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Bias Correction in a Small Sample
from Big Data
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Abstract—This paper discusses the bias problem when estimating the population

size of big data such as online social networks (OSN) using uniform random

sampling and simple random walk. Unlike the traditional estimation problem where

the sample size is not very small relative to the data size, in big data, a small

sample relative to the data size is already very large and costly to obtain. We point

out that when small samples are used, there is a bias that is no longer negligible.

This paper shows analytically that the relative bias can be approximated by the

reciprocal of the number of collisions; thereby, a bias correction estimator is

introduced. The result is further supported by both simulation studies and the real

Twitter network that contains 41.7 million nodes.

Index Terms—Big data, online social networks, small sample, bias, size

estimation

Ç

1 INTRODUCTION

IN the era of big data, the size of data is often in the magnitude of
billions. Examples of such big data include online social networks
(OSN) such as Facebook, pages on the web, the deep web, and the
semantic web. Most of the time, the direct access to the entire data
is neither possible nor computationally feasible, forcing people to
probe the properties of the data by looking at a sample [16].
Because of the huge size of the data, quite often even a sufficient
sample is too costly to obtain considering the network traffic
involved and daily quota imposed. For practical consideration, we
are often limited to the smallest possible sample.

This paper studies the size estimation using simple random

walk when the sample size is limited due to the high cost of

sampling. We choose simple random walk sampling because it is

supported by most OSN interfaces [13], [11], [25], and it is more

efficient compared with uniform random samples achieved by

rejection samplings or Metropolis-Hasting sampling [21].
The basic idea of population size estimation is based on the

collisions during a random walk or repeated samplings. It is rooted

in a classical birthday-paradox problem, in a capture-recapture

method developed in ecology [1], and in the Erdos random graph

[9]. In terms of random walk sampling on a network, a node can be

visited multiple times during a random walk. When each node has

an equal probability of being visited, a collision occurs when the

sample size is in the order of Oð
ffiffiffiffiffiffiffi
2N
p

Þ (see (14)), where N is the

total population size. Even when a sample is large in its number,

the collisions can be rather small when the data are big. If the

number of collisions is barely above 1, we call the sample a small

one relative to the data.

For instance, given a network comprised of one million nodes,

we need to visit around 4500 nodes before, on average, 10 collisions

can occur. The number of the collisions lies mostly between 3 and

17 according to its 95 percent confidence interval. Considering

each node visit requires multiple remote calls to the server over the

network, the cost of obtaining this sample is rather high. Yet, the

collisions can be close to zero. Relative to the size of the total

population, this is a small sample.
When only a small sample is affordable, we need to utilize what

we have to give the best estimation. One thing often overlooked is

that there is a bias in the estimators used in the literature, and the

bias is rather large when the sample size is small. Continuing our

previous example, the small sample can induce a bias as large as

10 percent.
This paper is based on the following estimator bN that is given in

[20], and also can be derived from [3], [13]

bN ¼ ð�2 þ 1Þ n
2

� � 1

C
; ð1Þ

where n is the sample size, � is the coefficient of variation of the

degrees of the network, and C is the number of collisions. We show

that bN is biased upward and its relative bias, the bias normalized

by the population size, can be approximated by the reciprocal of

the expectation of C. Based on this, we derived the bias correction

estimator bN� as

bN� ¼ ð�2 þ 1Þ n
2

� � 1

C þ 1
: ð2Þ

This result is demonstrated by simulation studies and sup-

ported by real Twitter data.

2 RELATED WORK

Population size estimation has been widely studied in ecology [3]

and social studies [23], and more recently in computer science for

estimating the size of the web [15], databases [12], web data

sources [19], [18], [8], [7], [27], [2], and online social networks [20],

[13], [11], [25].
The starting point of population estimation is the well-known

Lincoln-Petersen estimator [1] that can be applied when there are

two sampling occasions and every node has equal probability of

being sampled:

N̂LP ¼
n1n2

d
; ð3Þ

where n1 is the number of nodes sampled in the first capture

occasion, n2 is the number of nodes sampled in the second occasion,

and d is the duplicate among those two samples. For the Lincoln-

Petersen estimator, the bias correction has been addressed by

Chapman [4], [24] by suggesting the following Chapman estimator:

N̂Chap ¼
ðn1 þ 1Þðn2 þ 1Þ

dþ 1
� 1: ð4Þ

The derivation is based on the hypergeometric distribution of the

repeated elements since the Lincoln-Peterson estimator assumes

the sampling without replacement, which is different from the

sampling with replacement assumed by the bN estimator.
The assumptions of the Lincoln-Petersen estimator can be

hardly met in reality. It is extended in two dimensions: one is

allowing multiple sampling occasions, and the other is supporting

heterogeneity in capture probability.
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When there are more than two sampling occasions and each

time only one sample is taken, Darroch [6] derived that the

approximate maximum likelihood estimator (MLE), bND, is the

solution of the following equation:

u ¼ N 1� e�n
N

� �
; ð5Þ

where n is the total sample size and u ¼ n� d is the number of

unique data items that have been sampled.

This equation has also been used to predict the isolated nodes

in a random graph when edges are randomly added [22]. Since it

does not have a simple closed form solution [22], [6], its bias

correction is not discussed in the literature. In OSN studies, Ye

and Wu [25] used the numeric method to find the solution to

this estimator. Lu and Li [19] gave an approximate solution to

(5) as follows:

P ¼ OR�2:1; ð6Þ

where P ¼ 1� u=N is the percentage of the data not being

sampled yet, OR ¼ n=u is the overlapping rate between the total

sample size and unique data items being sampled. Intuitively,
there is a power law governing the fraction of the unsampled data,

and it is solely dependent on the overlapping rate.
When the data are heterogeneous and the capture occasions are

more than 2, the estimation is notoriously difficult, mainly due to

the lack of knowledge of �. Therefore, (1) as an estimator for N was

not seen in ecology, let alone the correction of bias. Instead, the
same equation was used by Chao et al. [3] in reverse way to

estimate � as follows:

b�2 ¼ N0C
n

2

� ��1
� 1; ð7Þ

where N0 is a bootstrapped estimation for N by another estimator.
Note that bN can be approximated by (5) when � ¼ 0 and the

sample size is small. It follows by applying Taylor expansion on

the right-hand side of (5), and approximating duplicates d by
collisions C.

The bias correction in this paper reminds us of the legendary

Good-Turing smoothing [10] in word frequency estimation and
Enigma code breaking. In particular, among a string of adjusted

estimators there is an add-one smoothing [26] that looks related to

our method. But these two methods are different in that we are
adjusting the bias, while their methods try to save the probability

space to account for unseen word types.

3 PRELIMINARIES

Given a graph of N nodes labeled as ð1; 2; . . . ; NÞ. A sample of the

nodes ðx1; x2; . . . ; xnÞ, xi 2 f1; . . . ; Ng, is taken by a simple

random walk on the graph, where node xiþ1 is selected randomly
from the neighbors of the proceeding node xi. In addition to the

node ids, we assume that their corresponding degrees

ðdx1
; dx2

; . . . ; dxn Þ are also obtained. Our task is to estimate N

based on the sample.
Depending on the sampling scheme, the probability of a node

being included in a sample may not be equal. In simple random
walk sampling, a node with a larger degree will have higher

probability of being sampled. The sampling probability pi of node i

is asymptotically proportional to its degree di [17], i.e.,

pi ¼
di
�
; ð8Þ

where � ¼
PN

i¼1 di ¼ Nhdi.
The heterogeneity of the sampling probability or the node

degrees can be measured by the coefficient of variation (CV,

denoted as � hereafter), which is defined as the normalized

standard deviation of the degrees:

�2 ¼ varðdÞ
hdi2

¼ hd
2i
hdi2
� 1: ð9Þ

When selecting two nodes, the probability that the same node i

is visited twice is p2
i . Among all the nodes, the probability of

having a collision is p ¼
PN

i¼1 p
2
i . Since there are n

2

� �
pairs in a

sample of size n, the number of collisions follows the binomial

distribution Bðnðn� 1Þ=2; pÞ whose mean is

EðCÞ ¼ n

2

� �
p; ð10Þ

and its variance is

varðCÞ ¼ n

2

� �
pð1� pÞ ¼ EðCÞð1� pÞ: ð11Þ

The collision probability p can be translated into the hetero-

geneity of the data measured by � using (8) and (9):

p ¼
XN
i¼1

p2
i ¼

1

�2

XN
i¼1

d2
i ¼

hd2i
Nhdi2

¼ �
2 þ 1

N
: ð12Þ

Combining (12) and (10), we obtain the expected mean of collisions

as follows:

EðCÞ ¼ n

2

� � �2 þ 1

N
: ð13Þ

When every node in the network has the same probability of

being visited, � ¼ 0 and p ¼ pi ¼ 1=N , the above formulation is

reduced to the well-known birthday-paradox problem where

EðCÞ ¼ n

2

� � 1

N
� n2

2N
: ð14Þ

In other words, on average
ffiffiffiffiffiffiffi
2N
p

number of samples are needed to

produce a collision.
In the case of big data, the variance can be simplified further.

Given a network with a fixed �, p tends to zero when N tends to

infinity according to (12). It follows from (11) that

lim
N!1

varðCÞ ¼ EðCÞ: ð15Þ

4 THE ESTIMATORS

4.1 The Biased Estimator

From (13), the population size can be described by

N ¼ ð�2 þ 1Þ n
2

� � 1

EðCÞ : ð16Þ

Since EðCÞ is unknown, it can be estimated by the observed

collisions C. This gives us the estimator

bN ¼ ð�2 þ 1Þ n
2

� � 1

C
; ð17Þ

where C is calculated as follows: Let fi denote the number of

individuals that are visited exactly i times, C ¼
Pþ1

i¼1
i
2

� �
fi. Note

that C can be larger than the number of duplicate visits

d ¼
Pþ1

i¼1 ði� 1Þfi, especially when the sample size is large.
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Estimator bN is biased. The expected value of the estimator is

Eð bNÞ ¼ E ð�2 þ 1Þ n
2

� � 1

C

� �
¼ ð�2 þ 1Þ n

2

� �
E

1

C

	 

:

ð18Þ

Comparing (16) and (18), the only difference is between

1=EðCÞ and Eð1=CÞ. It is well known [5] that the expectation of

the reciprocal of a random variable is greater than the reciprocal

of its expectation, if the random variable is nondegenerate and

positive, i.e.,

E
1

C

	 

>

1

EðCÞ : ð19Þ

In other words, bN has a positive bias. What we need to know is

exactly how large is the bias, or what is the relative bias (RB) of bN
that is defined as follows:

RB ¼ Eð
bNÞ �N
N

¼
Eð1CÞ � 1

�

1
�

; ð20Þ

where we use � to denote EðCÞ so that the deduction in the

following is more succinct.

4.2 Bias Correction

The expected value of 1=C can be derived using the Taylor

expansion of 1=C around � as follows:

1

C
¼ 1

�
� C � �

�2
þ 2

�3

ðC � �Þ2

2!
� 6

�4

ðC � �Þ3

3!
. . . :

Applying linearity of expectation, the expected value of 1=C is

E
1

C

	 

¼ 1

�
� EðCÞ � �

�2
þ EðC � �Þ

2

�3
� EðC � �Þ

3

�4
. . . :

Note that the second-central moment is the variance, and the third-

central moment EðC � �Þ3 is

n

2

� �
pð1� pÞð1� 2pÞ � n

2

� �
p � varðCÞ: ð21Þ

Thus by (15),

E
1

C

	 

� 1

�
þ varðCÞ

�3
� varðCÞ

�4
þ � � �

¼ 1

�
1þ 1

�
� 1

�2

	 
 ð22Þ

Substituting (22) for E(1/C) in (20), we derive the following

theorem:

Theorem 1. The relative bias of bN can be approximated by the reciprocal

of EðCÞ, i.e.,

RB ¼ 1

EðCÞ þ O
1

EðCÞ2

 !
� 1

EðCÞ : ð23Þ

Fig. 1 depicts the relative bias against the sample size, when

N ¼ 106; � ¼ 0, and n takes the ranges between 5000 and 104. For

each sample size, the experiment is repeated 104 times. RB and

EðCÞ are approximated from the 104 experiments. It shows that bN
has a positive bias, which tapers off as the sample size grows. Its

relative bias agrees with the reciprocal of EðCÞ, especially when

EðCÞ is large. When EðCÞ is small, we can see that RB is greater

than 1=EðCÞ as indicated in (23).
From the relative bias, we can derive the adjusted estimator if

we replace � by C:

bN� ¼ bN
1þRB ðby ð20ÞÞ

¼ ð�2 þ 1Þ n
2

� � 1

C

1

1þ 1
�

ðby ð23ÞÞ

¼ ð�2 þ 1Þ n
2

� � 1

C þ 1
: ð24Þ

4.3 Illustrative Example

We use a fictitious example to gain intuitive understanding of the

bias of bN and the adjusted estimator bN� . Suppose that the

expected value for collisions is EðCÞ ¼ 10. Let A ¼ ð�2 þ 1Þ n
2

� �
, and

the true size of population is N ¼ A=EðCÞ ¼ 0:1A. The expected

standard deviation of C is
ffiffiffiffiffi
10
p

� 3:3. Suppose that we carried out

three experiments, and observed three values for collisions which

are 6, 10, and 14. Notice that their mean is exactly 10, indicating

that the sampling is unbiased. The mean of bN is

h bNi ¼ A
3

X3

i¼1

1

Ci
¼ A

3

1

6
þ 1

10
þ 1

14

	 

¼ 0:1127A:

Notice that there is a positive bias even though the observed

collisions are unbiased. On the other hand, the mean of the

adjusted estimates bN� is

h bN�i ¼ A
3

X3

i¼1

1

Ci þ 1
¼ A

3

1

7
þ 1

11
þ 1

15

	 

� 0:1001A;
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Fig. 1. RB and 1/E(C) against sample sizes in simulation study. It shows that bN is
biased upward, and the relative bias can be approximated by the reciprocal
of E(C).

TABLE 1
Bias in Simulation Studies

N ¼ 106. Sample size n is between 5000 and 104. Repeated 104 times.



which is much closer to the real value. The relative biases of these

two estimators are 11.27 percent for bN and 0.14 percent for bN�.
4.4 Simulation Studies

Before evaluating the estimators bN and bN� in real random walk,

we first conduct simulation studies where elements are selected

randomly with a uniform distribution, i.e., every element has the

same probability of being selected. Thus, � ¼ 0 in (1) and (24).
In our experiment, the total population is N ¼ 106. Sample sizes

tested are between 5,000 and 104. The minimal sample size is set as

5,000 to guarantee the existence of at least one collision for every

test. For each sample size, 104 tests are run, and relative biases (RB)

for two estimators are calculated from these 104 tests.
Table 1 gives an overview of the experiments. It shows that

indeed bN is biased upward, especially when the sample size is

small. When n ¼ 5;000, the collision mean is around 12, resulting in

a high bias (RB ¼ 0:10).
Fig. 2 depicts the trends of the bN and bN� with the growth of the

sample size. It shows that bN� fluctuates around the true value,

while bN has a large bias when sample size is small. When the

sample size is 5,000, on average among 104 runs there are about

12 collisions, and the relative bias is around 10 percent.
Fig. 3 shows the distributions of the estimations when the

sample sizes are 5,000, 5,500, 6,000, and 6,500 in sub-figures A, B,

C, and D, respectively. In all the four sub-figures, we can see thatbN� has more concentration around the true value. In particular, it

has a smaller number of very large estimations. For instance, in

Fig. 3A there are more than 200 estimations of bN that are higher

than 2 million, while bN� has much smaller number of large

estimations. With the growth of the sample size, the difference

between bN and bN� diminishes.

5 RANDOM WALK ON TWITTER DATA

We tested estimators bN and bN� on the Twitter network data that

are provided by Kwak et al. [14], characterizing the complete

Twitter network as of July 2009. The data contain about

1.47 billion edges and 41.7 million nodes or users, occupying

around 20 gigabytes hard drive space. Since they are too large to

fit into the memory of commodity computers, we index them

using Lucene, a popular index engine. Then the random walk

sampling is performed on the index that is stored in the hard

drive. Since random walk works better in an undirected graph,

we remove the direction in Twitter data. Note that the Twitter

graph is almost surely connected because its average degree is 70,

far greater than the threshold value lnðNÞ ¼ lnð41; 700; 000Þ � 17

for a graph to be connected [22]. The Matlab program and data

are available at http://cs.uwindsor.ca/~jlu/bias.

5.1 Estimate �

Unlike the simulation studies presented in the last section, where

� ¼ 0, in real network the node degree varies and we need to

estimate �. In the area of capture-recapture research [3], [19], it has

been a perplexing problem for the population estimation of

heterogeneous data whose capture probabilities are unequal,

mainly due to the difficulty of estimating the heterogeneity.
Let dxi be the degree of the node xi being sampled, where

i ¼ 1; 2 . . . ; n. The asymptotic mean of the degrees obtained by a

random walk is

hdxi ¼
XN
i¼1

pidi ¼
hd2i
hdi ; ð25Þ

which can be estimated by its sample mean:

dhdxi ¼ 1

n

Xn
i¼1

dxi : ð26Þ

The population mean of the degrees can be estimated by the

harmonic mean of the sample degrees [23], [20]

chdi ¼ nPn
i¼1 1=dxi

: ð27Þ

According to (9), we have

�2 þ 1 ¼ hd
2i
hdi2
¼ hdxihdi : ð28Þ

Hence, the estimator for �2 is

b�2 þ 1 ¼ 1

n2

Xn
i¼1

dxi
Xn
i¼1

1=dxi : ð29Þ

5.2 Results

In our experiments, the sample size ranges between 400 and 3,600.

The smallest sample size is set as 400 so that it can induce at least

one multiple visit to a node. Although the true population is rather

large (4:17� 107), we do not need 5,000 samples as in the case of

random simulation because of the heterogeneity of the degrees.
For each sample size, we run 500 random walks. Since both

estimators bN and bN� rely on collisions very much, extra caution

should be taken to avoid spurious collisions caused by random

walk. For instance, if a node A is only connected to node B, a visit
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Fig. 3. Distribution of the estimations by bN and bN� in simulation study, when n ¼
5,000, 5,500, 6,000, and 6,500 in sub-figures A, B, C, and D, respectively.

Fig. 2. bN and bN� over 104 runs for various sample sizes in simulation study. The
red dotted line is the true value.



to A will cause node B visited twice. To avoid such loops, we take

samples spaced every few steps apart.
Overall, the results conform well to our simulation studies.

Fig. 4 shows that the relative bias of bN is close to the reciprocal of

E(C) for various sample sizes. Consequently, bN� corrects the bias

quite well as shown in Fig. 5. It is clear that the bias diminishes as

the sample size grows. Fig. 6 depicts the distribution of the

estimations for the four smallest sample sizes. Table 2 sum-

marizes the details of the results.

6 CONCLUSIONS

Estimators are usually evaluated by both bias and variance. The

purpose of this paper is not to evaluate the overall performance of

the estimator. Instead, it shows that there is a bias, and the bias of

bN can be too large to neglect when sample size is small relative to

the big data being studied. We derive the bias of the estimator bN ,

and empirically demonstrate the result using simulations and real

Twitter data. The derivation is based on the unique formulation ofbN presented in this paper. Although bN in other forms were already

given in [3], [13], we are the first to explicitly describe the estimator

in terms of collisions C and the coefficient of variance �. It is this

formulation that leads to the derivation of the bias.
Traditionally, bN is not widely used because it needs the

estimation of �, which is also a treacherous problem. However, in

the unique setting of online data, the degrees of the sampled nodes

are often available, whereas in social studies the friends of a drug

addict are hardly collectable. Taking this advantage in OSN

sampling, we can estimate correctly the average degree, and

thereby the coefficient of variation �.
Our bias correction formula works for both uniform random

sampling and random walk sampling. The bias is dependent on
the expected number of collisions. For random walk sampling
where � is large, the sample size does not need to be very large to
induce lots of collisions. Thus, the bias problem is not so prominent
as illustrated in Twitter data. In uniform random sampling, the
sample has to be much larger to cause the same number of
collisions. Our experiments show that for a data of 106 nodes, there
is 10 percent of over estimation even when the sample size is as
large as 5,000.
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