
Type checking

Jianguo Lu

November 27, 2014

slides adapted from Sean Treichler and Alex Aiken’s

Jianguo Lu November 27, 2014 1 / 39

Outline

1 Language translation

2 Type checking

3 optimization

Jianguo Lu November 27, 2014 2 / 39

Semantic analysis

Ensure that the program has a well-defined meaning.
Verify properties of the program that aren’t caught during the earlier phases:

Variables are declared before they’re used.
Expressions have the right types.
Arrays can only be instantiated with NewArray.
Classes don’t inherit from nonexistent base classes
. . .

Once we finish semantic analysis, we know that the user’s input program is legal.

Types of Semantic Checks

Type checks: operator applied to incompatible operands?

Flow of control checks: break (outside while?)

Uniqueness checks: labels in case statements

. . .

Jianguo Lu November 27, 2014 3 / 39

Challenges in Semantic Analysis

Reject the largest number of incorrect programs.
Accept the largest number of correct programs.

Jianguo Lu November 27, 2014 4 / 39

Type checking

the activity of ensuring that the operands of an operator are of compatible types
Problem: Verify that a type of a construct matches that expected by its context.

Examples
mod requires integer operands (PASCAL)
(dereferencing): applied to a pointer
a[i]: indexing applied to an array
function applied to correct arguments.

Compatible: either legal for the operator

type error: application of an operator to an operand of an inappropriate type

type checking and type inference

inference: infer the types not explicitly decalred

checking: prove the type if correct

Jianguo Lu November 27, 2014 5 / 39

type checking approaches

static typing

at compile time, analyze possible input for each operation

prove that these inputs are ok

dynamic typing

before the execution of the operation, check whether the input is acceptable

raise run-time exception if not (not a desirable feature)

Jianguo Lu November 27, 2014 6 / 39

Type system

a formal system to generate proofs

WFF

` e : T

E ` e : T

type expressions

some axioms to give types of literals, ...

inference rules to determine types of complex expressions

Jianguo Lu November 27, 2014 7 / 39

soundness and completeness

Two desirable properties of a type system (and any formal system)
But not automatically guaranteed!

Soundness

all derived judgements are true statements.

type system models run time behaviour

whenever ` e : T , e evaluates to a value of T.

Completeness

all true statements can be derived by the formal system

any property that holds for all possible executions can be described in the type
system

Jianguo Lu November 27, 2014 8 / 39

axioms and inference rules

example of axioms

"2 is a integer" ` 2 : int

"3 is a integer" ` 3 : int

example of rules

if 2 and 3 are integers, 2+3 is an integer

` 2 : int ; ` 3 : int
` 2 + 3 : int

(1)

universal qunatification

for ∀ x and y, x and y are integers, x+y is an integer

` x : int ; ` y : int
` x + y : int

(2)

Jianguo Lu November 27, 2014 9 / 39

rules and a proof

rules

x is an integer literal
` x : int

(T-int)

` e1 : int
` e2 : int

` e1 + e2 : int
(T-add)

a simple proof

2 is an integer literal
` 2 : int

3 is an integer literal
` 3 : int

` 2 + 3 : int
(3)

Jianguo Lu November 27, 2014 10 / 39

rules for boolean

some boolean type rules

` e : bool
`!e : bool

(T-not)

` e1 : int
` e2 : int

op ∈ {≤,≥}
` e1 op e2 : bool

(T-compare)

Jianguo Lu November 27, 2014 11 / 39

environment

type of a variable

x is an object identifier
` x :??

the local structure of the program does not give enough information

need to add global info to the environment

all rules can have environment, even if they do not use environment info

environment examples

O(x) = T
O ` x : T

(T-var)

O ` e1 : int
O ` e2 : int

O ` e1 + e2 : int

Jianguo Lu November 27, 2014 12 / 39

subtyping

what is the type of x in an assignment statement?

x ← e; (4)

a rule for assignment stmt

O(x) = T
O ` e : T

O ` x ← e : T

what is there is a subtyping?

Jianguo Lu November 27, 2014 13 / 39

subtypes

axioms for classes

` C ≤ C
(reflexitivity)

` C ≤ parent(C)
(inheritance)

` C1 ≤ C2
` C2 ≤ C3
` C1 ≤ C3

(transitivity)

Jianguo Lu November 27, 2014 14 / 39

rule for subtype

subtype rule

O(x) = T 1
O ` e : T 2
T2 ≤ T 1

O ` x ← e : T2
()

Jianguo Lu November 27, 2014 15 / 39

if statement/expression

a simple rule

O ` e1 : bool
O ` e2 : T
O ` e3 : T

O ` (e1)?e2 : e3 : T
()

what if e2 and e3 have different types?

if with least upper bound

O ` e1 : bool
O ` e2 : T 1
O ` e3 : T 2

O ` (e1)?e2 : e3 : T 1 t T2
()

T 1 t T 2: the closest common ancestor in the class hierarchy

Jianguo Lu November 27, 2014 16 / 39

definition of least upper bound

least upper bound

C1 ≤ C3
C2 ≤ C3

∀C4.C1 ≤ C4 ∧ C2 ≤ C4→ C3 ≤ C4
T 1 t T2 = C3

()

Jianguo Lu November 27, 2014 17 / 39

method call

O ` e0 : T0
O ` e1 : T1

. . .
O ` en : Tn

O ` e0.f (e1, . . . , en) :??
()

need to track the types of methods

function M maps a method to its type (input types and return type)

M(C, f) = (T 1,T 2, . . . ,Tn,Tr) (5)

f : T 1× T2 · · · × Tn→ Tr (6)

Jianguo Lu November 27, 2014 18 / 39

method call

M(T 0, f) = (T 1′, . . . ,Tn′,Tr)
∀i ∈ {1, ,̇n}.Ti ≤ Ti ′

O ` e0 : T0
O ` e1 : T1

. . .
O ` en : Tn

O ` e0.f (e1, . . . , en) : Tr
()

need to track the types of methods

function M maps a method to its type (input types and return type)

M(C, f) = (T 1,T 2, . . . ,Tn,Tr) (7)

f : T1× T2 · · · × Tn→ Tr) (8)

Jianguo Lu November 27, 2014 19 / 39

optimization

optimization

Want to rewrite code so that it’s:
faster, smaller, consumes less power, etc.
while retaining the "observable behavior"
usually: input/output behavior
often need analysis to determine that a given
optimization preserves behavior.
often need profile information to determine that a given optimization is actually an
improvement.

Often have two flavors of optimization:
high-level: e.g., at the AST-level (e.g., inlining)
low-level: e.g., right before instruction selection (e.g., register allocation)

Jianguo Lu November 27, 2014 20 / 39

optimization

peephole optimization

Take a sequence of existing source code or assembly instructions

Look at small windows (peepholes) of a few instructions at a time

Match against patterns that can be replaced by ’better’ sequences of instructions

Repeat until ’no’ peepholes’ match patterns

Jianguo Lu November 27, 2014 21 / 39

optimization

algebraic optimizations

Constant folding (delta reductions)

3+4 ==> 7, x*1 ==> x

if true then s else t ==> s

Strength reduction

x*2 ==> x+x, x div 8 ==> x » 3

Inlining, constant propagation, copy propagation, dead-code elimination, etc (beta
reduction)

let val x = 3 in x + x end ==> 3 + 3

Common sub-expression elimination (beta expansion)

(length x) + (length x) ==> let val i = length x in i+i end

Jianguo Lu November 27, 2014 22 / 39

optimization

more examples

Loop invariant removal:

for (i=0; i<n; i+=s*10)

==>

int t = s*10;
for (i=0;i<n;i+=t)

Loop interchange:

for (i=0; i<n; i++)
for (j=0; j<n; j++)
s += A[j][i];

for (j=0; j<n; j++)
for (i=0; i<n; i++)
s += A[j][i];

Jianguo Lu November 27, 2014 23 / 39

	Language translation
	Type checking
	optimization

