Type checking J

Jianguo Lu

November 27, 2014

slides adapted from Sean Treichler and Alex Aiken’s

Outline

0 Language translation

e Type checking

e optimization

Semantic analysis

Ensure that the program has a well-defined meaning.
@ Verify properties of the program that aren’t caught during the earlier phases:
Variables are declared before they're used.
Expressions have the right types.
Arrays can only be instantiated with NewArray.
Classes don't inherit from nonexistent base classes

@ Once we finish semantic analysis, we know that the user’s input program is legal.

Types of Semantic Checks
@ Type checks: operator applied to incompatible operands?
@ Flow of control checks: break (outside while?)
@ Uniqueness checks: labels in case statements
° ...

Challenges in Semantic Analysis

Reject the largest number of incorrect programs.
Accept the largest number of correct programs.

-
Type checking

the activity of ensuring that the operands of an operator are of compatible types
Problem: Verify that a type of a construct matches that expected by its context.
@ Examples

@ mod requires integer operands (PASCAL)
o (dereferencing): applied to a pointer

e a[i]: indexing applied to an array

e function applied to correct arguments.

@ Compatible: either legal for the operator
@ type error: application of an operator to an operand of an inappropriate type

type checking and type inference
@ inference: infer the types not explicitly decalred
@ checking: prove the type if correct

type checking approaches

static typing
@ at compile time, analyze possible input for each operation
@ prove that these inputs are ok

dynamic typing
@ before the execution of the operation, check whether the input is acceptable
@ raise run-time exception if not (not a desirable feature)

|
Type system

a formal system to generate proofs
o WFF

Fe: T

Etre: T

type expressions
@ some axioms to give types of literals, ...
@ inference rules to determine types of complex expressions

soundness and completeness

Two desirable properties of a type system (and any formal system)
But not automatically guaranteed!
Soundness
all derived judgements are true statements.
@ type system models run time behaviour
@ whenever - e: T, e evaluates to a value of T.

Completeness
all true statements can be derived by the formal system

@ any property that holds for all possible executions can be described in the type
system

axioms and inference rules

example of axioms
@ "2is ainteger" 2 : int
@ "Sisainteger"t 3 :int

example of rules
@ if 2 and 3 are integers, 2+3 is an integer
°
=2 :int; }—(T’»:int (1)
F2+3:int

universal qunatification
@ forV x and y, x and y are integers, x+Y is an integer
o
Fx:int; Fy:int
Fx+y:int

()

v

rules and a proof

rules

x is an integer literal

Fx:int (T-int)
Fel:int
2 in
= (:1 i eZl :tint (T'add)J
a simple proof
2 is an integer literal 3 is an integer literal
F2:int A F3:int (3)

rules for boolean

some boolean type rules

F e: bool
-z T
le : bool (T-not)

Fel:int
Fe2:int
ope{<,>}
- == T-compare
F el op e2: bool (pare)

v

November 27, 2014 11/39

environment

type of a variable

X is an object identifier
Fx:?7

@ the local structure of the program does not give enough information
@ need to add global info to the environment
@ all rules can have environment, even if they do not use environment info

environment examples

ox)=T
OFx:T (T-var)
Otk el:int
OF e2:int

Orel+e2:int

v

-
subtyping

what is the type of x in an assignment statement?

X < € (4)

a rule for assignment stmt

ox)=T
Ore: T
OkFx<+e: T

what is there is a subtyping?

-
subtypes

axioms for classes

Fc<c (reflexitivity)

- .
+ C < parent(C) (inheritance)

FC1<C2
FC2<C3

Fci<cs (transitivity)

v

rule for subtype

subtype rule

O(x)=T1
OFe: T2
T2<T1

OFx<+e:T2

if statement/expression

a simple rule
O+ el : bool
OF e2:T
Ok e3: T

Ot (e1)?e2:e3 : T

what if e2 and e3 have different types?

if with least upper bound

OF el : bool
OF e2:T1
OF e3:T72

OF (el)7e2:e€3 : T1UT2

T1 U T2: the closest common ancestor in the class hierarchy

November 27, 2014 16/39

definition of least upper bound

least upper bound

Cc1<C3
Cc2<C3
VC4.C1 < C4NC2<C4— C3<LC4

T1uT2=C3

N
method call

OFe0:TO
OFel: T1

OtFen:Tn 0
Ot e0.f(el,...,en) 77

@ need to track the types of methods
@ function M maps a method to its type (input types and return type)

M(C,f)=(T1,T2,...,Tn, Tr) (5)
f:T1xT2---xTn—Tr (6)

method call

M(TO,f) = (T1',....Tn', Tr)
Vvie {1,;n}.Ti< T/

OFe0:TO
Okel:T1
OF én :Tn 0
Ot e0.f(el,...,en) : Tr
@ need to track the types of methods
@ function M maps a method to its type (input types and return type)
M(C,f)=(T1,T2,...,Tn,Tr) (7)
(8)

f:T1xT2---x Tn— Tr)

November 27, 2014 19/39

optimization

@ Want to rewrite code so that it’s:

faster, smaller, consumes less power, etc.

while retaining the "observable behavior"

usually: input/output behavior

often need analysis to determine that a given

optimization preserves behavior.

often need profile information to determine that a given optimization is actually an
improvement.

@ Often have two flavors of optimization:

high-level: e.g., at the AST-level (e.g., inlining)
low-level: e.g., right before instruction selection (e.g., register allocation)

20/39

peephole optimization

@ Take a sequence of existing source code or assembly instructions

@ Look at small windows (peepholes) of a few instructions at a time

@ Match against patterns that can be replaced by ’'better’ sequences of instructions
@ Repeat until 'no’ peepholes’ match patterns

optimization

algebraic optimizations

Constant folding (delta reductions)
@ 3+4 ==>7,x*1 ==> X
@ iftruethenselset==>s

Strength reduction

X*2 ==> X+X, X div 8 ==> X » 3

Inlining, constant propagation, copy propagation, dead-code elimination, etc (beta
reduction)

letvalx=3inx+xend==>3+3

Common sub-expression elimination (beta expansion)
(length x) + (length x) ==> let val i = length x in i+i end

22/39

more examples

Loop invariant removal:

for (i=0; i<n; i+=s%10)
==>

int t = s%10;
for (i=0;i<n;i+=t)

v
Loop interchange:
for (i=0; i<n; 1i++)
for (j=0; Jj<n; Jj++)
s += A[J1[1i];
for (3=0; j<n; Jj++)
for (i=0; i<n; i++)
s += A[J)[1i];
v

	Language translation
	Type checking
	optimization

