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Abstract. Crawling the deep web often requires the selection of an ap-
propriate set of queries so that they can cover most of the documents
in the data source with low cost. This can be modeled as a set covering

problem which has been extensively studied. The conventional set cov-
ering algorithms, however, do not work well when applied to deep web
crawling due to various special features of this application domain. Typ-
ically, most set covering algorithms assume the uniform distribution of
the elements being covered, while for deep web crawling, neither the sizes
of documents nor the document frequencies of the queries is distributed
uniformly. Instead, they follow the power law distribution. Hence, we
have developed a new set covering algorithm that targets at web crawl-
ing. Compared to our previous deep web crawling method that uses a
straightforward greedy set covering algorithm, it introduces weights into
the greedy strategy. Our experiment carried out on a variety of corpora
shows that this new method consistently outperforms its un-weighted
version.
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1 Introduction

Deep web [1] is the web that is dynamically generated from data source such as
databases or file system. Unlike surface web where data are available through
URLs, data from a deep web are guarded by a search interface. The amount of
data in deep web exceeds by far that of the surface web. This calls for deep web
crawlers to excavate the data so that they can be reused, indexed, and searched
upon in an integrated environment.

Crawling deep web [2–6] is the process of collecting hidden data by issuing
queries through various search interfaces including HTML forms, web services
and programmable web APIs. Crawling deep web data is important for several
reasons, such as indexing deep web data sources, or backing up data.

Crawling the deep web often requires the selection of an appropriate set of
queries so that they can cover most of the documents in the data source with
low cost. Focusing on querying textual data sources, we provide a solution to this



problem. Since it is not possible to select queries directly from the entire data
source, we can make our selection from a sample of the database. It is shown that
queries selected from a sample data source can perform on the total data source
as well as on the sample one [7]. This leads to the following 4-step framework
for crawling deep web [7]:

– Randomly selecting documents to build a sample database (SampleDB) from
the original corpus (called TotalDB).

– Creating a set of queries called query pool (QueryPool) based on the Sam-
pleDB.

– Selecting a proper set of queries based on the SampleDB and the QueryPool.
– Mapping the selected queries into TotalDB.

An essential task in this framework is to select a proper set of queries based
on the SampleDB and the QueryPool so that the cost of mapping the selected
queries into TotalDB can be minimized. This can be modeled as a set covering
problem which has been extensively studied. The conventional set covering al-
gorithms, however, do not work well when applied to deep web crawling due to
various special features of this application domain. Typically, most set covering
algorithms assume the uniform distribution of the elements being covered, while
for deep web crawling, neither the sizes of documents nor the document frequen-
cies of the queries is distributed uniformly. Instead, they follow the power law
distribution. In this regard, we have developed a new set covering algorithm that
targets at web crawling. Compared to our previous deep web crawling method
that uses a straightforward greedy set covering algorithm, it introduces weights
into the greedy strategy. Our experiment carried out on a variety of corpora
shows that this new method consistently outperforms its un-weighted version.

2 Problem formalization

We have shown in [7] the criteria to select SampleDB and QueryPool. Our task
here is to select from QueryPool an appropriate set of queries so that they can
cover all the documents in SampleDB. In terms of efficiency, we would like to
keep the overlap minimal, where the overlap refers to the number of documents
covered by more than one queries.

This can be modeled as a Set Covering Problem (SCP) [8] as below:

Definition 1. Let A = (aij) be a 0-1 m × n matrix, and c = (cj) be an n-
dimensional integer vector. Let M = {1, ..., m} and N = {1, ..., n}. The value
cj (j ∈ N , cj > 0) represents the cost of column j. We say that a column j
(j ∈ N) covers a row i (i ∈ M) if aij =1. SCP calls for a minimum-cost subset
S (S ⊆ N) of columns, such that each row is covered by at least one column.

Example 1 Table1 gives a matrix A, where each column represents a query in
QueryPool = {q1, q2, . . . , q5}, and each row represents a document of SampleDB
= {d1, . . . , d9}. cj =

∑
aij is the document frequency (df) of the term. One so-

lution of the problem is Q = {q3, q4, q5}, which can be obtained by the greedy
algorithm [7].



Table 1. Matrix A: the input matrix for set covering algorithms

doc number q1 q2 q3 q4 q5

d1 0 0 1 0 0
d2 0 0 1 1 0
d3 1 0 1 0 1
d4 0 0 1 0 1
d5 1 0 0 0 1
d6 1 1 0 1 0
d7 0 0 0 1 0
d8 1 1 0 0 1
d9 0 0 1 1 1

3 Weighted greedy algorithm

Constructing the set of queries in a step-by-step manner, simple greedy algorithm
of the set covering problem selects the most cost effective query in each step. Let
Q be a set of queries already selected. According to simple greedy algorithm,
we select the next query q to cover as many as possible new documents (i.e.
documents not covered by any query in Q) per unit cost. Here, the cost is the
document frequency df , and unit cost can be represented by 1/df . In other
words, we select q to maximize the value of new/df where new is the number of
documents covered by q but not by any query in Q.

As an improvement of simple greedy algorithm, we introduce the weight of
queries into the greedy strategy.

If a document can only be matched by one query, apparently that query
must be included into Q. In general, when selecting a query, we should pay more
attention to cover small documents since usually they can be matched by only
very few queries. We assign a weight to each document, where small documents
have larger weights. With this intuition, we introduce the weight of a document:

Definition 2. Let D = {d1, ..., dm} be the SampleDB and QP = {q1, ..., qn}
be the QueryPool. We consider each document as a set of terms and use the
notation qj ∈ di to indicate that a term qj(1 ≤ j ≤ n) occurs in the document
di(1 ≤ i ≤ m). The weight of a document with respect to QP and di, denoted by

dwQP
di

(or dw for short), is the inverse of the number of terms in QP that occurs
in the document di, i.e.

dwQP
di

=
1

|di ∩ QP |
. (1)

Definition 3. The weight of a query qj (1 ≤ j ≤ n) in QP with respect to D,
denoted by qwQP

qj
(or qw for short), is the sum of the document weights of all

documents containing term qj, i.e.,

qwQP
qj

=
∑

qj∈di,di∈D

dwQP
di

. (2)



As for greedy strategy, we prefer queries qj with larger number of qw. How-
ever, a larger number of qw should be obtained by fewer number of dw. In other
words, we prefer queries with smaller df/qw. Our weighted greedy algorithm is
based on choosing the next query with the smallest df/qw.

Example 2 Based on the matrix in Table 1, the weights of the documents are
shown in the top part of Table 2. The document frequencies, the weights of the
queries, and their quotients are listed at the bottom of the table. For example,
the weight of d1 is one, the weight of d2 is 1/2, and the weight of q2 is the sum
of the weights of the documents that is covered by q2, i.e., 0.66.

Table 2. Matrix B: the initial weight table of the example corresponding to Matrix A

doc number q1 q2 q3 q4 q5

d1 0 0 1 0 0
d2 0 0 0.5 0.5 0
d3 0.33 0 0.33 0 0.33
d4 0 0 0.5 0 0.5
d5 0.5 0 0 0 0.5
d6 0.33 0.33 0 0.33 0
d7 0 0 0 1 0
d8 0.33 0.33 0 0 0.33
d9 0 0 0.33 0.33 0.33

df 4 2 5 4 5
qw 1.49 0.66 2.66 2.16 1.99

df/qw 2.68 3.03 1.88 1.85 2.51

Table 3. Matrix B: The second-round weight table of the example

doc number q1 q2 q3 q5

d1 0 0 1 0
d3 0.33 0 0.33 0.33
d4 0 0 0.5 0.5
d5 0.5 0 0 0.5
d8 0.33 0.33 0 0.33

df 4 2 5 5
qw 1.16 0.33 1.83 1.66

df/qw 3.44 6.06 2.73 3.01

The more detailed weighted greedy algorithm is given in Algorithm 1.

Example 3 Here we give an example to show how the weighted greedy method
works. Table 1 is the matrix A of the example, Table 2 shows the initial values



Algorithm 1: Weighted Greedy Algorithm.

Input: SampleDB, QueryPool QP, m × n Matrix A, where m=|SampleDB|
and n=|QP|

Output: A set of queries Q
1. Q = φ;
2. Let B = (bij) be a m × n matrix and bij = aij × dwQP

di
;

3. Based on the matrix B, we calculate the query weight for each term and move
the qj that minimizes

dfj

qw
QP
qj

into Q ;

4. Check if the queries in Q can cover all documents in SampleDB. If yes, the
process ends;

5. Update matrix B by removing the selected query and the documents that are
covered by the query. Go to Step 3.

of weights and Table 4 shows the result from the weighted greedy method for the
example.

For the weighted greedy algorithm, at the beginning, we calculate the value
of df/qw for each query from Table 2 and find that q4 has the minimal df/qw
value (1.85) hence q4 is selected as the first query. Then the column of q4 and
the covered rows, i.e., d2, d6, d7 and d9 are removed from the matrix B and
the resulting matrix is shown in Table3. In the second round, q3 becomes the
second query because it has the minimal value for df/qw (2.73) and the matrix
B is updated again. Finally, there are only two rows d5 and d8 left in the matrix
B. q1 is selected for its minimal df/qw value (4.82). After the third round, the
selected queries can cover all documents and the weighted greedy algorithm
terminates. For convenience to compare the two algorithms, we also give one
solution for the example from the greedy algorithm as shown in Table 5. Greedy
algorithm can produce several solutions depending on which query is selected
in the first step of the algorithm. Initially all the queries has the same value
for df/new, hence an arbitrary query can be selected. In our example, we select
the query that is the same as the one of the weighted greedy algorithm. From
Table 2, we can see that only q3 and q4 can cover d1 and d7 respectively. So q3

and q4 are required and they should be selected as early as possible. The useful
information can be used by the weighted greedy method because such required
query usually has a smaller df/qw value and it could be selected earlier.

Table 4. The result of the example by using the weighted greedy method

column df qw df/qw cost unique rows

q4 4 2.16 1.85 4 4
q3 5 1.83 2.73 9 7
q1 4 0.83 4.82 13 9



Table 5. The result of the example by using the greedy method

column df new rows df/new cost unique rows

q4 4 4 1 4 4
q5 5 4 1.25 9 8
q3 5 1 5 14 9

4 Experiment

We have run our experiments on the same data as that of [7] from four corpora:
Reuters, Gov, Wikipedia and Newsgroup. These are standard test data used by
many researchers in information retrieval. All SampleDB used have sample size
3000 and relative size [7] 20. We have used our search engine implemented in
Lucene [9] to do all experiments in order to obtain the details of a data source
such as its size. The details of the corpora are summarized in Table 6.

Table 6. Summary of test corpora

Name Size in documents Size in MB Avg file size(KB)

Reuters 806,791 666 0.83
Wikipedia 1,369,701 1950 1.42

Gov 1,000,000 5420 5.42
Newsgroups 30,000 22 0.73

Table 7. The results based on 100 times running in SampleDB (G:greedy method;
WG: weighted greedy method; Diff: difference)

Reuters Wiki Gov Newsgroup

G WG Diff G WG Diff G WG Diff G WG Diff
MaxCost 14677 11421 0.22 11939 9468 0.20 18284 13853 0.24 13016 11067 0.14
MinCost 13613 11421 0.16 10514 9466 0.09 15945 13853 0.13 11955 11063 0.07
AveCost 14151 11421 0.19 11252 9467 0.15 16992 13853 0.18 12567 11065 0.11

SD 255.6 0 0.02 262.5 0.98 0.02 428.5 0 0.02 213 2 0.02

Since the algorithms are partly evaluated in terms of HR over OR, we give
the definitions for HR and OR here.

Definition 4. (Hit Rate, HR) Given a set of queries Q={q1, q2, ..., qk} and a
database DB. The hit rate of Q on DB, denoted by HR(Q,DB), is defined as the
ratio between the number of unique data items collected by sending the queries



in Q to DB and the size of the database DB, i.e., hit rate at the k-th step is:

HR(Q, DB) =

|
k⋃

p=1

S(qp, DB)|

|DB|
(3)

Definition 5. (Overlapping Rate, OR) Given a set of queries Q={q1,...,qk},
the overlapping rate of Q on DB, denoted by OR(Q,DB), is defined as the ratio
between the total number of collected data items and the number of unique data
items retrieved by sending queries in Q to DB. i.e.,overlapping rate at the k-th
step is:

OR(Q, DB) =

k∑

p=1

|S(qp, DB)|

|
k⋃

p=1

S(qp, DB)|

(4)

Table 7 shows that our weighted greedy method is much better than the
greedy method. As the result of the greedy method depends on which query is
slected in the first step of the algorithm, we have given some statistic results here,
such as the standard deviation, maximum and minimal values. Our weighted
greedy method also has such problem: initially there can be more than one
queries having the same value of df/qw. However, seldom occurs in practice.
From Table 7 we can see that (i) even the maximum cost of our weigted greedy
method is better than the minimal cost of the greedy method; (ii) on average
our method outperforms the normal greedy method by approximately 16%.

The difference between the results of the two methods can be explained as
follows. The term with lower weight may cause less overlap if it is selected as a
query because there will be fewer other terms contained by the same document
which can be selected as queries in future. Based on this observation, we can see
that df/qw of a term can somehow show an overlapping possibility of the term.
At the same time, the value of df/qw of a term can also represent a requirement
degree. For example, if the df of a term is 1 and the corresponding document also
only contains the term, the value of df/qw of the term is 1 (the minimal value
of df/qw). In this case, of course, the term is required and should be selected as
early as possible.

Figure 1 and Figure 2 show the relationship between the df and the number
of terms and the relationship between the document size and the number of
documents in the SampleDB. From these two figures, we can see that both follow
the power law distribution: most of the documents only contain few terms; most
of the terms are contained by very few documents; but a few high df terms are
in most of the documents. In such a situation, documents only containing one or
two high df terms can have a smaller value of df/qw and thus are more desired.
If such required high df terms can be selected earlier, the result should be better
in SampleDB. Figure 3 shows that the weighted greedy method can select many
high df terms earlier than the greedy method in SampleDB.
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Fig. 1. the distribution of document size in SampleDB
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Fig. 2. the distribution of df in SampleDB
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Fig. 3. the df changes in SampleDB

Figure 4 is derived from the experiments in SampleDB. In this figure, we can
see that the values of df/tw of the terms selected by the weighted greedy method
are much smaller than those selected by the greedy method especially when HR
ranges from 0% to 60% in SampleDB. The smaller number of df/tw implies that
the terms selected by the weighted greedy method introduce less overlapping.
Furthermore, as each SampleDB is a representative of its corresponding TotalDB,
a term having a small overlapping possibility and a high requirement degree in
SampleDB will have these properties preserved in TotalDB.

Now we discuss the performance of the two methods in TotalDB. Figure 5
shows that the weighted greedy method has a better performance than the greedy
method and the mapping coverages of the two methods are good enough. For
example, on Wikipedia corpus, when HR is 90%, the weighted greedy method
is 15.1% better than the greedy method. The size of Wikipedia corpus is 1.36
million of documents. Thus, we can save 0.15*0.9*1.3 million of documents which
is a significant saving.

5 Related work

There are many research works on deep web crawling. Basically, two research
challenges have been substantially addressed. One is learning and understanding
the interface and the returning result so that query submission [10, 11] and data
extraction [12] can be automated. The other is how to harvest hidden documents
as many as possible with a low cost [2, 5, 6, 13]. Here we discuss several closely
related works in the second area. The deep web is guarded by search interface,



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

HR

df
/tw

Reuters

 

 

weighted greedy method
greedy method

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

HR

df
/tw

Wiki

 

 

weighted greedy method
greedy method

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

HR

df
/tw

Gov

 

 

weighted greedy method
greedy method

0 0.2 0.4 0.6 0.8 1
0

50

100

150

HR
df

/tw

Newsgroup

 

 

weighted greedy method
greedy method

Fig. 4. Comparison on df/qw between the two methods
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hence difficult to access. A sampling-based method could be a good choice for
deep web crawling.

Generally speaking, the sampling-based methods have two directions. One
is to use Information Retrieval Technologies to crawl the deep web [14–16]. In
[15], the general idea is that firstly some carefully designed queries are issued to
the database and then some samples as returns from the database are obtained.
Secondly those samples are analyzed and further classified by some classifica-
tion algorithms to obtain some typical terms that can accurately describe the
database. Finally, those typical terms are used as queries to harvest the database.
The other one is to use some selection methods to create a sample that can be
representative of the database and the principle of human language to crawl
the deep web [2, 17, 5]. For example, the Zip’s law can be used to evaluate the
frequency of a term in the database based on a sample [5]. In [17], the authors
present a new technique to automatically create a description (a sample) for the
database. They argue that accurate description can be learned by sampling a
text database with simple keyword-based queries. Actually our framework for
crawling the deep web is based on Callan and Connells research work in [17].

For the first kind of methods, usually they are based on existing domain
knowledge. The authors suppose that the database is so heterogeneous and it is
hard to obtain a high HR with queries selected randomly from a dictionary hence
the emphasis is to have a high HR by issuing queries. For the second kind of
methods, the authors try to minimize the number of queries with a high HR. On
the contrary, we argue that the bottleneck to deep web crawling is the number
of documents crawled, not the queries issued. Therefore our algorithm tries to
minimize the documents retrieved, not the queries sent. Another difference from
the Ntoulas et al’s method [5] is that they estimate the returns and overlaps of
the i-th query based on the documents downloaded by the previous i−1 queries.
This approach requires the downloading of almost all the documents, hence it is
not efficient. Our approach only requires a small portion of the data source, and
learn the appropriate queries from the sample database.

6 Conclusions

In an earlier paper [7], we proposed a deep web crawling method based on sam-
pling. In that paper, we showed that it is effective to learn appropriate queries
from a sample data source, and empirically identified the appropriate sizes of the
sample and the query pool. This paper presents a better algorithm, the weighted
greedy algorithm, to select the queries from a sample data source. The weighted
greedy method has a much better result than the greedy method in SampleDB
from the four corpus so that the result from the weighted greedy method can beat
the result from the greedy method in TotalDB. In the SampleDB, the weighted
greedy method can select the term as a query which has lower overlapping pos-
sibility and higher requirement degree as earlier as possible and such properties
can be successfully described by the query weight.
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