
1	

03-60-214		Lexical	analysis		 S

a, b

a
B

2	

Lexical	analysis	in	perspec5ve	

•  LEXICAL	ANALYZER	
–  	Scan	Input	
–  	Remove	White	Space,	New	Line,	…	
–  	Iden5fy	Tokens	
–  	Create	Symbol	Table	
–  	Insert	Tokens	into	Symbol	Table	
–  	Generate	Errors	
–  	Send	Tokens	to	Parser	

lexical
analyzer parser

symbol table

source
program

token

get next
token

•  PARSER	
–  	Perform	Syntax	Analysis	

–  	Ac5ons	Dictated	by	Token	Order	

–  	Update	Symbol	Table	Entries	

–  	Create	Abstract	Representa5on	of	
Source	

–  	Generate	Errors	

•  LEXICAL	ANALYZER:	Transforms	character	stream	to	token	stream	
–  Also	called	scanner,	lexer,	linear	analyzer	

3	

Where	we	are	

Total=price+tax;

Total = price	 + tax	 ;	

Lexical analyzer

Parser

id						+								id	

				Expr														

				assignment				

		=	id	

R
egular expression

4	

Basic	terminologies	in	lexical	analysis	

• Token	
–  A	classifica5on	for	a	common	set	of	strings	
–  Examples:	if,<identifier>, <number> …	

• Pa[ern	
–  The	rules	which	characterize	the	set	of	strings	for	a	token	
–  Recall	file	and	OS	wildcards	(*.java)	

• Lexeme	
–  Actual	sequence	of	characters	that	matches	pa[ern	and	is	classified	by	

a	token	
–  Iden5fiers:	if, price, 10.00,	etc…		

R
egular expression

if (price + gst – rebate <= 10.00) gift := false

5	

Examples	of	token,	lexeme	and	pa[ern	
if (price + gst – rebate <= 10.00) gift := false

Token	 lexeme	 Informal	descrip5on	of	pa[ern	

if	 if	 If	

Lparen	 ((

Iden5fier	 price	 String	consists	of	le[ers	and	numbers	and	starts	with	a	le[er	

operator	 +	 +	

iden5fier	 gst	 String	consists	of	le[ers	and	numbers	and	starts	with	a	le[er	

operator	 -	 -	

iden5fier	 rebate	 String	consists	of	le[ers	and	numbers	and	starts	with	a	le[er	

operator	 <=	 Less	than	or	equal	to	

number	 10.00	 Any	numeric	constant	

rparen))	

iden5fier	 gid	 String	consists	of	le[ers	and	numbers	and	starts	with	a	le[er	

operator	 :=	 Assignment	symbol	

iden5fier	 false	 String	consists	of	le[ers	and	numbers	and	starts	with	a	le[er	

R
egular expression

6	

Regular	expression	
•  Scanner	is	based	on	regular	expression.		
•  Remember	language	is	a	set	of	strings.	
•  Examples	of	regular	expression	

–  Le[er	a 	 	a	
–  Keyword	if 	 	if	
–  All	the	le[ers		 	a|b|c|...|z|A|B|C...|Z	
–  All	the	digits					 	0|1|2|3|4|5|6|7|8|9	
–  All	the	Iden5fiers		 	le[er(le[er|digit)*	

•  Basic	opera5ons:	
–  Set	union,	e.g.,												a|b
–  Concatena5on,	e.g,			ab
–  Kleene	closure,	e.g.,			a*

R
egular expression

7	

Regular	expression	

• Regular	expression:		construc5ng	sequences	of	symbols	(strings)	
from	an	alphabet.	

• Let	Σ	be	an	alphabet,	r	a	regular	expression	then	L(r)		is	the	
language	that	is	characterized	by	the	rules	of		r	

• Defini5on	of	regular	expression	
–  ε	is	a	regular	expression	that	denotes	the	language	{ε}	

•  Note	that	it	is	not	{	}	
–  If		a	is	in	Σ,	a	is	a	regular	expression	that	denotes	{a}	
–  Let	r	and	s	be	regular	expressions	with	languages	L(r)	and	L(s).		Then		

•  	r	|	s	is	a	regular	expression		à	L(r)	∪	L(s)		
•  	r	s	is	a	regular	expression		àL(r)	L(s)	
•  	r*	is	a	regular	expression			à		(L(r))*	

•  It	is	an	induc5ve	defini5on!	
• Dis5nc5on	between	regular	language	and	regular	expression	

R
egular expression

8	

Formal	language	opera5ons	

Opera5on	 Nota5on	 Defini5on	 Example		
L={a,	b}		M={0,1}	

union	of	L	and	M		 L	∪	M	
	

L	∪	M	=	{s	|	s	is	in	L	or	s	is	in	
M}	

{a,	b,	0,	1}	

concatena)on	of	
L	and	M	

LM	
	

LM	=	{st	|	s	is	in	L	and	t	is	in	
M}	

{a0,	a1,	b0,	b1}	

Kleene	closure	of	
L	

L*	
	

L*	denotes	zero	or	more	
concatena5ons	of		L			

All	the	strings	consists	of	“a”	
and	“b”,	plus	the	empty	string.	
{ε, a,	aa,	bb,	ab,	ba,		aaa,	…	}	

posi)ve	closure	 L+	
	

L+	denotes	“one	or	more	
concatena5ons	of	“	L		

All	the	strings	consists	of	“a”	
and	“b”.	

R
egular expression

9	

Regular	expression	example	revisited	

• Examples	of	regular	expression	
–  le[erà	a|b|c|...|z|A|B|C...|Z	
–  digità0|1|2|3|4|5|6|7|8|9	
–  Iden5fier	à	le[er(le[er|digit)*	

• Exercise:	why	is	it	a	regular	expression?	
	

R
egular expression

10	

Precedence	of	operators	

•  Can the following RE be simplified?
(a) | ((b)*(c))

•  *	is	of	the	highest	precedence;	
•  ts	(Concatena5on)	comes	next;	
•  |	lowest.	

•  Example	
–  (a) | ((b)*(c))		is	equivalent	to	a|b*c

R
egular expression

11	

Proper5es	of	regular	expressions	

Property	 Descrip5on	

r|s	=	s|r	 |	is	commuta5ve	

r|(s|t)	=	(r|s)|t	 |	is	associa5ve	

(rs)t=r(st)	 Concatena5on	is	associa5ve		

r(s|t)=rs	|	rt	
(s|t)r=sr	|	tr	

Concatena5on	distributes	over	|	

...	...	

What is why we can write

•  either a|b or b|a

•  a|b|c, or (a|b)|c

•  abc, or (ab)c

R
egular expression

12	

Nota5onal	shorthand	of	regular	expression	

•  One	or	more	instance	
–  L+			=					L		L*	
–  L*				=					L+		|		ε
–  Example

•  digitsà digit digit*
•  digitsàdigit+

•  Zero	or	one	instance	
–  L?			=						L|ε	
–  Example:		

•  Op5onal_frac5onà.digits|ε
•  op5onal_frac5onà(.digits)?	

•  Character	classes	
–  [abc]		=			a|b|c	
–  [a-z]			=			a|b|c...|z	

R
egular expression

RE	example	

• Strings	of	length	5	
• Suppose	the	only	characters	are	a	and	b	
• Solu5on	

(a|b)	(a|b)	(a|b)	(a|b)	(a|b)	

• Simplifica5on	
(a|b){5}	

13	

RE	example		

• Strings	containing	at	most	one	a
b*ab* | b*
Or
b*(a|ε) b* | b*

• More	concise	representa5on	
b*a?b*	

14	

RE	for	email	address	

• Valid	addresses	
jwho@uwindsor.ca	
j111@cs.uwindsor.ca	
j.111@gmail.com	
…	
	
le[er=[a-zA-Z]	
digit=[0-9]	
w=le[er|digit	
w+(.w+)*@w+.w+(.w+)*	
	

15	

RE	for	odd	numbers	

	
Is	the	following	correct?	
	
[13579]+	
	
3	
33	
43	
443	
	
[0-9]*[13579]	

16	

17	

More	regular	expression	example	
•  RE	for	represen5ng	months	

–  Example	of	legal	inputs	
•  Feb	can	be	represented	as	02	or	2	
•  November	is	represented	as	11	

•  First	try:					(0|1)?[0-9]	
–  Matches	all	legal	inputs?	Yes	

•  1,2,	11,	12,	01,	02,	...		
–  Matches	no	illegal	inputs?	No	

•  13,	14,	..		etc	
•  Second	try:				

(0|1)?	[0-9]		
=	(ε|(0|1))	[0-9]		
=	[0-9]	|	(0|1)[0-9]	
=	[0-9]	|	(0	[0-9]	|	1[0-9]	
	
[0-9]	|	(0	[0-9]	|	1[0-2]	
–  Matches	all	legal	inputs?	Yes	

•  1,2,	11,	12,	01,	02,	...		
–  Matches	no	illegal	inputs?	No	

•  0,	00	
	

R
egular expression

18	

Derive	regular	expressions	

• Solu5on:		[1-9]|(0[1-9])|(1[012])	
–  Either	1-9,	or	0	followed	by	1	to	9,	or	1	followed	by	0,	1,	or	2.	
–  Matches	all	legal	inputs	
–  Matches	no	illegal	inputs	

• More	concise	solu5on:	0?[1-9]	|1[012]	
–  Is	it	equal	to	[1-9]|(0[1-9])|(1[012])?		
	
0?	[1-9]	|1[012]		
=	(ε|0)	[1-9]											|	1[012]																	(by	shorthand	nota5on)	
=	ε[1-9]		|	0[1-9]				|	1[012]																	(by	distribu5on	over	|)	
=	[1-9]				|	0[1-9]				|	1[012]	

	

R
egular expression

19	

Regular	expression	example	(real	number)		

• Real	number	such	as	0,	1,	2,	3.14			
–  Digit:					[0-9]		
–  Integer:			[0-9]+	
–  First	try:			[0-9]+(.[0-9]+)?	

•  Want	to	allow	“.25”	as	legal	input?		

–  Second	try:		[0-9]+ | ([0-9]*.[0-9]+)

• Op5onal	unary	minus:	
			-?	([0-9]+	|	([0-9]*.[0-9]+))	
	
	-?	(\d+	|	(\d*.\d+))	
	

R
egular expression

20	

Regular	expression	exercises	

• Can	the	string	baa	be	created	from	the	regular	expression	
a*b*a*b*	?		

• Describe	the	language	(in	words)	represented	by	(a*a)b|ab.	
a+b	

• Write	the	regular	expression	that	represents:	
–  All	strings	over	Σ={a,	b}	that	end	in	a.	
	[ab]*a	

					(a|b)*a	
–  All	strings	over	Σ={0,1}	of	even	length.	
	 	((0|1)(0|1))*	
	(00|01|10|11)*	

R
egular expression

21	

Regular	grammar	and	regular	expression	
• They	are	equivalent	

–  Every	regular	expression	can	be	expressed	by	regular	grammar	
–  Every	regular	grammar	can	be	expressed	by	regular	expression	
–  Different	ways	to	express	the	same	thing	

• Why	two	nota5ons	
–  Grammar	is	a	more	general	concept		
–  RE	is	more	concise	

• How	to	translate	between	them		
–  Use	automata	
–  Will	introduce	later		

R
egular expression

22	

What	we	learnt	last	class	

• Defini5on	of	regular	expression	
–  ε	is	a	regular	expression	that	denotes	the	language	{ε}	

•  Note	that	it	is	not	{	}	
–  If		a	is	in	Σ,	a	is	a	regular	expression	that	denotes	{a}	
–  Let	r	and	s	be	regular	expressions	with	languages	L(r)	and	L(s).		Then		

•  	(r)	|	(s)	is	a	regular	expression		à	L(r)	∪	L(s)		
•  	(r)(s)	is	a	regular	expression		àL(r)	L(s)	
•  	(r)*	is	a	regular	expression			à		(L(r))*	

R
egular expression

23	

Applica5ons	of	regular	expression	

•  In	Windows	
–  In	windows	you	can	use	RE	to	search	for	files	or	texts	in	a	file	

•  In	unix,	there	are	many	RE	relevant	tools,	such	as	Grep	
–  Stands	for	Global	Regular	Expressions	and	Print	(or	Global	Regular	

Expression	and	Parser	…);	
–  Useful	UNIX	command	to	find	pa[erns	of	characters	in	a	text	file;	

•  XML	DTD	content	model	
–  <!ELEMENT	student	(name,	(phone|cell)*,	address,	course+)	>		

<student>	
			<name>	Jianguo	</name>	
				<phone>	1234567	</phone>	
				<phone>	2345678	</phone>	
				<address>		401	sunset	ave	</address>	
					<course>	214	</course>	
		</student>		

•  Java	Core	API	has	regex	package!	
•  Scanner	genera5on	

R
egular expression

24	

• RE	in	XML	Schema	
<xsd:simpleType	name="TelephoneNumber">	
				<xsd:restric5on	base="xsd:string">	
								<xsd:length	value="8"/>	
								<xsd:pa[ern	value="\d{3}-\d{4}"/>	
				</xsd:restric5on>	
</xsd:simpleType>		

R
egular expression

25	

Regular	expressions	used	in	Scanner,	String	etc	

•  A	sample	problem	
–  Develop	a	program	that,	given	as	input	three	points	P1,	P2,	and	P3	on	the	cartesian	

coordinate	plane,	reports	whether	P3	lies	on	the	line	containing	P1	and	P2.		
–  In	order	to	input	the	three	points,	the	user	enters	six	integers	x1,	y1,	x2,	y2,	x3,	and	y3.	

The	three	points	are	P1	=	(x1,	y1),	P2	=	(x2,	y2),	and	P3	=	(x3,	y3).		
–  The	program	should	repeat	un5l	the	user's	input	is	such	that	P1	and	P2	are	the	same	

point.	
•  Sample	input	

–  Enter	x1:	0	
–  Enter	y1:	0	
–  Enter	x2:	2	
–  Enter	y2:	5	
–  Enter	x3:	1	
–  Enter	y3:	3	

•  Output	
–  The	point	(1,	3)	IS	NOT	on	the	line	constructed	from	points	(2,	5)	and	(0,	0).	

R
egular expression in Java

26	

How	to	read	and	process	the	input	

•  First	Try	
Scanner	sc=new	Scanner(System.in);	
int	x1=sc.nextInt();	
	
java.u5l.InputMismatchExcep5on	

•  We	want	to	capture	the	values	for	x	and	y,	and	
discard	everything	else	

•  Describe	everything	else	as	delimiters	
	
Scanner	sc=new	Scanner(System.in).useDelimiter(“…”);	

•  The	delimiters	can	be	any	regular	expression	

Sample	input	
	
Enter	x1:	2	
Enter	y1:	8	
Enter	x2:	0	
Enter	y2:	0	
Enter	x3:	1	
Enter	y3:	4	

R
egular expression in Java

27	

useDelimiter	in	Scanner	class	

• useDelimiter(“Enter	x1:”)	
–  This	will	throw	away	“Enter	x1:”	only.	To	discard	“Enter		x2:”	as	well,	

you	may	want	to	add	the	following		

• useDelimiter(“Enter	x1:|	Enter	x2:”)	
–  Ver5cal	bar	means	“OR”—either	“Enter x1:”	OR	“Enter x2:”
–  It	is	called	Regular	expression;	
–  Now	you	know	how	to	expand	to	the	case	for	x3--	

• useDelimiter(“Enter	x1:|	Enter	x2:|	Enter	x3”)	
–  We	can	simplified	the	above	using	other	nota5ons	in	REGUALR	

EXPRESSION.	

R
egular expression in Java

28	

Use	regular	expression	to	capture	the	input	

•  useDelimiter(“Enter	x\\d”)	
–  Where	\\d	means	any	digit.	Now	how	to	read	in	the	values	for	y	axis?		

•  useDelimiter(“Enter	\\w\\d”)	
–  \\w	means	any	le[er	or	digit	

•  useDelimiter(“Enter	\\w{2}”)	
–  What	if	there	are	leading	and	trailing	spaces	around	the	sample	input?		

•  useDelimiter(“(|\\t)Enter	\\w{2}(|\\t)”)	
•  useDelimiter(“\\sEnter	\\w{2}\\s”)	

–  \\s	stands	for	all	kinds	of	white	space.		
•  useDelimiter(\\s*Enter	\\w{2}:\\s*)	

–  *	means	that	zero	or	more	spaces	can	occur.			

	

R
egular expression in Java

29	

Code	fragment	to	read	data	

//read	from	file	for	tes5ng	purpose	
Scanner	sc=new	Scanner(new	File("online.txt")).	
	 	useDelimiter("\\s*Enter	\\w{2}:\\s*");	

int	x1=sc.nextInt();	
int	y1=sc.nextInt();	
int	x2=sc.nextInt();	
int	y2=sc.nextInt();	
int	x3=sc.nextInt();	
int	y3=sc.nextInt();	
		

R
egular expression in Java

30	

Regex	package	in	Java	

•  Java	has	regular	package	java.u5l.regex,		
	
• A	simple	example:		

–  Pick	out	the	valid	dates	in	a	string	
–  E.g.	in	the	string	“final	exam	2008-04-22,	or	2008-4-22,	but	not	

2008-22-04”	
–  Valid	dates:	2008-04-22,	2008-4-22	

• First	we	need	to	write	the	regular	expressions.	
\d{4}-(0?[1-9]|1[012])-\d{2}	

R
egular expression in Java

31	

Regex	package	

• First,	you	must	compile	the	pa[ern	
import java.util.regex.*;
Pattern p = Pattern.compile(“\\d{4}-(0?[1-9]|1[012])-\

\d{2}");
–  Note	that	in	java	you	need	to	write	\\d	instead	of	\d	

• Next,	you	must	create	a	matcher	for	a	specific	piece	of	text	by	
sending	a	message	to	your	pa[ern	
–  Matcher	m	=	p.matcher(“…your	text	goes	here….");	

• Points	to	no5ce:	
–  Pa[ern	and	Matcher	are	both	in	java.u5l.regex	
–  Neither	Pa[ern	nor	Matcher	has	a	public	constructor;	you	create	

these	by	using	methods	in	the	Pa[ern	class	
–  The	matcher	contains	informa5on	about	both	the	pa[ern	to	use	and	

the	text	to	which	it	will	be	applied	

R
egular expression in Java

32	

Regex	in	java	

• Now	that	we	have	a	matcher	m,	
–  m.matches()	returns	true	if	the	pa[ern	matches	the	en5re	text	

string,	and	false	otherwise	
–  m.lookingAt()	returns	true	if	the	pa[ern	matches	at	the	

beginning	of	the	text	string,	and	false	otherwise	
–  m.find()	returns	true	if	the	pa[ern	matches	any	part	of	the	text	

string,	and	false	otherwise	
•  If	called	again,	m.find()	will	start	searching	from	where	the	last	match	was	
found	

•  m.find()	will	return	true	for	as	many	matches	as	there	are	in	the	string;	
ader	that,	it	will	return	false		

•  When	m.find()		returns	false,	matcher	m	will	be	reset	to	the	beginning	of	
the	text	string	(and	may	be	used	again)	

R
egular expression in java

33	

Regex	example		
import	java.u5l.regex.*;					
public	class	RegexTest	{	
public	staCc	void	main(String	args[])	{	

	String	pa[ern	=	"\\d{4}-(0?[1-9]|1[012])-\\d{2}";	
	String	text	=	"final	exam	2008-04-22,	or	2008-4-22,	but	not	 	 	
	2008-22-04";	

	Pa[ern	p	=	Pa[ern.compile(pa[ern);	
	Matcher	m	=	p.matcher(text);	
	while	(m.find())	{	
	 	System.out.println("valid	date:"+text.substring(m.start(),		m.end()));	
	}					
	}	

}	
	

Printout:	
–  valid	date:2008-04-22	
–  valid	date:2008-4-22	

R
egular expression in java

34	

More	shorthand	nota5on	in	specific	tools,	like	regex	
package	in	Java	

•  Different	sodware	tools	have	slightly	different	nota5ons	(e.g.	regex,	grep,	
JLEX);	

•  Shorthand	nota5ons	from	regex	package	
–  . 	 	any	one	character	except	a	line	terminator	
–  \d 	a	digit:	[0-9]	
–  \D 	a	non-digit:	[^0-9]	
–  \s 	a	white	space	character:	[\t\n\r]	
–  \S 	a	non-whitespace	character:	[^\s]	
–  \w 	a	word	character:	[a-zA-Z_0-9]	
–  \W 	a	non-word	character:	[^\w]	

•  Get	familiar	with	regular	expression	using	the	regexTester	Applet.	

•  Note	that	String	class	since	Java1.4	provides	similar	methods	for	regular	
expression	

R
egular expression in java

35	

Try	RegexTester	

•  Running	at	course	web	site	as	an	applet;	
–  h[p://cs.uwindsor.ca/~jlu/214/regex_tester.htm	

• Write	regular	expressions	and	try	the	match(),	find()	methods;	

• What	if	3q14	instead	of	3.14	is	the	string	to	be	matched?	Why?	
•  groups	are	numbered	by	coun5ng	their	opening	parentheses	from	led	to	right.		

–  ((A)(B(C)))	has	four	groups:	
–  1				((A)(B(C)))	
–  2				(A)	
–  3				(B(C))	
–  4				(C)	

R
egular expression

36	

Prac5ce	regular	expression	using	grep	

Use	grep	to	search	for	certain	pa[ern	in	html	files;	
–  Search	for	Canadian	postal	code	in	a	text	file;	
–  Search	for	Ontario	car	plate	number	in	a	text	file.	

–  	use	tcsh.	Type		
•  %	tcsh		

–  Prepare	text	file,	say	“test”,	that	consists	of	sample	postal	code	etc.		
–  Type	

•  grep	‘[a-z][0-9][a-z]	[0-9][a-z][0-9]’	test	

•  grep	–i	‘[a-z][0-9][a-z]	[0-9][a-z][0-9]’	test	
	

R
egular expression in unix

37	

Prac5ce	the	following	grep	commands:	
grep	'cat'	grepTest	
		-you	will	find	both	"cat"	and	"vaca5on”	
grep	'\<cat\>'	grepTest		

			--word	boundary		
grep	-i	'\<cat\>'	grepTest		

–  			ignore	the	case	
grep	'\<ega\.a[\.com\>'	grepTest	

-meta	character	
grep	'"[^"]*"'	grepTest	

				--find	quoted	string	
egrep	'[a-z][0-9][a-z]	?[0-9][a-z][0-9]'	grepTest		

–  		find	postal	code,	only	if	it	is	in	lower	case	
egrep	-i	'[a-z][0-9][a-z]	?[0-9][a-z][0-9]'	
grepTest		

–  		ignore	the	case	
grep	'q[^u]'	grepTest				

	--won't	find	"iraq",	but	will	find	"iraqi"	
grep	'^cat'	grepTest		

	find	only	lines	start	with	cat	
•  egrep	is	similar	to	grep,	but	some	pa[erns	
only	work	in	egrep.		

R
egular expression in unix

megawatt computing
ega.att.com
Line with uppercase Cat and Dog.
214 cat vacation Cat Dog
vacation only
capital Cat
the cat likes the dog
"quoted string "
iraq
iraqi
Qantas
ADBB 123
ADBB12
N9B 3P5
N9B3P5
01-16-2004
14-14-2004

38	

Unix	machine	account	

• Apply	for	a	unix	account:	
–  Write	to	accounts@cs.uwindsor.ca	

• Access	unix	machines	at	home:	
–  You	need	to	use	SSH;	
–  One	place	to	download:		

•  www.uwindsor.ca/its	-->	services/downloads	

39	

RE	and	Finite	state	Automaton	(FA)	
•  Regular	expression	is	a	declara5ve	way	to	describe	the	tokens	

–  It	describes	what	is	a	token,	but	not	how	to	recognize	the	token.	
•  FA	is	used	to	describe	how	the	token	is	recognized	

–  FA	is	easy	to	be	simulated	by	computer	programs;	

•  There	is	a	1-1	correspondence	between	FA	and	regular	expression	
–  Scanner	generator	(such	as	JLex)	bridges	the	gap	between	regular	expression	

and	FA.		

Scanner generator

FA RE
Java
scanner
program

String stream

Tokens

40	

Inside	scanner	generator	

•  Main	components	of	scanner	
genera5on	
–  RE	to	NFA	
–  NFA	to	DFA	
–  Minimiza5on	
–  DFA	simula5on	

RE

NFA

DFA

Minimized DFA

Program

Thompson construction

Subset construction

DFA simulation Scanner
generator

Minimization

41	

Finite	automata	

•  FA	also	called	Finite	State	Machine	(FSM)	
–  Abstract	model	of	a	compu5ng	en5ty;	
–  Decides	whether	to	accept	or	reject	a	string.	

•  Two	types	of	FA:	
–  Non-determinis5c	(NFA):	Has	more	than	one	alterna5ve	ac5on	

for	the	same	input	symbol.									
–  Determinis5c	(DFA):	Has	at	most	one	ac5on	for	a	given	input	

symbol.	
•  Example:	how	do	we	write	a	program	to	recognize	java	
iden5fiers?		

Start
letter

letter

digit

s0 s1 S0:

 if (getChar() is letter) goto S1;

S1: if (getChar() is letter or digit) goto S1;

A
utom

ata

S

a, b
a

B

Automaton:	a	mechanism	that	is	rela5vely	self-opera5ng		--	webster	

42	

Non-determinis5c	Finite	Automata	(FA)	

•  NFA	(Non-determinis5c	Finite	Automaton)	is	a	5-tuple	(S,	Σ, δ, S0, F):	
–  	S:	a	set	of	states;	
–  	Σ:	the	symbols	of	the	input	alphabet;	
–  	δ	:	a	transi5on	func5on;			

•  	move(state,	symbol)	à	a	set	of	states	

–  	S0:		s0	∈S,	the	start	state;	
–  	F:	F	⊆	S,	a	set	of	final	or	accep5ng	states.	

•  Non-determinis5c	--	a	state	and	symbol	pair	can	be	mapped	to	a	set	of	
states.		
–  It	is	determinis5c	if	the	result	of	transi5on	consists	of	only	one	state.	

•  Finite—the	number	of	states	is	finite.	

A
utom

ata

Start
letter

letter

digit

s0 s1

43	

Transi5on	Diagram	

•  FA	can	be	represented	using	transi5on	diagram.	
•  Corresponding	to	FA	defini5on,	a	transi5on	diagram	has:	

–  States	:	Represented	by	circles;	
–  Σ: Alphabet,	represented	by	labels	on	edges;
–  Moves	:		Represented	by	labeled	directed	edges	between	states.	The	label	

is	the	input	symbol;	
–  Start	State	:		arrow	head;	
–  Final	State	(s)	:		represented	by	double	circles.	

•  Example	transi5on	diagram	to	recognize	(a|b)*abb		
	

q0 q3
a

q1
b

a, b

q2
b

A
utom

ata

44	

Simple	examples	of	FA	

• Epsilon	

• a	

• a*		

• a+	

•  (a|b)*	

start

a

0

start

a

1
a

0

start

a

0

b

start

 a, b

0

start

1

a
0

start

1

ε
0

A
utom

ata

45	

Procedures	of	defining	a	DFA/NFA	

• Define	input	alphabet	and	ini5al	state	
• Draw	the	transi5on	diagram	
• Check	

–  all	states	have	out-going	arcs	labeled	with	all	the	input	symbols	(DFA).	
–  Are	there	any	missing	final	states?	
–  Are	there	any	duplicate	states?	
–  all	strings	in	the	language	can	be	accepted.	
–  all	strings	not	in	the	language	can	not	be	accepted.	

• Name	all	the	states	
• Define	(S,	Σ,	δ,	q0,	F)		

A
utom

ata

46	

Example	of	construc5ng	a	FA	

• Construct	a	DFA	that	accepts	a	language	L	over	Σ	=	{0,	1}	
such	that	L		is	the	set	of	all	strings	with	any	number	of		“0”s	
followed	by	any	number	of	“1”s.	

• Regular	expression:	0*1*	
• Σ	=	{0,	1}	
• Draw	ini5al	state	of	the	transi5on	diagram	

Start

A
utom

ata

47	

Example	of	construc5ng	a	FA	(cont.)	

• Drad	the	transi5on	diagram	

	

Start 1

0 1

0

•  Is	“111”	accepted?	
• The	ledmost	state	has	missed	an	arc	with	input	“1”	

Start 1

0 1

0

1

A
utom

ata

•  Is	“00”	accepted?		

48	

Example	of	construc5ng	a	FA	(cont.)	

•  Is	“00”	accepted?		
• The	ledmost	two	states	are	also	final	states	

–  First	state	from	the	led:	ε	is	also	accepted	
–  Second	state	from	the	led:	

strings	with	“0”s	only	are	also	accepted	

Start 1
0 1

0

1

A
utom

ata

49	

Example	of	construc5ng	a	FA	(cont.)	

• The	ledmost	two	states	are	duplicate	
–  their	arcs	point	to	the	same	states	with	the	same	symbols	

Start 1

0 1

• Check	that	they	are	correct	
–  All	strings	in	the	language	can	be	accepted	

•  ε	is	accepted	
•  strings	with	“0”s	/	“1”s	only	are	accepted	

–  All	strings	not	belonged	to	the	language	can	not	be	accepted	
• Name	all	the	states	

Start
1

0 1

q0 q1

A
utom

ata

50	

How	does	FA	work	

•  NFA	defini5on	for	(a|b)*abb	
–  S	=	{q0,	q1,	q2,	q3	}	
–  Σ	=	{	a,	b	}	
–  Transi5ons:		move(q0,a)={q0,	q1},	move(q0,b)={q0},	
–  s0	=	q0	
–  F	=	{	q3	}	

•  Transi5on	diagram	representa5on	
–  Non-determinism:		

•  exi5ng	from	one	state	there	are	mul5ple	edges	labeled	with	same	symbol,	or	
•  There	are	epsilon	edges.	

–  How	does	FA	work?	Input:		ababb	

move(q0,	a)	=	q1	
move(q1,	b)	=	q2	
move(q2,	a)	=	?	(undefined)	
	
REJECT	!	
	

move(q0, a) = q0
move(q0, b) = q0
move(q0, a) = q1
move(q1, b) = q2
move(q2, b) = q3

ACCEPT !

q0 q3
a

q1
b

a,b

q2
b

A
utom

ata

51	

FA	for	(a|b)*abb	

–  What	does	it	mean	that	a	string	is	accepted	by	a	FA?		
•  An	FA	accepts	an	input	string	x	iff	there	is	a	path	from	the	start	state	to	a	
final	state,	such	that	the	edge	labels	along	this	path	spell	out	x;	

–  A	path	for	“aabb”:							q0àa		q0àa	q1àb	q2àb		q3	
–  Is		“aab”	acceptable?	

q0àa		q0àa	q1àb	q2			
q0àa		q0àa	q0àb	q0	

•  The	answer	is	no;	
•  Final	state	must	be	reached;	
•  In	general,	there	could	be	several	paths.	

–  Is		“aabbb”	acceptable?	
q0àa		q0àa	q1àb	q2àb		q3	

•  The	answer	is	no.	
•  Labels	on	the	path	must	spell	out	the	en5re	string.	

q0 q3
a

q1
b

a,b

q2
b

A
utom

ata

52	

Example	of	NFA	with	epsilon	symbol	

•  NFA	accep5ng	aa*|bb*
–  Is	“aaab”	acceptable?		
–  Is	“aaa”	acceptable?	

0

1

3
b

b

4 ε

ε

a

a

2

A
utom

ata

Simula5ng	an	NFA	

•  	Keep	track	of	a	set	of	states,	ini5ally	the	start	state	and	
everything	reachable	by	ε-moves.	

• For	each	character	in	the	input:	
–  Maintain	a	set	of	next	states,	ini5ally	empty.	

• For	each	current	state:	
–  	Follow	all	transi5ons	labeled	with	the	current	le[er.	
–  Add	these	states	to	the	set	of	new	states.	

• Add	every	state	reachable	by	an	ε-move	to	the	set	of	next	
states.	

• Complexity:	O(mn2)	for	strings	of	length	m	and		automata	
with	n	states	

53	

q0 q3
a

q1
b

a,b

q2
b

54	

Transi5on	table	

•  It	is	one	of	the	ways	to	implement	the	transi5on	func5on	
–  There	is	a	row	for	each	state;	
–  There	is	a	column	for	each	symbol;	
–  Entry	in	(state	s,	symbol	a)	is	the	set	of	states	can	be	reached	from	state	s	on	

input	a.		

•  Nondeterminis5c:		
–  The	entries	are	sets	instead	of	a	single	state	

States	 Input	

a	 b	

>q0	 {q0,	q1}	 {q0}	

q1	 {q2}	

q2	 {q3}	

*q3	

A
utom

ata

q0 q3
a

q1
b

a,b

q2
b

55	

DFA	(Determinis5c	Finite	Automaton)	
•  A	special	case	of	NFA	

–  The	transi5on	func5on	maps	the	pair	(state,	symbol)	to	one	state.		
•  When	represented	by	transi5on	diagram,		for	each	state	S	and	symbol	a,	there	

is	at	most	one	edge	labeled	a	leaving	S;	
•  When	represented	transi5on	table,		each	entry	in	the	table	is	a	single	state.	

–  There	is	no	ε-transi5on	
•  Example:	DFA	for	(a|b)*abb		

•  Recall	the	NFA:	

States	 Input	

a	 b	

Q0	 Q1	 q0	

Q1	 Q1	 Q2	

Q2	 Q1	 Q3	

Q3	 Q1	 Q0	

q0

q3

a

a

q1 q2

a
b b

b

a b

q0 q3
a

q1
b

a,b

q2
b

A
utom

ata

56	

DFA	to	program	

•  NFA	is	more	concise,	but	not	easy	
to	implement;	

•  In	DFA,	since	transi5on	tables	
don’t	have	any	alterna5ve	op5ons,	
DFAs	are	easily	simulated	via	an	
algorithm.	

RE

NFA

DFA

Minimized DFA

Program

Thompson construction

Subset construction

DFA simulation
Scanner
generator

Minimization

A
utom

ata sim
ulation

57	

Simulate	a	DFA	

•  Algorithm	to	simulate	DFA	
Input:	String	x,	DFA	D.		

•  Transi5on	func5on	is	move(s,c);		
•  Start	state	is	S0;	
•  Final	states	are	F.	

Output:	“yes”	if	D	accepts	x;	“no”	otherwise;	
Algorithm:	

currentState ← s0
currentChar ← nextchar;
while currentChar ≠ eof {
 currentState ← move(currentState, currentChar);
 currentChar ← nextchar;
}
if currentState is in F then return “yes”
 else return “no”

	
•  Run	the	FA	simulator!	
• Write	a	simulator.	

A
utom

ata sim
ulation

58	

NFA	to	DFA	

• Where	we	are:	we	are	
going	to	discuss	the	
transla5on	from	NFA	to	
DFA.		

• Theorem:	A	language	L	is	
accepted	by	an	NFA	iff	it	
is	accepted	by	a	DFA	

• Subset	construc5on	is	
used	to	perform	the	
transla5on	from	NFA	to	
DFA.	

RE

NFA

DFA

Minimized DFA

Program

Thompson construction

Subset construction

DFA simulation Scanner
generator

Minimization

N
FA to D

FA

59	

Summarize	

• We	have	covered	many	concepts	
–  RE,	Regular	grammar,		FA(NFA,DFA),	

Transi5on	Diagram,	Transi5on	Table.		
• What	is	the	rela5onship	between	them?		

–  RE,	Regular	grammar,	NFA,	DFA,	Transi5on	
Diagram	are	all	of	the	same	expressive	
power;	

–  RE	is	a	declara5ve	descrip5on,	hence	easier	
for	us	to	write;	

–  DFA	is	closer	to	machine;	
–  Transi5on	Diagram	is	a	graphic	

representa5on	of	FA;	
–  Transi5on	Table	is	one	of	the	methods	to	

implement	the	transi5on	func5ons	in	FA.	
• What	about	regular	grammar?	

–  We	will	see	its	relevance	in	syntax	analysis.	
•  Another	path:	how	to	derive	RE	from	DFA?	

RE

NFA

DFA

Minimized DFA

Program

Thompson construction

Subset construction

DFA simulation

60	

Regular	expression	and	regular	grammar	

• RE	to	regular	grammar:	
–  Draw	an	automata	for	the	RE	
–  Construct	regular	grammar	from	automaton	
–  Example	

S0àle[er	S1	
S1àle[er	S1	
S1àdigit	S1	
S1àε			

Start
letter

letter

digit

s0 s1

61	

Conver5ng	DFAs	to	REs	

1.  Combine	serial	links	by	concatena5on	
2.  Combine	parallel	links	by	alterna5on	
3.  Remove	self-loops	by	Kleene	closure	
4.  Select	a	node	(other	than	ini5al	or	final)	for	removal.		Replace	

it	with	a	set	of	equivalent	links	whose	path	expressions	
correspond	to	the	in	and	out	links	

5.  Repeat	steps	1-4	un5l	the	graph	consists	of	a	single	link	
between	the	entry	and	exit	nodes.	

62	

Example	

0 1 2

6

4 3
d

a

b
c

d

7

5
a

b d

d

b

c

0 1 2

6

4 3
d a|b|c d

7

5
a

b d

d

b|c

0 4 3
d(a|b|c)d

5
a d

b(b|c)d

63	

Example	(cont.)	

0 4 3
d(a|b|c)d

5
a d

b(b|c)da

0 4 3
d(a|b|c)d

5
a (b(b|c)da)*d

0
d(a|b|c)da(b(b|c)da)*d

5

64	

Issues	not	covered	

• Regular	expression	to	DFA	
directly;	

RE

NFA

DFA

Minimized DFA

Program

Thompson construction

Subset construction

DFA simulation

65	

Lexical	acceptors	and	Lexical	analyzers	

• DFA/NFA	accepts	or	rejects	a	string;	
–  They	are	called	lexical	acceptors;	

• But	the	purpose	of	a	lexical	analyzer	is	not	just	to	accept	or	
reject	string.	There	are	several	issues:	
–  Mul)ple	matches:		One	regular	expression	may	match	several	

substrings.		
•  e.g.,			ID=le[er+,	String=“abc”,	ID	can	match	with	a, ab, abc.		
•  We	should	find	the	longest	matches,	i.e.,	longest	substring	of	the	input	
that	matches	the	regular	expression;	

–  Mul)ple	REs:	What	if	one	string	can	match	several	REs?	
•  e.g.,	ID=le[er+,	INT=“int”,	
•  String	“int”	can	be	both	a	reserved	word	INT,	and	an	iden5fier.	How	can	
we	decide	it	is	a	reserved	word	instead	an	usual	iden5fier?		

–  Ac)ons:	Once	a	token	is	recognized,	we	want	to	perform	different	
tasks	on	them,	instead	of	simply	return	the	string	recognized.			

66	

Longest	match	

•  When	several	substrings	can	match	the	same	RE,	we	should	return	the	longest	one.		
–  e.g.,			ID=le[er+,	String=“abc”,	ID	can	match	with	a,	ab,	abc.	

•  Problem:	what	if	a	lexer	goes	past	a	final	state	of	a	shorter	token,	but	then	doesn’t	
find	any	other	matching	token	later?		

•  Example:	Consider	R=00|10|0011	and	input	w=0010.	

• We	reach	state	C	with	no	transi5on	on	input	0.	
•  Solu5on:	Keeping	track	of	the	longest	match	just	means	remembering	
the	last	5me	the	DFA	was	in	a	final	state;	

S
0 1

0

0

1

1
A B

F

C

E

D

67	

Longest	match	(cont.)	

•  This	is	done	by	introducing	the	following	variables:	
–  LastFinal:	final	state	most	recently	encountered;	
–  InpputPosi5onAtLastFinal:	most	recent	posi5on	in	the	input	string	in	which	

the	execu5on	of	the	DFA	was	in	a	final	state;	
–  Yytext:	Text	of	the	token	being	matched,	i.e.,	substring	between	

ini5alInputPosi5on	and	inputPosi5onAtLastFinal.		
•  This	way	a	longest	match	is	recognized	when	the	execu5on	of	the	DFA	
reaches	a	dead-end,	i.e.,	a	state	with	no	transi5ons.		

•  Each	5me	a	token	is	recognized,	the	execu5on	of	the	DFA	resumes	in	the	
ini5al	state	to	recognize	the	next	token.	

•  In	general,	when	a	token	is	recognized,	currentInputPosi5on	may	be	far	
beyond	inputPosi5onAtLastFinal.	

S
0 1

0

0

1

1
A B

F

C

E

D

68	

Handling	mul5ple	REs	

•  Combine	the	NFAs	of	all	the	REs	into	a	single	finite	automaton.	
• What	if	two	REs	matches	the	same	string?	

–  E.g.,	for	a	string	“abb”,	both	REs	“a*bb”	and	“ab*”	matches	the	string.	Which	
RE	is	intended?	

–  It	is	important	because	different	ac5ons	may	take	depending	on	the	RE	being	
matched;	

–  Solu5on:	Order	REs:	the	RE	precedes	will	match	first.	

•  How	about	reserved	words?	
–  For	string	“int”,	should	we	return	token	INT	or	token	ID?	
–  Two	solu5ons:		

•  Construct	a	reserved	word	table	and	look	up	the	table	every	5me	an	iden5fier	is	
encountered;	

•  Put	“int”	as	an	RE,	and	put	that	RE	before	the	iden5fier	RE.	So	whenever	the	string		
“int”	is	met,	RE	“int”	will	be	matched	first	and	the	token	INT	will	be	returned	
(instead	of		the	token	ID).		

69	

Ac5ons		

• Ac5ons	can	be	added	for	final	states;	
• Ac5ons	can	be	described	in	a	usual	programming	language.	In	
JLex,	ac5on	is	described	in	Java.	

70	

Build	a	scanner	for	a	simple	language	

• The	language	of	assignment	statements:	
	 	 	LHS	=	RHS	
	 	int	LHS	=	RHS	

	 	 	…	
–  led-hand	side	of	assignment	is	an	iden5fier,	with	op5onal	type	

declara5on;	
–  Iden5fier	is	a	le[er	followed	by	one	or	more	le[ers	or	digits	
–  right-hand	side	is	one	of	the	following:		

•  ID	+	ID	
•  ID	*	ID	
•  ID	==	ID	

• Example	statement	
int	x3=x1+x2	

71	

Step	1:	Define	tokens	

Our	language	has	six	type	of	tokens.	
–  they	can	be	defined	by	six	regular	expressions:		

	

token	 Regular	expression	

ASSIGN	 	"="		

ID	 		 le[er	(le[er	|	digit)*		

INT	 “int”	

PLUS	 		 "+"	

TIMES	 		 "*"		

EQUALS	 "=="		

72	

Step	2:	Convert	REs	to	NFAs	

“=”

letter

“+”

“*”

“=”

ASSIGN:

ID:

PLUS:

TIMES:

EQUALS:

Letter, digit

“=”

Step 3: Combine the NFAs, Convert NFAs to DFAs, minimize the
DFAs

INT: “n” “i” “t”

ε

73	

Step	4:	Extend	the	DFA	
• Modify	the	DFA	so	that	a	final	state	can	have	

–  an	associated	ac5on,	such	as:	"put	back	one	character"	or		"return	token	
XXX“.	

• For	example,	the	DFA	that	recognizes	iden5fiers	can	be	modified	
as	follows	
–  recall	that	scanner	is	called	by	a	parser	(one	token	is	returned	per	each	

call)	
–  hence	ac5on	return	puts	the	scanner	into	state	S	

letter

any char except
letter or digit

letter | digit
action:

•  put back 1 char
•  return ID

S

74	

Step	5:	Combined	FA	for	our	language	
•  combine the DFAs for all of the tokens in to a single FA.

letter any char except letter or digit

letter | digit
put back 1 char;
return ID

S “*”
ID

return EQUALS
“=”

any char except “=”

put back 1 char; return ASSIGN

return TIMES

“+”

return PLUS

“=”

F1

F4

 F3

 F2

TMP F5

“n”
“i”

“t”

SP return INT, put
back one char

F6

I1
I2

I3

•  It is not a DFA. Just for illustration purpose.

F7
SP

75	

Example	trace	for	“int	x3=x1+x2”	
	

Input	 Last	final	
state	

Current	
state	

Input	posiCon	at	
lastFinalState	

Current	
input	
posiCon	

IniCal	
input	
posiCon		

acCon	

	int	x3=x1+x2	 0	 S	 0	 0	 0	

	nt	x3=x1+x2	 0	 I1	 1	 1	 0	

t	x3=x1+x2	 0	 I2	 2	 2	 0	

[sp]x3=x1+x2	 0	 I3	 3	 3	 0	

x3=x1+x2	 0	 F6	 4	 4	 0	 Ac5on	1	

putBackOneChar();	Yytext=substring(0,	4-1);	in5alInputPosi5on=3;	currentSate	=	S;	

[sp]x3=x1+x2	 0	 S	 3	 3	 3	

x3=x1+x2	 0	 SP	 4	 4	 3	 Ac5on	2	

Yytext=substring(3,	3);	ini5alInputPosi5on=4;	currentState=S;	

x3=x1+x2	 0	 S	 4	 4	 4	

3=x1+x2	 0	 ID	 5	 5	 4	

=x1+x2	 0	 ID	 6	 6	 4	

x1+x2	 0	 F2	 7	 7	 4	 Ac5on	3	

putBackOneChar;	Yytext=substring(4,7-1);ini5alInputPosi5on=6;	currentState=S;		

=x1+x2	 0	 S	 6	 6	 6	

...	...	

76	

Scanner	generator:	history	

• LEX	
–  	A	lexical	analyzer	generator,	wri[en	by	Lesk	and	Schmidt	at	Bell	Labs	

in	1975	for	the	UNIX	opera5ng	system;		
–  It	now	exists	for	many	opera5ng	systems;	
–  LEX	produces	a	scanner	which	is	a	C	program;	
–  LEX	accepts	regular	expressions	and	allows	ac5ons	(i.e.,	code	to	

executed)	to	be	associated	with	each	regular	expression.		

•  JLex	
–  Lex	that	generates	a	scanner	wri[en	in	Java;	
–  Itself	is	also	implemented	in	Java.	

• There	are	many	similar	tools,	for	most	programming	languages	

JLex

77	

Overall	picture	

Tokens

Scanner generator

NFA RE
Java
scanner
program

String stream

DFA

Minimize DFA

Simulate DFA

JLex

78	

Inside	lexical	analyzer	generator	

• How	does	a	lexical	analyzer	
work?	
–  Get	input	from	user	who	defines	

tokens	in	the	form	that	is	
equivalent	to	regular	grammar	

–  Turn	the	regular	grammar	into	a	
NFA	

–  Convert	the	NFA	into	DFA	
–  Generate	the	code	that	simulates	

the	DFA	

Classes in JLex:

CAccept
CAcceptAnchor
CAlloc
CBunch
CDfa
CDTrans
CEmit
CError
CInput
CLexGen
CMakeNfa
CMinimize
CNfa
CNfa2Dfa
CNfaPair
CSet
CSimplifyNfa
CSpec
CUtility
Main
SparseBitSet
ucsb

JLex

79	

How	scanner	generator	is	used		

•  Write	the	scanner	specifica5on;	
•  Generate	the	scanner	program	using	scanner	generator;	
•  Compile	the	scanner	program;	
•  Run	the	scanner	program	on	input	streams,	and	produce	sequences	of	tokens.	

Scanner
generator
(e.g., JLex)

Scanner definition
(e.g., JLex spec)

Scanner program,
e.g., Scanner.java

Java
compiler

Scanner program
(e.g., Scanner.java)

Scanner.class

Scanner
Scanner.class Input stream Sequence of

tokens

JLex

80	

JLex	specifica5on	

•  	JLex	specifica5on	consists	of	three	parts,	separated	by	“%%”	

User	Java	code,	to	be	copied	verba5m	into	the	scanner	program,	placed	before	
the	lexer	class;	

	
%%	
	
JLex	direc5ves,		
macro	defini5ons,	commonly	used	to	specify	le[ers,	digits,	whitespace;	
	
%%	
	
Regular	expressions	and	ac5ons:	

•  Specify	how	to	divide	input	into	tokens;	
•  Regular	expressions	are	followed	by	ac5ons;	

–  Print	error	messages;	return	token	codes;	

	

JLex

81	

First	JLex	example	simple.lex	

•  Recognize	int	and	iden5fiers.	
1.  %%	
2.  %{				public	sta5c	void	main(String	argv[])	throws	java.io.IOExcep5on	{	
3.  	 		MyLexer	yy	=	new	MyLexer(System.in);	
4.  	 		while	(true){	
5.  	 					yy.yylex();	
6.  								}	
7.  						}	
8.  %}	
9.  %notunix	
10. %type	void	
11. %class	MyLexer	
12. %eofval{	return;	
13. %eofval}	

14.  IDENTIFIER	=	[a-zA-Z][a-zA-Z0-9]*	

15. %%	

16.  "int"	{	System.out.println("INT	recognized");}	
17.  {IDENTIFIER}	{	System.out.println("ID	is	..."	+	yytext());}	
18.  \r|\n	{}	
19.  .	{}	

JLex

82	

Code	generated	will	be	in	simple.lex.java		

class	MyLexer	{	
				public	sta5c	void	main(String	argv[])	throws	java.io.IOExcep5on	{	

			MyLexer	yy	=	new	MyLexer(System.in);	
			while	(true){	
						yy.yylex();	

								}	
					}	
				public	void	yylex(){	
							
							case	5:{	System.out.println("INT	recognized");	}		
							case	7:{	System.out.println("ID	is	..."	+	yytext());	}	
									
				}	
}	

	 	 	 	 		

Copied from
internal code
directive

JLex

83	

Running	the	JLex	example	
•  Steps	to	run	the	JLex	

D:\214>java	JLex.Main	simple.lex	
Processing	first	sec5on	--	user	code.	
Processing	second	sec5on	--	JLex	declara5ons.	
Processing	third	sec5on	--	lexical	rules.	
Crea5ng	NFA	machine	representa5on.	
NFA	comprised	of	22	states.	
Working	on	character	classes.::::::::.	
NFA	has	10	dis5nct	character	classes.	
Crea5ng	DFA	transi5on	table.	
Working	on	DFA	states...........	
Minimizing	DFA	transi5on	table.	
9	states	ader	removal	of	redundant	states.	
Outpu�ng	lexical	analyzer	code.	
	
D:\214>move	simple.lex.java	MyLexer.java	
	
D:\214>javac	MyLexer.java	
	
D:\214>java	MyLexer								//	it	is	wai5ng	for	keyboard	input	
int	myid0	
INT	recognized	
ID	is	...myid0	

JLex

84	

Exercises	

• Try	to	modify	JLex	direc5ves	in	the	previous	JLex	spec,	and	
observe	whether	it	is	s5ll	working.	If	it	is	not	working,	try	to	
understand	the	reason.		
–  Remove	“%notunix”	direc5ve;	
–  Change		“return;”	to	“return	null;”;	
–  Remove	“%type	void”;	
– 		

• Move	the	Iden5fier	regular	expression	before	the	“int”	RE.		
What	will	happen	to	the	input	“int”?		

• What	if	you	remove	the	last	line	(line	19,	“.	{}”)	?		

JLex

85	

Change	simple.lex:	read	input	from	file		

1.  import	java.io.*;	
2.  %%	
3.  %{				public	sta5c	void	main(String	argv[])	throws	java.io.IOExcep5on	{	
4.  	 		MyLexer	yy	=	new	MyLexer(new	FileReader(“input”));	
5.  	 		while	(yy.yylex()>=0);	
6.  				}	
7.  %}	
8.  %integer	
9.  %class	MyLexer	

10.  %%	

11.  "int"	{	System.out.println("INT	recognized");}	
12.  [a-zA-Z_][a-zA-Z0-9_]*	{	System.out.println("ID	is	..."	+	yytext());}	
13.  \r|\n|.	{}	

•  %integer:	to	make	the	returning	type	of	yylex()	as	int.			

JLex

86	

Extend	the	example:	add	returning	and	use	classes	
–  When	a	token	is	recognized,	in	most	of	the	case	we	want	to	return	a	token	object,	so	that	

other	programs	can	use	it.		
class	UseLexer	{		
		public	sta5c	void	main(String	[]	args)	throws	java.io.IOExcep5on	{	
				Token	t;			MyLexer2	lexer=new	MyLexer2(System.in);	
					while	((t=lexer.yylex())!=null)	System.out.println(t.toString());	
		}	
}	
class	Token	{	
		String	type;			String	text;					int	line;	
		Token(String	t,	String	txt,	int	l)	{	type=t;	text=txt;	line=l;	}	
		public	String	toString(){	return	text+"	"	+type	+	"	"	+line;	}	
}	
%%	
%notunix	
%line	
%type	Token	
%class	MyLexer2	
%eofval{	return	null;	
%eofval}	
IDENTIFIER	=	[a-zA-Z_][a-zA-Z0-9_]*	
%%	
"int"	{	return(new	Token("INT",	yytext(),	yyline));}	
{IDENTIFIER}	{	return(new	Token("ID",	yytext(),	yyline));}	
\r|\n	{}	
.	{}	

JLex

87	

Code	generated	from	mylexer2.lex	

class	UseLexer	{		
		public	sta5c	void	main(String	[]	args)	throws	java.io.IOExcep5on	{	
				Token	t;			MyLexer2	lexer=new	MyLexer2(System.in);	
					while	((t=lexer.yylex())!=null)	System.out.println(t.toString());	
		}	
}	
class	Token	{	
		String	type;			String	text;					int	line;	
		Token(String	t,	String	txt,	int	l)	{	type=t;	text=txt;	line=l;	}	
		public	String	toString(){	return	text+"	"	+type	+	"	"	+line;	}	
}	
	
Class	MyLexer2	{	
		public	Token		yylex(){	
							
							case	5:	{	return(new	Token("INT",	yytext(),	yyline));	}	
							case	7:	{	return(new	Token("ID",	yytext(),	yyline));	}	

	 									
				}	
	
}	

JLex

88	

Running	the	extended	lex	specifica5on	mylexer2.lex	

D:\214>java	JLex.Main	mylexer2.lex	
Processing	first	sec5on	--	user	code.	
Processing	second	sec5on	--	JLex	declara5ons.	
Processing	third	sec5on	--	lexical	rules.	
Crea5ng	NFA	machine	representa5on.	
NFA	comprised	of	22	states.	
Working	on	character	classes.::::::::.	
NFA	has	10	dis5nct	character	classes.	
Crea5ng	DFA	transi5on	table.	
Working	on	DFA	states...........	
Minimizing	DFA	transi5on	table.	
9	states	ader	removal	of	redundant	states.	
Outpu�ng	lexical	analyzer	code.	
	
D:\214>move	mylexer2.lex.java	MyLexer2.java	
	
D:\214>javac	MyLexer2.java	
	
D:\214>java	UseLexer	
int	
int	INT	0	
x1	
x1	ID	1	

JLex

89	

Another	example	

1						import	java.io.IOExcep5on;	
	2						%%	
	3						%public	
	4						%class		Numbers_1	
	5						%type			void	
	6						%eofval{	return;	
	8						%eofval}	
	9							
10						%line	
11						%{						public	sta5c	void	main	(String	args	[])	{	
12								Numbers_1	num	=	new	Numbers_1(System.in);	
13								try	{	
14										num.yylex();	
15								}	catch	(IOExcep5on	e)	{	System.err.println(e);	}	
16							}	
17						%}	
18							
19						%%	
20						\r\n						{	System.out.println("---	"	+	(yyline+1));		}	
22						.*\r\n				{	System.out.print		("+++	"	+	(yyline+1)+"\t"+yytext());		}	
	

JLex

90	

User	code	(first	sec5on	of	JLex)	

• User	code	is	copied	verba5m	into	the	lexical	analyzer	source	
file	that	JLex	outputs,	at	the	top	of	the	file.	
–  Package	declara5ons;	
–  Imports	of	an	external	class	
–  Class	defini5ons	

• Generated	code		
package declarations;
import packages;
Class definitions;
class Yylex {

}

• Yylex	class	is	the	default	lexer	class	name.	It	can	be	changed	to	
other	class	name	using	%class	direc5ve.	

JLex

91	

JLex	direc5ves	(Second	sec5on)	

•  Internal	code	to	lexical	analyzer	class	
• Marco	defini5on	
• State	declara5on	
• Character/line	coun5ng	
• Lexical	analyzer	component	5tle	
• Specifying	the	return	value	on	end-of-file	
• Specifying	an	interface	to	implement	

JLex

92	

Internal	Code	to	Lexical	Analyzer	Class	

•  %{ …. %} direc5ve	permits	the	declara5on	of	variables	and	func5ons	internal	
to	the	generated	lexical	analyzer	

•  General	form:	
%{	
						<code	>	
%}	

•  Effect:	<code	>	will	be	copied	into	the	Lexer	class,	such	as	MyLexer.		
class	MyLexer{	
			…..	<code>	……	
}	

•  Example	
public	sta5c	void	main(String	argv[])	throws	java.io.IOExcep5on	{	

	MyLexer	yy	=	new	MyLexer(System.in);	
								while	(true){				yy.yylex();								}							
}	

•  Difference	with	the	user	code	sec5on	
–  It	is	copied	inside	the	lexer	class	(e.g.,	the	MyLexer	class)	

	

JLex

93	

Macro	Defini5on	
•  Purpose:	define	once	and	used	several	5mes;	

–  A	must	when	we	write	large	lex	specifica5on.		
•  General	form	of	macro	defini5on:			

–  <name>	=	<defini5on>	
–  should	be	contained	on	a	single	line	
–  Macro	name	should	be	valid	iden5fiers	
–  Macro	defini5on	should	be	valid	regular	expressions	
–  Macro	defini5on	can	contain	other	macro	expansions,	in	the	standard	

{<name>}	format	for	macros	within	regular	expressions.	
•  Example	

–  Defini5on	(in	the	second	part	of	JLex	spec):	
IDENTIFIER	=	[a-zA-Z_][a-zA-Z0-9_]*	
ALPHA=[A-Za-z_]		
DIGIT=[0-9]	
ALPHA_NUMERIC={ALPHA}|{DIGIT}		

–  Use	(in	the	third	part):	
{IDENTIFIER}	{return	new	Token(ID,	yytext());	}	
	

JLex

94	

State	direc5ve	
•  Same	string	could	be	matched	by	different	regular	expressions,	according	to	
its	surrounding	environment.		
–  String	“int”	inside	comment	should	not	be	recognized	as	a	reserved	word,	not	

even	as	an	iden5fier.		

•  Par5cularly	useful	when	you	need	to	analyze	mixed	languages;	
•  For	example,	in	JSP,	Java	programs	can	be	imbedded	inside	HTML	blocks.	
Once	you	are	inside	Java	block,	you	follow	the	Java	syntax.	But	when	you	are	
out	of	the	Java	block,	you	need	to	follow	the	HTML	syntax.	
–  In	java	“int”	should	be	recognized	as	a	reserved	word;	
–  In	HTML	“int”	should	be	recognized	just	as	a	usual	string.		

•  States	inside	JLex	
<HTMLState>	%{			{	yybegin(JavaState);	}	
<HTMLState>			“int”	{return	string;	}	
<JavaState>			%}			{	yybegin(HTMLState);	}	
<JavaState>					“int”	{return	keyword;	}	

JLex

95	

State	Direc5ve	(cont.)	
•  Mechanism	to	mix	FA	states	and	REs	
•  Declaring	a	set	of	“start	states”	(in	the	second	part	of	JLex	spec)	

%state	state0		[,	state1,		state2,	….]	
•  How	to	use	the	state	(in	the	third	part	of	JLex	spec):	

–  RE	can	be	prefixed	by	the	set	of	start	states	in	which	it	is	valid;	
• We	can	make	a	transi5on	from	one	state	to	another	with	input	RE	

–  yybegin(STATE)	is	the	command	to	make	transi5on	to	STATE;	
•  YYINITIAL	:	implicit	start	state	of	yylex();	

–  But	we	can	change	the	start	state;	
•  Example	(from	the	sample	in	JLex	spec):		

%state COMMENT
%%
<YYINITIAL>if {return new tok(sym.IF,”IF”);}
<YYINITIAL>[a-z]+ {return new tok(sym.ID, yytext());}
<YYINITIAL>”/*” {yybegin(COMMENT);}
<COMMENT>”*/” {yybegin(YYINITIAL);}
<COMMENT>. {}	

JLex

96	

Character	and	line	coun5ng	

•  Some5mes	it	is	useful	to	know	where	exactly	the	token	is	in	the	text.	Token	
posi5on	is	implemented	using	line	coun5ng	and	char	coun5ng.		

•  Character	coun5ng	is	turned	off	by	default,	ac5vated	with	the	direc5ve	
“%char”	
–  Create	an	instance	variable	yychar	in	the	scanner;	
–  zero-based	character	index	of	the	first	character	on	the	matched	region	of	

text.	

•  Line	coun5ng	is	turned	off	by	default,	ac5vated	with	the	direc5ve	“%line”	
–  Create	an	instance	variable	yyline	in	the	scanner;	
–  zero-based	line	index	at	the	beginning	of	the	matched	region	of	text.

•  Example	
“int”		{	return	(new	Yytoken(4,yytext(),yyline,yychar,yychar+3));	}		

JLex

97	

Lexical	analyzer	component	5tles	

• Change	the	name	of	generated	
–  	lexical	analyzer	class				 			%class	<name>	
–  	the	tokenizing	func5on			 		%func5on	<name>	
–  	the	token	return	type						 		%type	<name>	

• Default	names	
class	Yylex	{							/*	lexical	analyzer	class	*/		
			public	Yytoken												/*	the	token	return	type	*/	
																yylex()	{	…}				/*	the	tokenizing	func5on	*/		
			==>	Yylex.yylex() returns Yytoken type	

JLex

98	

Specifying	an	Interface	to	implement	

• Form:					%implements	<InterfaceName>	
• Allows	the	user	to	specify	an	interface	which	the	Yylex	or	your	
lexer	class	will	implement.	

• The	generated	parser	class	declara5on	will	look	like:	
	class MyLexer implements	InterfaceName	{	
		…….	
}	

JLex

99	

Regular	expression	rules	

	
•  General	form:						regularExpression														{	ac5on}	

•  Example:														{IDENTIFIER}																								{	System.out.println("ID	is	..."	+	yytext());}	

•  Interpreta5on:				Pa[en	to	be	matched							code	to	be	executed	when	the		
																																																																																									pa[ern	is	matched	

•  Code	generated	in	MyLexer:		
																	“	case	2: 	{	System.out.println("ID	is	..."	+	yytext());}	“	

	

JLex

100	

Regular	Expression	Rules	
•  Specifies	rules	for	breaking	the	input	stream	into	tokens	
•  Regular	Expression	+	Ac5ons	(java	code)	
			[<states>]	<expression>			{	<ac5on>}	
	
•  When	matched	with	more	than	one	rule,	

–  choose	the	rule	that	is	given	first	in	the	Jlex	spec.	
•  Refer	the	“int”	and	IDENTIFIER	example.	

•  The	rules	given	in	a	JLex	specifica5on	should	match	all	possible	input.	
•  An	error	will	be	raised	if	the	generated	lexer	receives	input	that	does	not	match	any	
of	its	rules	

–  E.g.,	the	rules	only	listed	the	case	for	Iden5fiers,	and	said	nothing	about	numbers,	but	
your	input	has	numbers.	

–  This	is	the	most	common	error	(more	than	50%)		
–  put	the	following	rule	at	the	bo[om	of	RE	spec	

 .{java.lang.System.out.println(“Error:” + yytext());}
	
dot(.)	will	match	any	input	except	for	the	newline.	

JLex

101	

Available	lexical	values	within	ac5on	code	

•  java.lang.String	yytext()	
–  matches	por5on	of	the	character	input	stream;	
–  always	ac5ve.	

•  Int	yychar	
–  Zero-based	character	index	of	the	first	character	in	the	matched	

por5on	of	the	input	stream;	
–  ac5vated	by	%char	direc5ve.	

•  Int	yyline	
–  Zero-based	line	number	of	the	start	of	the	matched	por5on	of	the	

input	stream;	
–  ac5vated	by	%line	direc5ve.	

JLex

102	

Regular	expression	in	JLex	
•		Special	characters:	?		+	|	()	ˆ	$	/	;	.	=	<	>	[]	{	}	”	\	and	blank	

–  Ader	\	the	special	characters	lose	their	special	meaning.		
–  Example:	\+	

•  Between	double	quotes	”	all	special	characters	but	\	and	”	lose	their	special	
meaning.		
–  Example:	”+”	

•  The	following	escape	sequences	are	recognized:	\b	\n	\t	\f	\r.	
• With	[]	we	can	describe	sets	of	characters.	

–  [abc]	is	the	same	as	(a|b|c).	Note	that	it	is	not	equivalent	to	abc	
–  With	[ˆ]	we	can	describe	sets	of	characters.	
–  [ˆ\n\”]	means	anything	but	a	newline	or	quotes	
–  [ˆa–z]	means	anything	but	ONE	lower-case	le[er	

• We	can	use	.	as	a	shortcut	for	[ˆ\n]	
•  $: denotes	the	end	of	a	line.	If	$	ends	a	regular	expression,	the	expression	
matched	only	at	the	end	of	a	line.	

JLex

103	

Concluding	remarks	
• Focused	on	Lexical	Analysis	Process,	Including	

–  Regular	Expressions	
–  Finite	Automaton	
–  Conversion	
–  Lex	

• Regular	grammar=regular	expression	
• Regular	expressionà	NFAà	DFAà	lexer	
• The	next	step	in	the	compila5on	process	is	Parsing:	

–  Context	free	grammar;	
–  Top-down	parsing	and	bo[om	up	parsing.	

JLex

