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Introduction

Hierarchical clustering

Goal: create a hierarchy like the one we saw earlier in Reuters:

We want to create this hierarchy automatically.

We can do this either top-down or bottom-up.

The best known bottom-up method is hierarchical agglomerative clustering.

regions
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Introduction

Hierarchical agglomerative clustering (HAC)

@ HAC creates a hierarchy in the form of a binary tree.

@ Assumes a similarity measure for determining the similarity of
two clusters.

@ Up to now, our similarity measures were for documents.

@ We will look at four different cluster similarity measures.
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Introduction

HAC: Basic algorithm

Start with each document in a separate cluster
Then repeatedly merge the two clusters that are most similar
Until there is only one cluster.

The history of merging is a hierarchy in the form of a binary
tree.

The standard way of depicting this history is a dendrogram.
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Introduction

Divisive clustering

Divisive clustering is top-down.

Alternative to HAC (which is bottom up).
Divisive clustering:

e Start with all docs in one big cluster
e Then recursively split clusters
o Eventually each node forms a cluster on its own.

— Bisecting K-means at the end
For now: HAC (= bottom-up)
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Introduction

Naive HAC algorithm

SIMPLEHAC(dy, ..., dn)
1 forn<1to N

2 dofori<1to N
3 do C[n][i] + SiM(dh, d;)
4 I[n] <~ 1 (keeps track of active clusters)
5 A<« [] (collects clustering as a sequence of merges)
6 fork<1toN—-1
7 do (i, m) < arg max; my.izmaifil=1nl{ml=1} Cli][m]
8 A.APPEND((i, m)) (store merge)
9 for j« 1to N
10 do (use i as representative for < i,m >)
11 Cl] < Sm(< iym >,j)
12 CUIA « Smu(< i, m >, j)
13 I[m] <~ 0 (deactivate cluster)

14 return A
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Introduction

Computational complexity of the naive algorithm

o First, we compute the similarity of all N x N pairs of

documents.
@ Then, in each of N iterations:
o We scan the O(N x N) similarities to find the maximum
similarity.
o We merge the two clusters with maximum similarity.
o We compute the similarity of the new cluster with all other
(surviving) clusters.
@ There are O(N) iterations, each performing a O(N x N)
“scan” operation.
e Overall complexity is O(N3).
@ We'll look at more efficient algorithms later.
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Introduction

Key question: How to define cluster similarity

@ Single-link: Maximum similarity
o Maximum similarity of any two documents
e Complete-link: Minimum similarity
e Minimum similarity of any two documents
o Centroid: Average “inter-similarity”
o Average similarity of all document pairs (but excluding pairs of
docs in the same cluster)
e This is equivalent to the similarity of the centroids.
@ Group-average: Average “intrasimilarity”

e Average similarity of all document pairs, including pairs of
docs in the same cluster
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Introduction

Cluster similarity: Example
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Introduction

Single-link: Maximum similarity
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Introduction

Single-link: Maximum similarity
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Introduction

Complete-link: Minimum similarity
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Introduction

Complete-link: Minimum similarity
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Introduction

Centroid: Average intersimilarity

intersimilarity = similarity of two documents in different clusters
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Introduction

Centroid: Average intersimilarity

intersimilarity = similarity of two documents in different clusters
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Introduction

Group average: Average intrasimilarity

intrasimilarity = similarity of any pair, including cases where the
two documents are in the same cluster
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Introduction

Group average: Average intrasimilarity

intrasimilarity = similarity of any pair, including cases where the
two documents are in the same cluster
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Introduction

Cluster similarity: Larger Example
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Introduction

Single-link: Maximum similarity
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Introduction

Single-link: Maximum similarity

Hierarchical clustering 19 / 62



Introduction

Complete-link: Minimum similarity
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Introduction

Complete-link: Minimum similarity
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Introduction

Centroid: Average intersimilarity
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Introduction

Centroid: Average intersimilarity
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Introduction

Group average: Average intrasimilarity
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Introduction

Group average: Average intrasimilarity
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Single-link/Complete-link

Single link HAC

@ The similarity of two clusters is the maximum intersimilarity —
the maximum similarity of a document from the first cluster
and a document from the second cluster.

@ Once we have merged two clusters, how do we update the
similarity matrix?

@ This is simple for single link:

SIM(wj, (Wi, Uwgk,)) = max(siM(wj, wk, ), SIM(w;, wk,))
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Single-link/Complete-link

Complete link HAC

@ The similarity of two clusters is the minimum intersimilarity —
the minimum similarity of a document from the first cluster
and a document from the second cluster.

@ Once we have merged two clusters, how do we update the
similarity matrix?

@ Again, this is simple:
SIM(w,-, (wkl U wkz)) = min(SIM(w;, wkl), SIM(w,-, wkz))

@ We measure the similarity of two clusters by computing the
diameter of the cluster that we would get if we merged them.
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Single-link/Complete-link

Complete-link dendrogram

@ Notice that this

dendrogram is much

more balanced than
the single-link one.
@ We can create a

2-cluster clustering
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Introduction

Single-link/Complete-link

Centroid/GAAC

Labeling clusters

Variants

Exercise: Compute single and complete link clusterings

Hierarchical clustering
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Single-link/Complete-link

Single-link clustering

di do d3 ds

3 i X X X X
27 & ds b ds
1 4 X X X X
0 —
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Single-link/Complete-link

Single-link clustering
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Single-link clustering
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Single-link clustering
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Single-link/Complete-link

Complete link clustering

(@)
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Single-link/Complete-link

Complete link clustering
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Single-link/Complete-link

Complete link clustering
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Single-link/Complete-link

Complete link clustering

3+ S
27 a5 \ds |\ & ds
1+ >
0 —
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Single-link/Complete-link

Complete link clustering
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Single-link/Complete-link

Single-link vs. Complete link clustering

di d d3 ds d d» d3 dy
31 34 Vi
2 + | 2 +
ds ldg d7 dg ds \ds d; dg
1} 1 f -
0 ———+—+ 0 ———+—
0 1 2 3 4 0 1 2 3 4

Hierarchical clustering 31 /62



Single-link/Complete-link

Single-link: Chaining

o= N
b3
X
b3
X
X
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Single-link/Complete-link

Single-link: Chaining
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Single-link/Complete-link

Single-link: Chaining

2
1 +<x x x x x x x x x x X
0

| | | | | | | | | | | |
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0123456 78 9101112

Single-link clustering often produces long, straggly clusters. For
most applications, these are undesirable. O
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What 2-cluster clustering will complete-link produce?

di d> d3 dy ds
1 ~|» X X X X X
0 +—F—F+—F+—+—+—"+

01234567
Coordinates: 1+ 2 4

X €,4,54+2x¢€6,7—c¢.
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Single-link/Complete-link

What 2-cluster clustering will complete-link produce?
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Single-link/Complete-link

Complete-link: Sensitivity to outliers

| | | | | | |

T T T T T T T
01 2345¢67
@ The complete-link clustering of this set splits d» from its right
neighbors — clearly undesirable.

@ The reason is the outlier dj.

@ This shows that a single outlier can negatively affect the
outcome of complete-link clustering.

@ Single-link clustering does better in this case.
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Centroid/GAAC

Centroid HAC

@ The similarity of two clusters is the average intersimilarity —
the average similarity of documents from the first cluster with
documents from the second cluster.

@ A naive implementation of this definition is inefficient
(O(N?)), but the definition is equivalent to computing the
similarity of the centroids:

SIM-CENT(wj, wj) = ji(wi) - fi(wj)

@ Hence the name: centroid HAC

@ Note: this is the dot product, not cosine similarity! O
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Centroid/GAAC

Exercise: Compute centroid clustering

o
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Centroid/GAAC

Centroid clustering

o
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Centroid/GAAC

Centroid clustering

o
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Centroid/GAAC

Centroid clustering

54+ X d; X d3

4+ O m

3+ X do X ds

2 i

1+ ds X-:0+X dg
M1

0 —ttt
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Centroid/GAAC

Centroid clustering

54+ X d; X ds

4+ O m

3+ X do X ds

24k
M3.©

11 ds X--G--X dg
M1

0 i i i i i i i
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Centroid/GAAC

Inversion in centroid clustering

@ In an inversion, the similarity increases during a merge
sequence. Results in an “inverted” dendrogram.

o Below: Similarity of the first merger (di U db) is -4.0,
similarity of second merger ((d1 U d2) U d3) is =~ —3.5.

d3
A -
-3
3T -2
2+ di d o
o 0
0 T 1 dy ds ds
012345
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Centroid/GAAC

Inversions

@ Hierarchical clustering algorithms that allow inversions are
inferior.

@ The rationale for hierarchical clustering is that at any given
point, we've found the most coherent clustering for a given K.

@ Intuitively: smaller clusterings should be more coherent than
larger clusterings.

@ An inversion contradicts this intuition: we have a large cluster
that is more coherent than one of its subclusters.

@ The fact that inversions can occur in centroid clustering is a
reason not to use it.
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Centroid/GAAC

Group-average agglomerative clustering (GAAC)

@ GAAC also has an “average-similarity” criterion, but does not
have inversions.

@ The similarity of two clusters is the average intrasimilarity —
the average similarity of all document pairs (including those
from the same cluster).

@ But we exclude self-similarities.
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Centroid/GAAC

Group-average agglomerative clustering (GAAC)

@ Again, a naive implementation is inefficient (O(N?)) and there
is an equivalent, more efficient, centroid-based definition:

SIM—GA((«J,‘, wj) =

L 7 \2
(Ni + Nj)(N; + Nj — 1)[( D dm)® = (Ni+ N

dew,-UwJ-

@ Again, this is the dot product, not cosine similarity.
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Centroid/GAAC

Which HAC clustering should | use?

@ Don't use centroid HAC because of inversions.

@ In most cases: GAAC is best since it isn't subject to chaining
and sensitivity to outliers.

@ However, we can only use GAAC for vector representations.

@ For other types of document representations (or if only
pairwise similarities for documents are available): use
complete-link.

@ There are also some applications for single-link (e.g., duplicate
detection in web search).
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Centroid/GAAC

Flat or hierarchical clustering?

e For high efficiency, use flat clustering (or perhaps bisecting
k-means)

@ For deterministic results: HAC
@ When a hierarchical structure is desired: hierarchical algorithm

@ HAC also can be applied if K cannot be predetermined (can
start without knowing K)
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Labeling clusters

Major issue in clustering — labeling

@ After a clustering algorithm finds a set of clusters: how can
they be useful to the end user?

@ We need a pithy label for each cluster.

@ For example, in search result clustering for “jaguar”, The
labels of the three clusters could be “animal”, “car”, and
“operating system”.

@ Topic of this section: How can we automatically find good
labels for clusters?
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Labeling clusters

Exercise

Come up with an algorithm for labeling clusters

Input: a set of documents, partitioned into K clusters (flat
clustering)

Output: A label for each cluster

Part of the exercise: What types of labels should we consider?
Words?
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Labeling clusters

Discriminative labeling

@ To label cluster w, compare w with all other clusters

@ Find terms or phrases that distinguish w from the other
clusters

@ We can use any of the feature selection criteria we introduced
in text classification to identify discriminating terms: mutual
information, x? and frequency.

o (but the latter is actually not discriminative)
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Labeling clusters

Non-discriminative labeling

@ Select terms or phrases based solely on information from the
cluster itself

o E.g., select terms with high weights in the centroid (if we are
using a vector space model)

@ Non-discriminative methods sometimes select frequent terms
that do not distinguish clusters.

@ For example, MONDAY, TUESDAY, ...in newspaper text
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Using titles for labeling clusters
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Labeling clusters

Using titles for labeling clusters

Terms and phrases are hard to scan and condense into a
holistic idea of what the cluster is about.

Alternative: titles

For example, the titles of two or three documents that are
closest to the centroid.

@ Titles are easier to scan than a list of phrases.
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Cluster labeling: Example

Labeling clusters

labeling method
# docs | centroid mutual information title
. . lant oil ducti
oil plant mexico pro- lp):rrlelsOl frrl?deucbloz MEXICO: Hurricane
4 | 622 duction crude power mexico dolly capaF():- Dolly heads for Mex-
009 refmery.gas bpd ity petroleum ico coast
e e LT
9 | 1017 . Lebed t bel
peace killed told | troops forces rebels cebed  meets rebe
chief in Chechnya
grozny court people
00 000 tonnes traéers delivery traders fu- USA: Export Business
10 | 1259 futures wheat prices | tures tonne tonnes ~ Grain/oilseeds com-
cents september | desk  wheat prices plex
tonne 000 00

@ Three methods: most prominent terms in centroid, differential labeling using

MI, title of doc closest to centroid

@ All three methods do a pretty good job.
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Variants

Bisecting K-means: A top-down algorithm

@ Start with all documents in one cluster
@ Split the cluster into 2 using K-means

@ Of the clusters produced so far, select one to split (e.g. select
the largest one)

@ Repeat until we have produced the desired number of clusters
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Variants

Bisecting K-means

BISECTINGKMEANS(dh, . .., dy)

1 (,U()<—{671,...,C7N}

2 leaves < {wo}

3 fork<1toK—-1

4 do wy < P1ckCLUSTERFROM(/eaves)
5 {wi,wj} <= KMEANS(wg, 2)

6 leaves < leaves \ {wi} U {wj,w;}

7 return leaves
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Variants

Bisecting K-means

o If we don't generate a complete hierarchy, then a top-down
algorithm like bisecting K-means is much more efficient than
HAC algorithms.

@ But bisecting K-means is not deterministic.

@ There are deterministic versions of bisecting K-means (see
resources at the end), but they are much less efficient.
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Variants

Efficient single link clustering

SINGLELINKCLUSTERING(d4, . . ., dy, K)
1 forn<—1to N
dofori<+ 1to N
do C[n][i].sim <= SIM(d,, d;)
C[n][i].index + i
I[n] < n
NBM[n] « arg maxxc(cn[i:nti} X -SiM
Al
forn+—1toN—-1
9 do i < arg maxy;, - NBM[i].sim
10 ip  I[NBM][i1].index]
11 A.APPEND( (i, i2))
12 fori+1to N
13 doif I[i]=iNi#£ L Ni#h

W ~NOoO O WN

14 then Cli][i].sim < C[i][A].sim + max(C[i][/].sim, C[i][i].sim)
15 if I[l]=1h

16 then /[i] + i

17 NBM[I]_] < arg maxXe{C[il][,-]:,[,-]:,-m-#,-l} X.sim

18 return A
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Variants

Time complexity of HAC

o The single-link algorithm we just saw is O(N?).

@ Much more efficient than the O(N3) algorithm we looked at
earlier!

o There are also O(N?2) algorithms for complete-link, centroid
and GAAC.

Hierarchical clustering
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Variants

Combination similarities of the four algorithms

clustering algorithm | sim(¢, k1, k2)

single-link max(sim(¢, k1), sim(4, k2))

complete-link m|n(5|m(6 k1) sim(¢, k2))

centroid (,\} m) - (Ne 73]

group-average (N,,,+Nz)(Nm+NZ 0 (Vi + V)2 = (Nm + Np)]
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Variants

Comparison of HAC algorithms

method \ combination similarity time compl.  optimal? comment
single-link max intersimilarity of any 2 docs  ©(N?) yes chaining effect
complete-link | min intersimilarity of any 2 docs  ©(N?log N) no sensitive to outliers
. best choice for
roup-average | average of all sims O(N?log N) no o
group g s ( g N) most applications
centroid average intersimilarity O(N?log N) no inversions can occur
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Variants

What to do with the hierarchy?

@ Use as is (e.g., for browsing as in Yahoo hierarchy)

o Cut at a predetermined threshold
o Cut to get a predetermined number of clusters K
e Ignores hierarchy below and above cutting line.
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Variants

Outline

Introduction to hierarchical clustering
Single-link and complete-link clustering
Centroid and group-average agglomerative clustering (GAAC)

Bisecting K-means

How to label clusters automatically
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Variants

Resources

o Chapter 17 of IIR

@ Resources at http://cislmu.org
o Columbia Newsblaster (a precursor of Google News):
McKeown et al. (2002)
o Bisecting K-means clustering: Steinbach et al. (2000)
o PDDP (similar to bisecting K-means; deterministic, but also
less efficient): Saravesi and Boley (2004)
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