Top down parsing

* Types of parsers:

* Top down:
— repeatedly rewrite the start symbol;
— find a left-most derivation of the input string;
— easy to implement;
— not all context-free grammars are suitable.
+ Bottom up:

— start with tokens and combine them to form interior nodes of the
parse tree;

— find a right-most derivation of the input string;
— accept when the start symbol is reached;
— itis more prevalent.

Topdown parsing with backtracking

« S->cAd
« A—>abla

* w=cad g

HJ OO @

e @ -

g:ad cad cad cad
t t t

Parsing trace

Expansion Remaining input Action
S cad Try S>cAd
cAd cad Match c
Ad ad Try A>ab
abd ad Match a
bd d Dead end, backtrack
ad ad Try A2a
ad ad Match a
d d Match d
Success
S->cAd
A->abla

Parsing trace

Expansion Remaining input Action

S cad Try S>cAd

cAd cad Match c

Ad ad Try A>ab

abd ad Match a

bd d Dead end, backtrack

ad ad Try A>a

ad ad Match a

d d Match d
Success

+ S->cAd

« A->abla

Another example

Expansion Remaining input

S aabb
AB aabb
aAB aabb

AB abb

aAB abb

AB bb

B bb

bB bb

B b

b b

S->AB

A->aAle
B->bB|b
Action
Try S>AB S:))QEB
Try A>aA 3o
match a 3aabB
A->aA
match a
A->epsilon
B->bB
match b
B->b
match

Top down vs. bottom up parsing

« Given the rules
- S->AB
— A2aAle
— B->bBJb

* How to parse aabb ?
* Topdown approach
S=>AB
2>aAB
2>aaAB
aacB
=aabB
=aabb

Note that it is a left most
derivation

Bottom up approach
aabb
€a abb
€aabb
€aae bb
€aaA bb
€aA bb
€Abb
€Abb
€Abb
€AbB
€AB
€S

If read backwards, the derivation is
right most

In both topdown and bottom up
approaches, the input is scanned
from left to right

Recursive descent parsing

e Each method corresponds to a non-terminal

static boolean checkS() {
int savedPointer = pointer;
; S->AB
if (checkA() && checkB())
return true;
pointer = savedPointer;
return false;

}

static boolean checkA() {
int savedPointer = pointer;
if (nextToken () .equals(‘a’) && check’())
return true;
pointer = savedPointer;
return true;

A->aAle

//B>bB|b

static boolean checkB() {
int savedPointer = pointer;
if (nextToken() .equals(‘b’) && checkB())
return true;
pointer = savedPointer;
if (nextToken () .equals('b’)) return true;
pointer = savedPointer;

return false;

Left recursion

What if the grammar is changed to
S>AB
A->Aale
B->b|bB
The corresponding methods are
static boolean checkA() {
int savedPointer = pointer;
if (checkA() && nextToken() .equals(‘a’))
return true;
pointer = savedPointer;
return true;
}
static boolean checkB() {
int savedPointer = pointer;
if (nextToken() .equals(‘'b’))
return true;
pointer = savedPointer;
if (nextToken () .equals(‘'b’) && checkB()) return true;
return false;
pointer = savedPointer;

Recursive descent parsing (a complete

example)

Grammar
program-> statement program | statement

statement-> assignment
assignment-> ID EQUAL expr

Task:

— Write a java program that can judge whether a program is
syntactically correct.

— This time we will write the parser manually.
— We can use the scanner

How to do it?

10

RecursiveDescent.java outline

1.
2.
3.
4.
5
6
7
8

9

10.
11.
12.

13.
14.
15.
le6.

static
static
static
public

int pointer=-1;

Arraylist tokens=new ArrayList() ;
Symbol nextToken() { }

static void main(String[] args) ({

Calc3Scanner scanner=new

Calc3Scanner (new FileReader (”calc2.input"));

Symbol token;
while (token=scanner.yylex () .sym!=Calc2Symbol .EOF)

tokens.add (token) ;

boolean legal= program() && nextToken ()==null;
System.out.println(legal) ;

}

static
static
static
static

boolean program() throws Exception {..}
boolean statement () throws Exception {..}
boolean assignment () throws Exception {..}
boolean expr() {..}

One of the methods

© 00 Jd o L d WIN K

[y
o -

11.

. /** program-->statement program

program-->statement

.*/

static boolean program() throws Exception {

int savedPointer = pointer;

if

(statement () && program()) return true;

pointer = savedPointer;

if

(statement()) return true;

pointer = savedPointer;
return false;

12

Recursive Descent parsing

Recursive descent parsing is an easy, natural way to code top-down

parsers.

— All non terminals become procedure calls that return true or false;

— all terminals become matches against the input stream.

Example:
/** assignment--> ID=exp **/

static boolean assignment() throws Exception{

int savePointer= pointer;
if (nextToken().sym==Calc2Symbol.ID

&& nextToken () . sym==Calc2Symbol.EQUAL

&& expr())
return true;
pointer = savePointer;
return false;

Summary of recursive descent parser

Simple enough that it can easily be constructed by hand;

* Not efficient;
¢ Limitations:

[E> E+T | T*/

static boolean expr() throws Exception ({
int savePointer = pointer;
if (expr()

&& nextToken () .sym==Calc2Symbol.PLUS

&& term())
return true;
pointer = savePointer;
if (term()) return true;
pointer = savePointer;
return false;

}

A recursive descent parser can enter into infinite loop.

13

14

Left recursion

e Definition
— A grammar is left recursive if it has a nonterminal A such that there is a
derivation A =+ Aa
— There are tow kinds of left recursion:
o direct left recursive : A = Aa
e in-direct left-recursive: A =+ Aq, but not A = Aa

e Example:
E>E+T|T isdirect left recursive

e Indirect left-recursive
S>Aa|b
A->Ac|Sd|e
Is S left recursive?
S= Aa
=Sda
S=>+Sda

15

Left recursion has to be removed for recursive
descent parser

Look at the previous example that works:

E>T+E|T

static boolean expr() throws Exception {
int savePointer = pointer;
if (term() && nextToken().sym == Calc2Symbol.PLUS && expr()) return true;
pointer = savePointer;
if (term()) return true;
pointer = savePointer;
return false;

What if the grammar is left recursive?

E>E+T|T

static boolean expr() throws Exception {
int savePointer = pointer;
if (expr() && nextToken().sym == Calc2Symbol.PLUS && term ()) return true;
pointer = savePointer;
if (term()) return true;
pointer = savePointer;
return false;

}

There will be infinite loop! 16

Remove left recursion

» Direct left recursion
A->Aa|B
expanded form: A>Baa ...a
Left recursion removed:
A>BZ
Z>alZle

« Example:
E>E+T|T
expanded form: E->T+T +T ... +T
E>TZ
Z>+TZ| €

17

Remove left recursion

* In general, for a production
A>Ag, | A, | ... | Aam | B1] B2] ... | Bn
where no i begins with A.

It can be replaced by:

ASBA’ | B2A... | PrA’
A a1A’ |az2A| ... |amA’ €

18

Predictive parsing

» Predictive parser is a special case of top-down parsing when no
backtracking is required;
« At each non-terminal node, the action to undertake is unambiguous;
STAT-if ...
| while ...
| for ...
* Not general enough to handle real programming languages;
» Grammar must be left factored;

IFSTAT-if EXPR then STAT
| if EXPR then STAT else STAT
— A predictive parser must choose the correct version of the IFSTAT
before seeing the entire input
— The solution is to factor out common terms:
IFSTAT->if EXPR then STAT IFREST
IFREST->else STAT | €

» Consider another familiar example:
EST+E|T

19

Left factoring

» General method
For a production A>a B1 | afz| ... | apn | Y
where y represents all alternatives that do not begin with q,
it can be replaced by
A>aB|y
B->B1]| B2] ... | Bn
+ Example
E>T+E|T
Can be transformed into:
ES>TFE
E'>+E| ¢

20

10

Predictive parsing

» The recursive descent parser is not efficient because of
the backtracking and recursive calls.

* a predictive parser does not require backtracking.

— able to choose the production to apply solely on the basis of the
next input symbol and the current nonterminal being processed

* To enable this, the grammar must be LL(1).
— The first “L” means we scan the input from left to right;
— the second “L” means we create a leftmost derivation;
— the 1 means one input symbol of lookahead.

21

More on LL(1)

* LL(1) grammar has no left-recursive productions and has
been left factored.
— left factored grammar with no left recursion may not be LL(1)

+ there are grammars that cannot be modified to become
LL(1).

* In such cases, another parsing technique must be
employed, or special rules must be embedded into the
predictive parser.

22

11

First() set--motivation

» Navigating through two choices seemed simple enough, however,
what happens where we have many alternatives on the right side?
— statement - assignment | returnStatement | ifStatement |

whileStatement | blockStatement

* When implementing the statement() method, how are we going to be
able to determine which of the 5 options to match for any given

input?

* Remember, we are trying to do this without backtracking, and just
one token of lookahead, so we have to be able to make immediate
decision with minimal information— this can be a challenge!

* Fortunately, many production rules starts with terminals, which can

help in deciding which rule to use.

— For example, if the input token is ‘while’, the program should know that

the whileStatement rule will be used.

Fisrt(): motivating example

+ On many cases, rules starts with non-
terminals

S->Ab|Bc
A->Df|CA
B>gAle
C->dClc
D->hli
How to parse “gchfc”?
= Dfb =hfb
/ =ifb
=Ab
/ \
/ = CAb=dCAb =
S = CcAb= ...

= Bc =gAc = ...
= ecC

23

S =Bc
=gAc
=gCAc
=>gCcAc
=>gcDfc
=>gchfc

if the next token is h, i, d, or c,
alternative Ab should be
selected.

If the next token is g or e,
alternative Bc should be
selected.

In this way, by looking at the
next token, the parser is
able to decide which rule
to use without exhaustive
searching.

24

12

First(): Definition

» The First set of a sequence of symbols a, written as First
(a), is the set of terminals which start the sequences of
symbols derivable from a.

— Ifa=>*ap, then ais in First(a).
— Ifa=>* ¢, then ¢ is in First(a).

« Given a production with a number of alternatives:
-A>al|a2]..,

— we can write a predicative parser only if all the sets First(ai) are
disjoint.

25
First() algorithm
» First(): compute the set of terminals that can begin a rule
1. if ais a terminal, then first(a) is {a}.
2. if Ais a non-terminal and A->aa is a production, then add a to first(A).
if A>€ is a production, add ¢ to first(A).
3. if A>a, a, ... a,, is a production, add Fisrt(a1)-¢ to First(A).
If a, can derive €, add First(a,)-¢ to First(A).
If both a, and a, derives €, add First(a;)-¢ to First(A). and so on.
If oy 0y ... a, =>"¢, add € to First(A).
+ Example
S>Aa|b
A->bdZ|ez
Z>cZ|adZ|e
First(A) = {First(b), First(e)}= {b, e} (by rule 2, rule 1)
First(Zz) ={a,c, €} (by rule 2, rule 1)
First(S)
= {First(A), First(b)} (by rule 3)
= {First(A), b} (by rule 1)
={b, e, b} ={b, €} (by rule 2) 26

13

A slightly modified example

S>Aalb
A>bdZ|eZ| e
Z>cZ|adZ| e

First(S)
= {First(A), First(b)} (by rule 3)
= {First(A), b} (by rule 1)
={b, e, b} ={b, €} (by rule 2) ?

First(S) = {First(A), First(a), b}={a, b, e, €} ?

Answer: First(S) ={ a, b, €}

27

Follow()— motivation

» Consider
— S=*aaAb
— Where A>¢|aA.

* When can A 2¢ be used? What is the next token
expected?

* In general, when A is nullable, what is the next token we
expect to see?
— A non-terminal A is nullable if € in First(A), or
- AD>*¢

+ the next token would be the first token of the symbol
following A in the sentence being parsed.

28

14

Follow()

Follow(): find the set of terminals that can immediately follow a non-
terminal
1. $(end of input) is in Follow(S), where S is the start symbol;
2. For the productions of the form A->aBp then everything in First(B) but €
is in Follow(B).
3. For productions of the form A->aB or A->aBf where First(3) contains ¢,
then everything in Follow(A) is in Follow(B).
— aAb=>aaBb
Example
S>Aa|b
A-> bdZ |ez
Z>cZ|adZ| e
Follow(S)
={$} (byrule 1)
Follow(A)
={a} (byrule 2)
Follow(Z)
= {Follow(A)} = {a} (by rule 3)
29

Compute First() and Follow()

E>TE First (E)
E'>+TE|e = First(T)
T>FT = First(F)
T>*FT|e ={(,id}
F>(E)lid First (E')

={+ €}

First (T')={*, €}

o wN =

Follow (E)

={).$}

=Follow(E’)

Follow(T)

= Follow(T’)

={+,), $} First(E’) except ¢ plus Follow(E)
Follow (F)

={* +,), $} First(T’) except ¢ plus Follow(T’)

30

The use of First() and Follow()

+ If we want to expand S in this grammar:
S>A.. |B..
A->a..
B>b..|a..
« If the next input character is b, we should rewrite S with
A..orB..7?
— since First(B) ={a, b}, and First(A)= {a}, we know to rewrite S with
— First and Follow gives us information about the next characters
expected in the grammar.
« |f the next input character is a, how to rewrite S?
— a s in both First(A) and First(B);
— The grammar is not suitable for predictive parsing.

31

LL(1) parse table construction

» Construct a parse table (PT) with one axis the set of terminals, and
the other the set of non-terminals.
» For all productions of the form A->a
— Add A->a to entry PT[A,b] for each token b in First(a);
— add A->a to entry PT[A,b] for each token b in Follow(A) if First(a)

contains g;
— add A->a to entry PT[A,$] if First(a) contains € and Follow(A) contains $.
S>Aalb
A>bdzZ|ez First Follow
Z>cZ|adZ]|e S Aa |b,e $
b b
a b c dle ${1a [odz |b a
S>Aa S>Aa oz e
S->b
z cZ c a
A->bdZ A>eZ
adZ |a
Z>¢ Z>cZ £ €
Z~>adzZ
32

16

Construct the parsing table

if A>a, which column we place A>a in row A?

— in the column of t, if t can start a string derived from q, i.e., tin
First(a).

— what if a is empty? put A>a in the column of t if t can follow an A,
i.e., tin Follow(A).

33
a b c d|e $
s S>Aa S>Aa S>Aa|b
S->b A>bdZ|ez
A A>bdz A>ezZ Z>cZ|adZ]e
Z | Z>¢ Z>cZ
Z>adz
Stack Remaininglnput Action
S$ bda$ Predict S>Aa or S>b? suppose Aa is used
Aa$ bda$ Predict A>bdZz
bdza$ bda$ match
dza$ da$ match
Za$ a$ Predict Z->¢
a$ a$ match
$ $ accept

— Note that it is not LL(1) because there are more than one rule can be selected.
— The correspondent (leftmost) derivation
S=>Aa=>bdZa=>bde a

— Note when Z->¢ rule is used.
34

17

LL(1) grammar

» If the table entries are unique, the grammar is said to be LL(1):
— Scan the input from Left to right;
— performing a Leftmost derivation.

* LL(1) grammars can have all their parser decisions made using one
token look ahead.

* In principle, can have LL(k) parsers with k>1.

* Properties of LL(1)
— Ambiguous grammar is never LL(1);
— Grammar with left recursion is never LL(1);

« Agrammar G is LL(1) iff whenever A —> a | B are two distinct
productions of G, the following conditions hold:

— For no terminal a do both a and 8 derive strings beginning with a (i.e.,
First sets are disjoint);

— At most one of a and 3 can derive the empty string

— If B =>* ¢ then a does not derive any string beginning with a terminal in
Follow(A)

35

A complete example for LL(1) parsing

S->P
P-> {D; C}
D>d,D|d
C>cCjc

» The above grammar corresponds loosely to the structure of
programs. (program is a sequence of declarations followed
by a sequence of commands).

* Need to left factor the grammar first.

S>P First | Follow
P> {D: C} S { 5
D~ d D2 5 ; S
D2> ,D|¢ D d :
C>cC2 D2 e :
C2->,Cle C c)

C2 &)

18

Construct LL(1) parse table

LL(1) parse program

AXOQ0 W

input$

Program

{ } c d $

S S->P$

P |P>{D;C}

D D->dD2

D2 D2->¢ D2->,D

C C->cC2

C2 C2->¢ c2>,C

First Follow
S->P S { $
P-> {D; C} =) { $
D> d D2 _
D2> D¢ D d '
C->cC2 D2 , € ;
C2->,Cle c c }
c2 € }

parse
table

Stack: contain the current rewrite of the start symbol.
Input: left to right scan of input.
Parse table: contain the LL(k) parse table.

37

38

19

LL(1) parsing algorithm

» Use the stack, input, and parse table with the following

rules:

— Accept: if the symbol on the top of the stack is $ and the input
symbol is $, successful parse

— match: if the symbol on the top of the stack is the same as the
next input token, pop the stack and advance the input

— predict: if the top of the stack is a non-terminal M and the next
input token is a, remove M from the stack and push entry PT[M,a]
on to the stack in reverse order

— Error: Anything else is a syntax error

Running LL(1) parser

Stack

S

P$
{D;C}$
D;C}$
dD2:;C}$
D2;C}$
,D;C}$
D;C}$
dD2:;C}$
D2;C} $
£;C}$
Cr$
cC21}$
Cc2}$

}$

$

Remaining Input
{d,d;c}$
{d,d;c}$
{d,d;c}$
d,d;c}$
d,d;c}$
dict$
dic}$
dic}$
d;c}$
;c$
icr$
c}$
c}$
%

%
$

Action
predict S>P$
predict P>{D;C}
match {
predict D->d D2
match d
predict D2->,D
match ,
predict D->d D2
match d
predict D2>¢
match ;
predict C>¢ C2
match c
predict C2>¢

match }
accept

39

S->P

P-> {D; C}
D-> d D2
D2>,D]|¢
C->cC2
C2->,Cle

Derivation

S=>P$
> D;C}$
>{d D2;C}$
=>{d, D;C}$
2>{dd D2;C}$
>{dd; C}$
=>{d,d; c C2}$
>{d.d;c}$

Note that it is leftmost
derivation

40

20

The expression example

1. E>TE
2. E>+TEe . w
3. T>FT
4. T>FTe r OO0
5. F>(E)lint
T d);.(F zjr)
- QR0S050
+ * () int $
E E>TE E>TE
E’ |E>+TE E>e E'>¢
T T>FT T>FT
T | T T>*FT T T>¢
F F>(E) F->int
41
Parsing int*int
Stack Remaining input Action
E$ int*int $ predicate E>TE’
TE'$ int*int $ predicate T>FT’
FTE $ int*int $ predicate F>int
intTE $ int*int $ match int
TE$ *int$ predicate T'>*FT’
*FTES$ *int$ match *
FTES$ int $ predicate F>int
intTE $§ int$ match int
TE$ $ predicate T'>¢
E'S$ $ predicate E’>¢
$ $ match $. success.

42

21

Parsing the wrong expression int*]+int

Stack Remaining input Action
ES$ int*]+int $ predicate ESTE’
TE'$ int*]+int $ predicate T>FT
FTE' $ int*]+int $ predicate F—>int
intTE'$ int*]+int $ match int

TES$ *+int $ predicate T'>*FT’
*FTES$ *+int$ match *

FTES J*+int $ error, skip]
FTES +int$ PT[F, +] is sync, pop F
TE'$ +int$ predicate T'> €
E'S$ +int$ predicate E'>+TE’

It is easy for LL(1) parsers to skip error

+ * () int 1 $
E E->TE’ E->TE’ error
E’ | E>+TE E'>¢ error E'>¢
T T>FT T>FT error
T | T>¢ T->*FT T->¢ error T>¢
F | sync (Follow(F)) sync F>(E) sync F->int error SYNC 43

Error handling

« Th

. ge

ere are three types of error processing:
report, recovery, repair
neral principles
try to determine that an error has occurred as soon as possible. Waiting

too long before declaring an error can cause the parser to lose the actual
location of the error.

Error report: A suitable and comprehensive message should be reported.
“Missing semicolon on line 36” is helpful, “unable to shift in state 425” is
not.

Error recovery: After an error has occurred, the parser must pick a likely
place to resume the parse. Rather than giving up at the first problem, a
parser should always try to parse as much of the code as possible in
order to find as many real errors as possible during a single run.

A parser should avoid cascading errors, which is when one error
generates a lengthy sequence of spurious error messages.

44

22

Error report

report an error occurred and what and where possibly the error is;
— Report expected vs found tokens by filling holes of parse table with error

messages)
+ * () int $
E E->TE’ Err, intor |E>TE
(expected
inline ...
E’ E'>+TE’ E'>¢ E'>¢
T T>FT T>FT
T T>¢ T>*FT T>¢ T>¢
F F->(E) F->int

Error Recovery

45

Error recovery: a single error won't stop the whole parsing. Instead,
the parser will be able to resume the parsing at certain place after

the error;

— Give up on current construct and restart later:

Example:
* duoble d;
* junk double d;

— Add declaration for undeclared name

use Follow(TYPE)

Delimiters help parser synch back up
Skip until find matching), end,], whatever
Use First and Follow to choose good synchronizing tokens

use First(D)
Error repair: Patch up simple errors and continue .
— Insert missing token (;)

D > TYPE ID SEMI

46

23

Types of errors

Types of errors
— Lexical: @+2
» Captured by JLex
— Syntactical: x=3+%4;
» Captured by javacup
— Semantic: boolean x; x = 3+4;
» Captured by type checker, not implemented in parser generators
— Logical: infinite loop
» Not implemented in compilers

47

Summarize LL(1) parsing

+ Massage the grammar
— Remove ambiguity
— Remove left recursion
— Left factoring
» Construct the LL(1) parse table
— First(), Follow()
— Fill'in the table entry

* Run the LL(1) parse program

48

24

