 7 Co-purchasing
8 Internet topology

wedges in pool σ. According to Theorem 3, the error bound of
an estimation using PES depends on the number of triangles
in pool σ, i.e. ∆σ . As an example, to obtain an estimation in
[∆ ± 0.4∆] with 95% confidence, PES needs to identify 25
triangles.

Based on PES sampling scheme, the number of triangles
in pool σ depends on the structural property of the input
graph measured by global clustering coefficient (C)– the
fraction of closed wedges in the graph. It means only C
fraction of wedges in the pool can form triangles. Thus, the
size of pool σ needs to be n ≈ ∆σ/C to observe ∆σ number
of triangles. For example, suppose C = 0.05 in an input
graph. The size of pool σ need to be at least 500 to observe
25 triangles using PES.

Note that C is unknown for the input graph and cannot
be used to decide about the best value for n in practice.
Recall that n is the size of pool σ. One way to resolve such an
issue is to use an adaptive-size reservoir as a pool. It means
that the size of pool σ can be adjusted during sampling
process to have a specific number of triangles in the pool
and at the same time to store uniform random samples. We
refer readers for more details about adaptive-size reservoir
sampling to [30].

5 EXPERIMENTS

We conduct experiments to 1) compare our algorithms with
the state-of-the-art algorithms GPS-In and GPS-Post [10],
TRIEST [12], and MASCOT [14]. Other algorithms are not
compared because it is already demonstrated that they
are inferior to GPS-In; and 2) Verify our analytical results
presented in Theorem 1 and 3. This is needed because there
are approximations in the derivation. The precise results
are long formulas that depend on the structure of the
graph, such as the number of triangles (∆) and the count
of dependent triangles (Φ). Theorems 1 and 3 give more

concise results by omitting some terms in the long formula
by assuming the graph is large and p is small. How good is
such approximation needs to be evaluated empirically.

The code along with all the data, including some in-
termediate data, are available at http://cs.uwindsor.ca/
∼etemadir/PES.

5.1 Data

Because the performance of sampling algorithms often
varies from data-to-data, especially depends on the struc-
ture of the graphs, we verify our results extensively with
many (48) real networks with different size from varieties
of domains. The size ranges from 4 thousand to 65 million
nodes. The domains include online social networks (OSN),
web graphs, citation and co-authorship networks, etc. In
some figures, we only plot half of the datasets (24) to save
space. Other datasets have similar behaviours.

It is computationally costly to obtain the ground truth
of large graphs. Luckily, we have access to two servers
each with 24 cores and 256 GB RAM to carry out such
intensive computing. Table 2 summarizes the networks and
their statistics. The graphs are sorted by their node size N .
In the table 〈d〉 is average degree, and C is global clustering
coefficient (C = 3∆/Λ).

5.2 Experimental setup

To evaluate our method, we compare with all the related
methods that we are aware of, i.e., GPS-In [10], GPS-Post
[10], TRIEST [12], and MASCOT [14]. To have a fair com-
parison, we implemented these algorithms using a same
framework. MASCOT was originally designed for local
triangle counting, hence we modified it for global triangle
counting, which is the same as NES.

http://cs.uwindsor.ca/~etemadir/PES
http://cs.uwindsor.ca/~etemadir/PES
http://cs.uwindsor.ca/~etemadir/PES
http://cs.uwindsor.ca/~etemadir/PES
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(A) Our PES vs. GPS-Post (B) Our PES vs. GPS-In (C) Our PES vs. NES

Fig. 2: Sample size ratios of our PES vs. GPS-Post (Panel A), GPS-In (Panel B), and NES (Panel C) when RSE=0.2.
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Fig. 3: Our PES uses less memory space compared to other methods to obtain an estimation with the same RSE=0.2 on
most of the graphs. Note that the sample size include both the size of the subgraph and the reservoir for our PES, and for
GPS-In method extra memory per sampled edge was considered and it is 2|g|.

We executed the estimators on the graphs and reported
the results along with our observations in the following
sections. The results were obtained over 1000 independent
runs for the graphs except for the four largest graphs that are
repeated 500 times. The edges of the graphs were scanned
in a random order. Note that the edge list can be in the same
or different order in each run. For the methods, the edge list
with the same order were used.

To compute observed RSE, we repeated the estimation
k times using the same sample size, each time obtain an
estimate ∆i. Let µ = 1

k

∑k
i=1 ∆i. The observed RSE is obtain

using

RSE =
1

∆

√
1

k

∑
(∆i − µ)2. (11)

In our experiments, k = 1000 for all graphs except for the
four largest ones with k = 500.

5.3 Comparison with GPS-In and GPS-Post

Fig. 2 summarizes the comparison of PES with the state-
of-the-art methods GPS-Post (Panel A) and GPS-In (Panel
B) [10]. We also compared NES and our PES algorithm in
Panel C. We set the sampling probability of the estimators
to obtain the same RSE. Here we report the ratios between
sample sizes when RSE=0.2. Similar phenomenon is ob-
served for other RSEs. In each panel, the Y-axis is the ratios,
and the X-axis is the graph size that is represented by the

node size N multiplied by global clustering coefficient. In
all the methods, m is the ’sample size’. Algorithms differ
in the definition of ’sample size’ because some algorithms
maintain a reservoir of wedges in addition to subgraph g
or use extra memory per sampled edge to store information
about sampled edges in subgraph g. NES has g only. Hence
the sample size m is the number of edges (denoted by
|g|), which is equal to pM . PES maintains a wedge pool
σ. Hence the sample size is |g| + |σ|. GPS -In and -Post
also store subgraph g and two additional values per each
edge in g. However,we consider their sample sizes as |g|.
The parameters were obtained based on Eq. 8 for PES and
Eq. 14 for NES to achieve an estimate with RSE=0.2, and
the parameters of GPS-Post and GPS-In were manually
obtained using experimental results. Then, the average of
the size of subgraph g and pool σ over k independent runs
were used to obtain sample sizes of the methods.

In the panels, each marker represents one of the 48
graphs described in Table 2. From the figure we make
several observations:

• Our PES outperforms GPS-In and GPS-Post consis-
tently in terms of sample size. All the ratios are
above one in Panel (A), meaning that PES needs
fewer samples than GPS-Post for all the datasets.
For instance, take Orkut (labeled 43) in Panel A has
ratio 73, meaning that GPS-Post needs 73 times more
sampled edges compared to our PES. Compare to
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Fig. 4: Our PES outperforms existing methods in terms of RSEs when the methods are using the same sample sizes. Note
that for our PES, the sample size includes both the size of subgraph g and reservoir size, i.e., |σ|. For GPS-In [10], we only
considered the size of subgraph g as a sample size, and ignored two additional values per each sampled edges in g. In
TRIEST [12] and NES (MASCOT [14]) the sample size is |g|.

GPS-In, our PES also needs less sample size in most
of the graphs. For example, LiveJournal (labeled 43)
in Panel A has the ratio 5.4, meaning that GPS-In
requires 5.4 times more sampled edges compared to
PES to obtain an estimation with the same RSE. The
improvement margin is higher for GPS-Post, which
is expected since GPS-In improves GPS-Post. Take
the same LiveJournal data for example, as shown in
Panel A, the ratio is 66, much higher than 5.4.

• The ratio is positively correlated with data size. In
other words, compared with PES, the sample size
of other algorithms grows polynomially with graph
size. This result has high implication for very large
graphs: although other algorithms can deal with
current data, their performance will deteriorate poly-
nomially with graph size. The Pearson correlation
coefficient between the ratios and the size of data
is 82 for GPS-In, 80 for GPS-Post, and 79 for NES.

• The performance of our PES depends on both the
graph size (N) and structure (shown by global clus-
tering coefficient). When graph is large other meth-
ods need to sample a large fraction of edges to
observe pairs of connected edges (wedges) as a po-
tential structures to identify triangles in the sample.
In contrast, PES uses wedge pool σ to increase the
chance of identifying triangles during the sampling
process. The size of σ depends on C. In other words,

only C fraction of wedges in σ are used to identify
triangles. Thus, when C is small, PES needs to store
more wedges in σ to identify more triangles.

Fig. 3 compares the actual sample sizes of the three meth-
ods side by side. The sample sizes are the ones to achieve
the same RSE=0.2. Take the Friendster data for example, the
samples for PES is 8,132, meaning that the subgraph size
is 4,066, and the reservoir size is 4,066 to achieve RSE=0.2.
On the other hand, the sample size of GPS-In is 177,308,
meaning that |g| = 88, 654. Similarly, the sample size of NES
is 133,355, meaning that |g| = 133, 355. As shown in the
figure, our PES outperforms the other methods in most of
the graphs. It is obvious that,the performance ratios grow by
increasing the size of graphs. For example, all the methods
need almost the same sample sizes for Ego-facebook graph
(the smallest graph in our dataset) to achieve the estimation
with the same RSE=0.2. Take the Friendster data as the
largest graph in the dataset, PES needs 10.9 times less
sample size compare to GPS-In.

Next, we investigate how the performance ratios be-
tween the methods change by increasing the accuracy of
estimators (decreasing the RSE). To do so, we set the pa-
rameters of PES to obtain the RSEs between 0.1 and 0.4.
Then, the other methods were run using the same sample
sized used in PES. Note that we considered both the size
of subgraph g and the pool σ as a sample size of PES.
We only report the observed RSEs of our PES vs. baseline
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Fig. 5: The observed RSEs of ∆̂PES support our estimated RSEs based on Eq. 9. Note that the mean of ∆σs over k
independent runs was used in Eq. 9 to compute estimated RSEs. In the experiments k = 1000 for the graphs except the
four largest ones with k = 500.

methods, i.e. GPS-In [10], TRIEST [12] and NES ( adaption
of MASCOT [14] for global triangle counting), in Fig. 4. In
the plots, when the RSE is greater than 1, the corresponding
method obtain zero for estimation most of the time. It can be
seen that by increasing the sample size, the gap between the
RSEs of the methods diminishes. Still, PES outperforms the
existing methods in terms of obtaining accurate estimation
using the same sample sizes for large graphs, as we can see
in the last row of the figure. The performance of GPS-In and
TRIEST are almost the same. In a few graphs, i.e. Epinions,
Gowalla and Digg, PES is outperformed by the methods
by increasing the sample size. The reason is that in those
graphs global clustering coefficient is very small compare
to their sizes. Therefore, most of the candidate wedges in
pool σ will not be closed. Thus, to identify a closed wedge
(triangle) in the pool, PES needs to store more wedges.

5.4 Validation of Theorems 1 & 3
We conduct experiments to verify our approximations used
in the derivations of Theorems 1 & 3. Thus, sampling
probability p of the PES and NES were initialized in a way
that the estimators achieve the RSEs between 0.1 and 0.4 to
get estimations in range [∆ ± 0.8∆, ∆ ± 0.2∆] with 95%
confidence. The observed and estimated RSEs are reported
in the plots of Fig. 5 and 6. We report the results for 24
representative graphs. Similar patterns are observed for the
remaining data sets.

As shown in the plots, in both theorems our approxi-
mations work very well. It can be seen that our estimated

RSEs (blue lines in the plots) fit perfectly the observed ones
(red lines with circle markers) not only for large graphs but
also for small-sized ones. Thus, in practice the theorems can
be used to control the accuracy of the estimators. Moreover,
they can be used to quantify the performance ratio between
the methods as in the following section.

5.5 An implication of Theorems 1 & 3
We use Theorems 1 & 3 to quantify the performance ratio
between NES and PES. Suppose p

N
and p

D
be sampling

probability of NES and PES respectively to achieve the same
RSE. Using the result of Theorems 1 and 3, we need to have
∆
−1/2
σ ≈ ∆

−1/2
g . Replace ∆σ = p

D
q∆ and ∆g = p2

N
∆.

Recall that q is the sampling probability of preserving can-
didate wedges in pool σ. Suppose the size of pool σ be the
same as the size of |g|, i.e. |σ| = |g|. Thus, q ≈ M/Λ. After
some math simplifications, we get

Corollary 1. Suppose pool size be |σ| = |g| = p
D
M in PES. The

ratio between sampling probabilities of PES and NES to achieve
the same RSE is given by

p
N

p
D

≈ M

p
N

Λ
. (12)

Corollary 1 says that the sample size ratio between PES
and NES depends on M , Λ, and sampling probability of
NES (p

N
). Recall that M and Λ are the number of edges and

the count of wedges in the input graph.
To verify the corollary, the parameters of the methods

were set to achieve the RSEs between 0.1 and 0.4. Note that
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Fig. 6: The observed RSEs of ∆̂NES fit very well our estimated RSEs based on Eq. 1. Note that the mean of ∆σs over k
independent runs was used in Eq. 1 to compute estimated RSEs. In the experiments k = 1000 for the graphs except the
four largest ones with k = 500.
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Fig. 7: Our PES outperforms NES. The observed and estimated ratios between p
N

and p
D

when the methods achieve the
same RSEs between 0.1 and 0.4. The estimated ratios are obtained using Eq. 12.
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we set up the size of pool as p
D
M in PES, i.e. |σ| = |g|. The

observed and estimated ratios based on Eq. 12 are reported
in Fig. 7. It can be seen that the observed ratios support
our theoretical results in Eq. 12, i.e., the estimated ratios
based on Eq. 12 fit the observed values very well in most
of the representative graphs. However, as expected there is
a small gap between the observed and estimated ratios in a
few cases.

6 CONCLUSION AND DISCUSSION

This paper proposes a streaming algorithm called PES. It
improves NES by increasing the chance of observing a tri-
angle over a stream from p2 in NES to pq, where q is greater
than p and it is automatically adjusted over the stream.
PES outperforms GPS-In consistently in all the datasets that
have been tested. The performance ratio can be as high
as 11. An important observation is that the performance
ratio grows exponentially with data size, indicating that we
could observe higher performance gain in larger datasets.
We have tested on networks with 65 million nodes. Due
to the prohibitive cost to calculate the ground truths (such
as triangle, wedges, and shared wedges and triangles) of
very large graph, we did not experiment with even larger
networks. We should note that real networks often have
billions of nodes, much larger than our experimented data.
We expect that our algorithm would be particularly useful
in such very large networks.

In retrospect, the key to improve the performance is to
identify triangles as many as possible during the sampling
process. In the streaming model, we need to scan each edge
anyway. Thus, NES fits naturally with the streaming model
because the closeness check almost comes free, especially
because the sample size is small compared with the orig-
inal graph. PES improves NES further by increasing the
sampling probability of the second edge of the triangle. It
improves GPS-In because GPS-In does not always add the
second edge as we did in PES.

Most algorithms are compared empirically only. This is
limited, and conclusions may not be true for other datasets.
We compare NES and PES analytically, and quantify the
performance gain. The analytical comparison also gives us a
deeper understanding as for when PES is better. PES hinges
on the value of q. Probability q becomes larger than p when
the graph becomes larger.
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