03-60-214 Lexical analysis

Lexical analysis in perspective

e LEXICAL ANALYZER: Transforms character stream to token stream

— Also called scanner, lexer, linear analyzer

lexical token
source exicatk .
- parser
program analyzer < Jetnext
token
symbol table
e LEXICAL ANALYZER e PARSER
— Scan Input

— Perform Syntax Analysis
— Remove White Space, New Line, ...

Actions Dictated by Token Order
— Identify Tokens

— Create Symbol Table Update Symbol Table Entries

Create Abstract Representation of
Source

— Insert Tokens into Symbol Table

— Generate Errors
Generate Errors

— Send Tokens to Parser

Where we are

Total=price+tax;

Total

price

tax

uolssaidxs Jejnboy

assignment

Eﬁpr

+

1
id

Lexical analyzer

Parser

Basic terminologies in lexical analysis

e Token
fgo — A classification for a common set of strings
SCT’ — Examples: 1f,<identifier>, <number> ..
% e Pattern
%_ — The rules which characterize the set of strings for a token
. — Recall file and OS wildcards (*.java)

® Lexeme

— Actual sequence of characters that matches pattern and is classified by
a token

— ldentifiers: 1if, price, 10.00, etc...

if (price + gst - rebate <= 10.00) gift := false

uolssaidxs Jejnboy

Examples of token, lexeme and pattern

if (price + gst - rebate <= 10.00) gift := false
Token lexeme Informal description of pattern
if if If
Lparen ((
Identifier price String consists of letters and numbers and starts with a letter
operator + +
identifier gst String consists of letters and numbers and starts with a letter
operator - -
identifier rebate String consists of letters and numbers and starts with a letter
operator <= Less than or equal to
number 10.00 Any numeric constant
rparen))
identifier gift String consists of letters and numbers and starts with a letter
operator = Assignment symbol
identifier false String consists of letters and numbers and starts with a letter

uoissaldxa Jejnbay

Regular expression

Scanner is based on regular expression.

Remember language is a set of strings.

Examples of regular expression

— Lettera

— Keyword if

— All the letters

— All the digits

— All the Identifiers
Basic operations:

— Set union, e.g.,

a
if
alblc]|...|]z|A|B|C...|Z
0|1|2|3]4|5|6]7|8|9
letter(letter | digit)*

alb

— Concatenation, e.g, ab

— Kleene closure, e.g., a*

uoissaldxa Jejnbay

Regular expression

e Regular expression: constructing sequences of symbols (strings)

from an alphabet.

e Let 2 be an alphabet, r a regular expression then L(r) is the
language that is characterized by the rules of r

e Definition of regular expression
— ¢gis aregular expression that denotes the language {¢}
e Note thatitis not{}
— If aisinZ, ais a regular expression that denotes {a}
— Let r and s be regular expressions with languages L(r) and L(s). Then
e r | sisaregular expression = L(r) uL(s)
e rsisaregular expression =2>L(r) L(s)
e r*isaregular expression 2> (L(r))*
e |t is an inductive definition!

e Distinction between regular language and regular expression

uoissaldxs Jejnboy

Formal language operations

concatenations of “ L

Operation Notation | Definition Example
L={a, b} M={0,1}
unionof LandM |LUM LUM={s|sisinLorsisin| {a, b, 0, 1}
M}
concatenation of | LM LM={st | sisinLandtisin | {a0, al, b0, b1}
Land M M}
Kleene closure of | L* L* denotes zero or more All the strings consists of “a”
L concatenations of L and “b”, plus the empty string.
{e, a, aa, bb, ab, ba, aag, ...}
positive closure L+ L+ denotes “one or more All the strings consists of “a”

and llb”

Regular expression example revisited

e Examples of regular expression
— letter> a|b|c|...|z|A|B|C...|Z
— digit—=>0]1|2|3|4|5|6|7|8]|9
— Identifier = letter(letter|digit)*

e Exercise: why is it a regular expression?

uoissaldxa Jejnbay

uoissaldxa Jejnboy

Precedence of operators

e (Can the following RE be simplified?
(a) | ((b)*(c))

o *jsof the highest precedence;
e ts(Concatenation) comes next;
| lowest.

e Example

- (a) | ((b)*(c)) isequivalenttoa|b*c

10

uoissaldxs Jejnboy

Properties of regular expressions

Property

Description

rls=s|r

| is commutative

rl(s|t)=(r[s)|t

| is associative

(rs)t=r(st)

Concatenation is associative

r(s|t)=rs | rt
(s|t)r=sr | tr

Concatenation distributes over |

What is why we can write
» either alb or bla
« alb|c, or (a|b)|c

» abc, or (ab)c

11

Notational shorthand of regular expression

e One or more instance
— L+ = LL*
- L* = L+ | ¢
— Example
. digits> digit digit*
« digits—>digit+
e /ero or one instance
- L? = Lle
— Example:
e Optional_fraction—>.digits| ¢
e optional_fraction—>(.digits)?
e Character classes
— [abc] = alb]c
— [a-z] = alb]c...|z

uoissaldxa Jejnbay

12

RE example

e Strings of length 5
e Suppose the only characters areaand b

e Solution
(alb) (alb) (a|b) (a]b) (a|b)

e Simplification
(a|b){5}

13

RE example

e Strings containing at most one a
b*ab* | b*
Or
b*(ale) b* | b*

e More concise representation
b*a?b*

14

RE for email address

e Valid addresses
iwho@uwindsor.ca

j111@cs.uwindsor.ca

.111@gmail.com

letter=[a-zA-Z]
digit=[0-9]
w=letter|digit

w+(.w+)*@w+.w+(.w+)*

15

RE for odd numbers

Is the following correct?
[13579]+

3
33
43
443

[0-9]*[13579]

16

More regular expression example

e RE for representing months

— Example of legal inputs
e Feb can be represented as 02 or 2
e November is represented as 11

e Firsttry: (0]|1)?[0-9]
— Matches all legal inputs? Yes
e 1,2,11,12,01,02, ...
— Matches noillegal inputs? No
e 13,14, .. etc
e Second try:
(0]1)? [0-9]
= (](0]1)) [0-9]

=[0-9] | (0]1)[0-9]

- (0911 (010:9] | 110:9))

[0-9] | (0[0-9] | 1[0-2]

— Matches all legal inputs? Yes
e 1,2,11,12,01, 02, ...

— Matches noillegal inputs? No
e 0,00

uoissaldxa Jejnbay

17

uoissaldxa Jejnbay

Derive regular expressions

e Solution: [1-9]](0[1-9])|(1[012])
— Either 1-9, or O followed by 1 to 9, or 1 followed by O, 1, or 2.
— Matches all legal inputs
— Matches no illegal inputs

e More concise solution: 0?[1-9] |1[012]
— Isit equal to [1-9]](0[1-9])|(1[012])?

0? [1-9] |1[012]

= (€]0) [1-9] | 1[012] (by shorthand notation)
=¢[1-9] | 0[1-9] | 1[012] (by distribution over |)
=[1-9] |0[1-9] | 1[012]

18

uoissaldxa Jejnbay

Regular expression example (real number)

e Real number suchasO, 1, 2, 3.14
— Digit: [0-9]
— Integer: [0-9]+
— First try: [0-9]+(.[0-9]+)?
e Want to allow “.25” as legal input?
— Second try: [0-9]+ | ([0-9]*.[0-9]+)
e Optional unary minus:
-? ([0-9]+ [([0-9]*.[0-9]+))

-? (\d+ | (\d*.\d+))

19

uoissaldxa Jejnbay

Regular expression exercises

e Can the string baa be created from the regular expression
a*b*a*pb* ?

e Describe the language (in words) represented by (a*a) b | ab.
a+b
e Write the regular expression that represents:
— All strings over 2={a, b} that end in a.
[ab]*a
(alb)*a
— All strings over 2={0,1} of even length.
((0]1)(0]1))*
(00|01]10|11)*

20

uoissaldxa Jejnbay

Regular grammar and regular expression

e They are equivalent
— Every regular expression can be expressed by regular grammar
— Every regular grammar can be expressed by regular expression
— Different ways to express the same thing

e \Why two notations
— Grammar is a more general concept

— RE is more concise

e How to translate between them
— Use automata
— Will introduce later

21

uoissaldxs Jejnboy

What we learnt last class

e Definition of regular expression

— ¢is aregular expression that denotes the language {c}
e Note thatitis not{}

— If aisin 2, ais aregular expression that denotes {a}

— Let r and s be regular expressions with languages L(r) and L(s). Then
e (r) | (s)is aregular expression = L(r) uL(s)
e (r)(s) is a regular expression —=>L(r) L(s)
e (r)*is aregular expression 2> (L(r))*

22

uoissaldxa Jejnboy

Applications of regular expression

—
: Search b Il of th
e In Windows e T S
— In windows you can use RE to search for files or texts in a file Lz ilba A 2
(%) Don't remember
e |n unix, there are many RE relevant tools, such as Grep 8:‘:;':irnn§:f;astweek
— Stands for Global Regular Expressions and Print (or Global Regular O Within the past year
Expression and Parser ...); All or part of the document
’ name:
— Useful UNIX command to find patterns of characters in a text file; | *.ppt
e XML DTD content model You may also want to...
Use advanced search
— <IELEMENT student (name, (phone|cell)*, address, course+) > options
<student>
<name> Jianguo </name> [Back] I Search

<phone> 1234567 </phone>
<phone> 2345678 </phone>
<address> 401 sunset ave </address>
<course> 214 </course>

</student>

e Java Core API has regex package!
Scanner generation

23

uoissaldxs Jejnboy

e RE in XML Schema
<xsd:simpleType name="TelephoneNumber">
<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
<xsd:pattern value="\d{3}-\d{4}"/>
</xsd:restriction>
</xsd:simpleType>

24

BAB[Ul Uoissaldxa Jejnbay

Regular expressions used in Scanner, String etc

e A sample problem

Develop a program that, given as input three points P1, P2, and P3 on the cartesian
coordinate plane, reports whether P3 lies on the line containing P1 and P2.

In order to input the three points, the user enters six integers x1, y1, x2, y2, x3, and y3.
The three points are P1 = (x1, y1), P2 = (x2, y2), and P3 = (x3, y3).

The program should repeat until the user's input is such that P1 and P2 are the same
point.

e Sample input

Enter x1: 0
Enteryl: 0
Enter x2: 2
Entery2: 5
Enter x3:1
Entery3: 3

e Qutput

The point (1, 3) IS NOT on the line constructed from points (2, 5) and (O, 0).

25

eAB[Ul uoissaldxa Jejnbay

How to read and process the input

First Try
Scanner sc=new Scanner(System.in);
int x1=sc.nextInt();

java.util.InputMismatchException

We want to capture the values for x and y, and
discard everything else

Describe everything else as delimiters

o ”

Scanner sc=new Scanner(System.in).useDelimiter(“...”);

The delimiters can be any regular expression

Sample input

Enter x1: 2
Enteryl: 8
Enter x2: 0
Entery2: 0
Enter x3: 1
Entery3: 4

26

eAB[Ul uoissaldxa Jejnbay

useDelimiter in Scanner class

e useDelimiter(“Enter x1:”)

— This will throw away “Enter x1:” only. To discard “Enter x2:” as well,
you may want to add the following

e useDelimiter(“Enter x1:| Enter x2:”)

— Vertical bar means “OR”—either “Enter x1:” OR“Enter x2:”
— It is called Regular expression;
— Now you know how to expand to the case for x3--

e useDelimiter(“Enter x1:| Enter x2:| Enter x3”)

— We can simplified the above using other notations in REGUALR
EXPRESSION.

27

eAB[Ul uoissaldxa Jejnbay

Use regular expression to capture the input

e useDelimiter(“Enter x\\d")
— Where \\d means any digit. Now how to read in the values for y axis?

o useDelimiter(“Enter \\w\\d")
— \\w means any letter or digit

e useDelimiter(“Enter \\w{2}")
— What if there are leading and trailing spaces around the sample input?

e useDelimiter(“(|\\t)Enter \\w{2}([\\t)”)

o useDelimiter(“\\sEnter \\w{2}\\s”)
— \\s stands for all kinds of white space.

o useDelimiter(\\s*Enter \\w{2}:\\s*)

— * means that zero or more spaces can occur.

28

BAB[Ul Uoissaldxe Jeinboy

Code fragment to read data

//read from file for testing purpose
Scanner sc=new Scanner(new File("online.txt")).
useDelimiter("\\s*Enter \\w{2}:\\s*");

int x1=sc.nextInt();

int yl=sc.nextInt();

int x2=sc.nextInt();

int y2=sc.nextInt();

int x3=sc.nextInt();

int y3=sc.nextInt();

29

eAB[Ul uoissaldxa Jejnbay

Regex package in Java

e Java has regular package java.util.regex,

e A simple example:

— Pick out the valid dates in a string

— E.g. in the string “final exam 2008-04-22, or 2008-4-22, but not
2008-22-04"

— Valid dates: 2008-04-22, 2008-4-22

e First we need to write the regular expressions.
\d{4}-(0?[1-9]| 1[012])-\d{2}

30

BAB[Ul Uoissaldxa Jejnbay

Regex package

e First, you must compile the pattern
import java.util.regex.*;
Pattern p = Pattern.compile(“\\d{4}-(02[1-9]1|1[012])-\
\d{2}");
— Note that in java you need to write \\d instead of \d
e Next, you must create a matcher for a specific piece of text by
sending a message to your pattern

— Matcher m = p.matcher(“...your text goes here....");

e Points to notice:
— Pattern and Matcher are both in java.util.regex

— Neither Pattern nor Matcher has a public constructor; you create
these by using methods in the Pattern class

— The matcher contains information about both the pattern to use and
the text to which it will be applied

31

eAel ul uoissalidxa Jejnboy

Regex in java

e Now that we have a matcher m,

— m.matches () returns true if the pattern matches the entire text
string, and false otherwise

— m.lookingAt () returns true if the pattern matches at the
beginning of the text string, and false otherwise

— m.find () returns true if the pattern matches any part of the text
string, and false otherwise

e |f called again, m.find() will start searching from where the last match was
found

e m.find() will return true for as many matches as there are in the string;
after that, it will return false

e When m.find() returns false, matcher m will be reset to the beginning of
the text string (and may be used again)

32

eAel ul uoissaidxes Je|nboy

Regex example

import java.util.regex.*;
public class RegexTest {
public static void main(String args|[]) {
String pattern = "\\d{4}-(0?[1-9]| 1[012])-\\d{2}";
String text = "final exam 2008-04-22, or 2008-4-22, but not
2008-22-04";
Pattern p = Pattern.compile(pattern);
Matcher m = p.matcher(text);
while (m.find()) {
System.out.printIn("valid date:"+text.substring(m.start(), m.end()));

Printout:
— valid date:2008-04-22
— valid date:2008-4-22

33

eAel ul uoissaldxe Jejnboy

More shorthand notation in specific tools, like regex
package in Java

JLEX);

\d
\D
\s
\S
\w
\W

Different software tools have slightly different notations (e.g. regex, grep,

Shorthand notations from regex package

any one character except a line terminator
a digit: [0-9]

a non-digit: [*0-9]

a white space character: [\t\n\r]

a non-whitespace character: [*\s]

a word character: [a-zA-Z_0-9]

a non-word character: [*\w]

Get familiar with regular expression using the regexTester Applet.

Note that String class since Javal.4 provides similar methods for regular
expression

34

uoissaldxa Jejnboy

Try RegexTester

e Running at course web site as an applet;
— http://cs.uwindsor.ca/~jlu/214/regex tester.htm
e Write regular expressions and try the match(), find() methods;

String: |3 .14
Pattern: [\ d+ (. \d+) ?
matches) lookingAtQ find()

In Java: !

Result |start () = 0, end() = 4

group(0) = "3.14"
group(l) = ".1l4"

e What if 3g14 instead of 3.14 is the string to be matched? Why?

e groups are numbered by counting their opening parentheses from left to right.
— ((A)(B(C))) has four groups:
- 1 ((A)B(C)))
2 (A)
- 3 (B(C))
4 (C)

35

XIun ul uoissaldxa Jejnbay

Practice regular expression using grep

Use grep to search for certain pattern in html files;

Search for Canadian postal code in a text file;
Search for Ontario car plate number in a text file.

use tcsh. Type
e % tcsh

Prepare text file, say “test”, that consists of sample postal code etc.

Type
e grep ‘[a-z][0-9][a-z] [0-9][a-z][0-9] test

e grep —i ‘[a-z][0-9][a-z] [0-9][a-Z][0-9]’ test

36

XIun ul uoissaidxa Jejnbay

Practice the following grep commands:

grep 'cat’ grepTest
-you will find both "cat" and "vacation”
grep "\<cat\>' grepTest
--word boundary
grep -i "\<cat\>' grepTest
— ignore the case
grep '\<ega\.att\.com\>' grepTest
-meta character
grep ""[A"]*" grepTest
--find quoted string

egrep '[a-z][0-9][a-z] ?[0-9][a-z][0-9]' grepTest

— find postal code, only if it is in lower case

egrep -i '[a-z][0-9][a-z] ?[0-9][a-z][0-9]'

grepTest

— ignore the case

grep 'g[*u]' grepTest

--won't find "iraq", but will find "iraqi"

grep 'Acat' grepTest
find only lines start with cat

e egrep is similar to grep, but some patterns

only work in egrep.

megawatt computing
ega.att.com

Line with uppercase Cat and Dog.
214 cat vacation Cat Dog
vacation only

capital Cat

the cat likes the dog
"quoted string "

iraq

iraqi

Qantas

ADBB 123

ADBB12

N9B 3P5

NO9B3P5

01-16-2004

14-14-2004

37

Unix machine account

e Apply for a unix account:
— Write to accounts@cs.uwindsor.ca

e Access uhix machines at home:

— You need to use SSH;
— One place to download:

e www.uwindsor.ca/its --> services/downloads

38

RE and Finite state Automaton (FA)

e Regular expression is a declarative way to describe the tokens
— It describes what is a token, but not how to recognize the token.
e FAis used to describe how the token is recognized
— FAis easy to be simulated by computer programs;

e There is a 1-1 correspondence between FA and regular expression

— Scanner generator (such as JLex) bridges the gap between regular expression

and FA.

Scanner generator

String stream

Y

Java
scanner
program

v

Tokens

39

Inside scanner generator

e Main components of scanner
generation

— RE to NFA

— NFA to DFA

— Minimization
— DFA simulation

RE

Thompson constructionl
NFA

Subset construction 1

DFA
Minimization 1

Minimized DFA

DFA simulation
Scanner

generator

v
Program

40

BjewolNy

Finite automata

e FA also called Finite State Machine (FSM)

— Abstract model of a computing entity;

— Decides whether to accept or reject a string.
e Two types of FA:

— Non-deterministic (NFA): Has more than one alternative action
for the same input symbol.

— Deterministic (DFA): Has at most one action for a given input

symbol.
e Example: how do we write a program to recognize java
identifiers?
letter
Start :so letter X @ S0:
dint if (getChar() is letter) goto S1;

S1: if (getChar() is letter or digit) goto S1;

Automaton: a mechanism that is relatively self-operating -- webster a1

ejewony

Non-deterministic Finite Automata (FA)

e NFA (Non-deterministic Finite Automaton) is a 5-tuple (S, X, 0, SO, F):

S: a set of states;
2: the symbols of the input alphabet;

0 : a transition function;
* move(state, symbol) 2 a set of states

S0: sO &S, the start state;
F: FCS, a set of final or accepting states.

e Non-deterministic -- a state and symbol pair can be mapped to a set of
states.

— It is deterministic if the result of transition consists of only one state.

e Finite—the number of states is finite.

letter
Start letter
()
digit

42

ejewony

Transition Diagram

e FA can be represented using transition diagram.

e Corresponding to FA definition, a transition diagram has:
— States : Represented by circles;
— X: Alphabet, represented by labels on edges;

— Moves : Represented by labeled directed edges between states. The label
is the input symbol;

— Start State : arrow head;
— Final State (s) : represented by double circles.

e Example transition diagram to recognize (a |b) *abb

a, b

ejewony

Simple examples of FA

e Epsilon ﬂ.@_‘f.
start [O'\ a ‘
_/
°a* tart a
d
- at == ——(@

® (a | b)* start

b

Q

a, b
start é

44

ejewony

Procedures of defining a DFA/NFA

e Define input alphabet and initial state
e Draw the transition diagram
e Check

— all states have out-going arcs labeled with all the input symbols (DFA).

— Are there any missing final states?

— Are there any duplicate states?

— all strings in the language can be accepted.

— all strings not in the language can not be accepted.

e Name all the states
e Define (S, Z, 9, q,, F)

45

ejewolny

Example of constructing a FA

e Construct a DFA that accepts a language L over 2 = {0, 1}
such that L is the set of all strings with any number of “0”s
followed by any number of “1”s.

e Regular expression: 0*1*
e >={0, 1}
e Draw initial state of the transition diagram

Start —»Q

46

ejewolny

Example of constructing a FA (cont.)

e Draft the transition diagram
1

0
Start _,() 0 ;@ 1 :@

e |[s“111” accepted?
e The leftmost state has missed an arc with input “1”

Ay 1
Start ;\t :O ﬁ

e |s “00” accepted?

47

ejewony

Example of constructing a FA (cont.)

e |s “00” accepted?

e The leftmost two states are also final states
— First state from the left: € is also accepted

— Second state from the left:
strings with “0”s only are also accepted

1

1

48

BjewolNy

Example of constructing a FA (cont.)

e The leftmost two states are duplicate
— their arcs point to the same states with the same symbols

e Check that they are correct
— All strings in the language can be accepted

® ¢isaccepted
e strings with “0”s / “1”s only are accepted

— All strings not belonged to the language can not be accepted

e Name all the states

o —{(@)

49

BjewolNy

How does FA work
a,b

e NFA definition for (a|b)*abb é a @ b @ b
— $={q0,91,92,03}
- 2={a,b}
— Transitions: move(q0,a)={q0, q1}, move(q0,b)={q0},
— s0=q90
- F={a3}
e Transition diagram representation

— Non-determinism:
e exiting from one state there are multiple edges labeled with same symbol, or
e There are epsilon edges.

— How does FA work? Input: ababb

move(q0, a) = ql move(q0, a) =q0
move(ql, b) = g2 move(q0, b) = q0
move(qg2, a) = ? (undefined) move(q0, a) = q1
move(q1, b) = g2
REJECT ! move(q2, b) = q3
ACCEPT!

50

elewoNy

FA for (a|b)*abb

\@ (@@

— What does it mean that a string is accepted by a FA?

e An FA accepts an input string x iff there is a path from the start state to a
final state, such that the edge labels along this path spell out x;

— Apath for “aabb”: q0—2>?2 q02>2ql2>Pg2>"° g3
— |Is “aab” acceptable?
q0=>2 q0>2ql->Pqg2
q0—>2 g0>2q0>bq0
e The answer is no;
e Final state must be reached;
e In general, there could be several paths.
— |Is “aabbb” acceptable?
q0—>2 g0>2ql>Pq2->b g3
e The answer is no.
e Labels on the path must spell out the entire string.

51

ejewolny

Example of NFA with epsilon symbol

e NFA accepting aa* |bb*
— Is “aaab” acceptable?
— Is “aaa” acceptable?

52

a,b

Simulating an NFA A
(=)~

e Keep track of a set of states, initially the start state and
everything reachable by e-moves.
e For each character in the input:
— Maintain a set of next states, initially empty.
e For each current state:
— Follow all transitions labeled with the current letter.

— Add these states to the set of new states.

e Add every state reachable by an e-move to the set of next
states.

e Complexity: O(mn?) for strings of length m and automata
with n states

53

BjewolNy

Transition table

a,b

(a1)

\@ a__ |

3

e |t is one of the ways to implement the transition function
— There is a row for each state;

— There is a column for each symbol,;

— Entryin (state s, symbol a) is the set of states can be reached from state s on

input a.

e Nondeterministic:

— The entries are sets instead of a single state

States Input

a b
>q0 {090, g1} {q0}
ql {92}
92 {93}
*q3

54

BjewolNy

DFA (Deterministic Finite Automaton)

e A special case of NFA

— The transition function maps the pair (state, symbol) to one state.

e When represented by transition diagram, for each state S and symbol a, there
is at most one edge labeled a leaving S;

e When represented transition table, each entry in the table is a single state.

— There is no e-transition
e Example: DFA for (a|b)*abb

States Input

a b
Qo Q1 q0
Q1 Q1 Q2
Q2 Q1 Q3
Q3 Q1 Qo

e Recall the NFA: ‘

uonenWIsS eyewolny

DFA to program

e NFA is more concise, but not easy
to implement;

e In DFA, since transition tables
don’t have any alternative options,
DFAs are easily simulated via an
algorithm.

RE

Thompson construction 1

NFA

Subset construction 1

DFA

Minimization

Minimized DFA

DFA simulation
Scanner

generator

v

Program

56

uonenWIs eylewolny

Simulate a DFA

e Algorithm to simulate DFA
Input: String x, DFA D.
e Transition function is move(s,c);
e Start state is SO;
e Final states are F.
Output: “yes” if D accepts x; “no” otherwise;
Algorithm:
currentState < s0
currentChar < nextchar;
while currentChar = eof {
currentState < move (currentState, currentChar);
currentChar < nextchar;

}

1f currentState is in F then return “yes”

A\ 144

else return “'no

e Run the FA simulator!
e \Write a simulator.

57

V4d 0} VAN

NFA to DFA

e Where we are: we are
going to discuss the
translation from NFA to
DFA.

e Theorem: A language L is

accepted by an NFA iff it
is accepted by a DFA

e Subset construction is
used to perform the
translation from NFA to
DFA.

Thompson construg
Subset construttion 1

Minimization

Minimized DFA

DFA simulation
Scanner

v generator

v
Program

58

Summarize

e \We have covered many concepts

— RE, Regular grammar, FA(NFA,DFA),
Transition Diagram, Transition Table.

e What is the relationship between them?

— RE, Regular grammar, NFA, DFA, Transition
Diagram are all of the same expressive
power;

— RE is a declarative description, hence easier
for us to write;

— DFA is closer to machine;
— Transition Diagram is a graphic
representation of FA;

— Transition Table is one of the methods to
implement the transition functions in FA.

e What about regular grammar?
— We will see its relevance in syntax analysis.
e Another path: how to derive RE from DFA?

RE

1Thompson construction

NFA

1 Subset construction

DFA

1

Minimized DFA

1v’" DFA simulation

Program

59

Regular expression and regular grammar

e RE to regular grammar:
— Draw an automata for the RE
— Construct regular grammar from automaton
— Example

S0—>letter S1
S1->letter S1
S1->digit S1
S1->¢

Start letter
() {@;

Converting DFAs to REs

Combine serial links by concatenation
Combine parallel links by alternation
Remove self-loops by Kleene closure

B w N e

Select a node (other than initial or final) for removal. Replace
it with a set of equivalent links whose path expressions
correspond to the in and out links

5. Repeat steps 1-4 until the graph consists of a single link
between the entry and exit nodes.

61

Example

4

d(a|b|c)d

U

b(blc)d

—~()

62

Example (cont.)

@ d(a|b|c)d :@ a :@ d :@

b(b|c)da
d(alblc)d b(b|c)da)*d
@ (alblc) :@ a :@((b|c)da) :@

@ d(a|b|c)da(b(b|c)da)*d :@

63

Issues not covered

e Regular expression to DFA
directly;

RE

1Thompson construction

NFA

1 Subset construction

—> DFA

1

Minimized DFA

1 DFA simulation

Program <

64

Lexical acceptors and Lexical analyzers

e DFA/NFA accepts or rejects a string;
— They are called lexical acceptors;

e But the purpose of a lexical analyzer is not just to accept or
reject string. There are several issues:
— Multiple matches: One regular expression may match several
substrings.
e e.g., |ID=letter+, String=“abc”, ID can match with a, ab, abc.

e We should find the longest matches, i.e., longest substring of the input
that matches the regular expression;

— Multiple REs: What if one string can match several REs?
e e.g., ID=letter+, INT="int”,

e String “int” can be both a reserved word INT, and an identifier. How can
we decide it is a reserved word instead an usual identifier?

— Actions: Once a token is recognized, we want to perform different
tasks on them, instead of simply return the string recognized.

65

Longest match

e \When several substrings can match the same RE, we should return the longest one.
— e.g., |D=letter+, String="“abc”, ID can match with a, ab, abc.

e Problem: what if a lexer goes past a final state of a shorter token, but then doesn’t
find any other matching token later?

e Example: Consider R=00|10|0011 and input w=0010.

1EO=@

e \We reach state C with no transition on input O.

e Solution: Keeping track of the longest match just means remembering
the last time the DFA was in a final state;

66

Longest match (cont.)

This is done by introducing the following variables:

— LastFinal: final state most recently encountered;

— InpputPositionAtLastFinal: most recent position in the input string in which
the execution of the DFA was in a final state;

— Yytext: Text of the token being matched, i.e., substring between
initialinputPosition and inputPositionAtLastFinal.

e This way a longest match is recognized when the execution of the DFA
reaches a dead-end, i.e., a state with no transitions.

Each time a token is recognized, the execution of the DFA resumes in the
initial state to recognize the next token.

e |n general, when a token is recognized, currentinputPosition may be far
beyond inputPositionAtLastFinal.

1EO:@ 67

Handling multiple REs

e Combine the NFAs of all the REs into a single finite automaton.

e What if two REs matches the same string?
— E.g., for a string “abb”, both REs “a*bb” and “ab*” matches the string. Which
RE is intended?
— Itis important because different actions may take depending on the RE being
matched;
— Solution: Order REs: the RE precedes will match first.

e How about reserved words?
— For string “int”, should we return token INT or token ID?

— Two solutions:
e Construct a reserved word table and look up the table every time an identifier is
encountered;

e Put “int” as an RE, and put that RE before the identifier RE. So whenever the string
“int” is met, RE “int” will be matched first and the token INT will be returned
(instead of the token ID).

68

Actions

e Actions can be added for final states;

e Actions can be described in a usual programming language. In
JLex, action is described in Java.

69

Build a scanner for a simple language

e The language of assignment statements:

LHS = RHS
int LHS = RHS

— left-hand side of assignment is an identifier, with optional type
declaration;

— ldentifier is a letter followed by one or more letters or digits

— right-hand side is one of the following:
e ID+ID
e ID*ID
e [ID==ID

e Example statement

int x3=x1+x2

70

Step 1: Define tokens

Our language has six type of tokens.

— they can be defined by six regular expressions:

token

Regular expression

ASSIGN

ID

letter (letter | digit)*

INT

lli nt”

PLUS

+

TIMES

nkn

EQUALS

71

Step 2: Convert REs to NFAs

ASSIGN: —~)—="-0
ID: HO_IEﬂQL’Q) Letter, digit
PLUS: @i.@

TIMES: — & ()= -0

EQUALS: (=")= O
INT: () ()" —1t" 0O

Step 3: Combine the NFAs, Convert NFAs to DFAs, minimize the
DFAs

72

Step 4: Extend the DFA

e Modify the DFA so that a final state can have
— an associated action, such as: "put back one character"” or "return token
XXX,
e For example, the DFA that recognizes identifiers can be modified
as follows

— recall that scanner is called by a parser (one token is returned per each
call)

— hence action return puts the scanner into state S

o action:
letter | digit « put back 1 char

e return ID
(5 ©®

any char except
letter or digit

73

Step 5: Combined FA for our language
« combine the DFAs for all of the tokens in to a single FA.
return PLUS sp @ return INT, put
= / back one char
N .03)
+ “ n
®n/® put back 1 char;
|
-

letter | digit return 1D

‘ [T 3]
\CS letter ’ any char except letter or digit '@

return TIMES

SP

@ G@ =@ return EQUALS

any char except “=]

@ put back 1 char; return ASSIGN

* It is not a DFA. Just for illustration purpose.

74

Example trace for “int x3=x1+x2”
P

Input Last final Current Input position at Current Initial action
state state lastFinalState input input
position position
int x3=x1+x2 | O S 0 0 0
ntx3=x1+x2 | O 11 1 1 0
tx3=x1+x2 | O 12 2 2 0
[sp]x3=x1+x2 | O 13 3 3 0
x3=x1+x2 [O F6 4 4 0 Action 1
putBackOneChar(); Yytext=substring(0, 4-1); intialinputPosition=3; currentSate = S;
[sp]x3=x1+x2 | O S 3 3 3
x3=x1+x2 [O SP 4 4 3 Action 2
Yytext=substring(3, 3); initialinputPosition=4; currentState=S;
x3=x1+x2 | O S 4 4 4
3=x1+x2 | O ID 5 5 4
=x1+x2 | O ID 6 6 4
x1+x2 [O F2 7 7 4 Action 3
utBackOneChar; Yytext=substring(4,7-1);initialinputPosition=6; currentState=S;
=x1+x2 | O S 6 6 6

xap

Scanner generator: history

o LEX

— Alexical analyzer generator, written by Lesk and Schmidt at Bell Labs

in 1975 for the UNIX operating system;
— It now exists for many operating systems;
— LEX produces a scanner which is a C program;

— LEX accepts regular expressions and allows actions (i.e., code to
executed) to be associated with each regular expression.

e JLex
— Lex that generates a scanner written in Java;
— ltself is also implemented in Java.

e There are many similar tools, for most programming languages

76

xap

Overall picture

RE

Scanner generator

> NFA

DFA
Minimize DFA
Simulate DFA

String stream

Y

Java

scanner
program

\

Tokens

77

xap

Inside lexical analyzer generator

e How does a lexical analyzer
work?

— Get input from user who defines
tokens in the form that is
equivalent to regular grammar

— Turn the regular grammar into a
NFA

— Convert the NFA into DFA

— Generate the code that simulates
the DFA

Classes in JLex:

CAccept

CAcceptAnchor

CAlloc
CBunch
CDfa
CDTrans
CEmit
CError
Clnput
CLexGen
CMakeNfa
CMinimize
CNfa
CNfa2Dfa
CNfaPair
CSet
CSimplifyNfa
CSpec
CUTtility

Main
SparseBitSet
ucsb

78

X[

How scanner generator is used

Write the scanner specification;

Generate the scanner program using scanner generator;

Compile the scanner program;

Run the scanner program on input streams, and produce sequences of tokens.

Scanner definition Scanner Scanner program,
= generator —> o
(e.g., JLex spec) (JLex) e.g., Scanner.java
e.g., JLex
Scanner program Java Scanner.class

(e.g., Scannerjava) > compiler —_—

Scanner

Sequence of
—) Scanner.class =—————) 9

tokens

Input stream

79

xap

JLex specification
e JLex specification consists of three parts, separated by “%%”

User Java code, to be copied verbatim into the scanner program, placed before
the lexer class;

%%

JLex directives,
macro definitions, commonly used to specify letters, digits, whitespace;

%%

Regular expressions and actions:
e Specify how to divide input into tokens;

e Regular expressions are followed by actions;
— Print error messages; return token codes;

80

xap

First

JLex example simple.lex

e Recognize int and identifiers.

1.

LN AEWN

[G S g)
WN - O

14.

15.

16.
17.

18
19

%%

%{ public static void main(String argv[]) throws java.io.lOException {
MyLexer yy = new MyLexer(System.in);
while (true){

yy-yylex();
}
}
%}
%notunix
. %type void
. %class MyLexer
. %eofval{ return;
. %eofval}

IDENTIFIER = [a-zA-Z][a-zA-Z0-9]*
%%

"int" { System.out.printIn("INT recognized");}
{IDENTIFIER} { System.out.printIn("ID is ..." + yytext());}
\r[\n {}

A}

81

X[

Code generated will be in simple.lex.java

class MyLexer {

4 public static void main(String argv[]) throws java.io.lIOException {)
MyLexer yy = new MyLexer(System.in);
while (true){
yy.yylex();
NG /
) ‘\5\““‘*~\~\~;:::::::§\
public void yylex(){ Copied from
...... internal code
case 5:{ System.out.printIn("INT recognized"); } directive
case 7:{ System.out.printIn("ID is ..." + yytext()); }
}
}

82

xap

Running the JLex example

e Stepsto run the JLex
D:\214>java JLex.Main simple.lex
Processing first section -- user code.
Processing second section -- JLex declarations.
Processing third section -- lexical rules.
Creating NFA machine representation.
NFA comprised of 22 states.
Working on character classes.::::::::.
NFA has 10 distinct character classes.
Creating DFA transition table.
Working on DFA states...........
Minimizing DFA transition table.
9 states after removal of redundant states.
Outputting lexical analyzer code.

D:\214>move simple.lex.java MyLexer.java

D:\214>javac MyLexer.java

D:\214>java MyLexer // it is waiting for keyboard input
int myidO

INT recognized
ID is ...myid0

X[

Exercises

e Try to modify JLex directives in the previous JLex spec, and
observe whether it is still working. If it is not working, try to
understand the reason.

— Remove “%notunix” directive;
— Change “return;” to “return null;”;
— Remove “%type void”;

e Move the Identifier regular expression before the “int” RE.
What will happen to the input “int”?

e What if you remove the last line (line 19, “. {}’) ?

84

xap

Change simple.lex: read input from file

LN A~ WNE

[ERY
o

11.
12.
13.

import java.io.*;

%%

%{ public static void main(String argv[]) throws java.io.lOException {
MyLexer yy = new MyLexer(new FileReader(“input”));
while (yy.yylex()>=0);
}

%}

%integer

%class MyLexer

. %%

"int" { System.out.printIn("INT recognized");}
[a-zA-Z_][a-zA-Z0-9_]* { System.out.printIn("ID is ..." + yytext());}
\riAn]. {}

e %integer: to make the returning type of yylex() as int.

85

X[

Extend the example: add returning and use classes

- When a token is recognized, in most of the case we want to return a token object, so that
other programs can use it.

class Uselexer {
public static void main(String [] args) throws java.io.lOException {
Token t; MylLexer2 lexer=new MyLexer2(System.in);
while ((t=lexer.yylex())!=null) System.out.printin(t.toString());
}
}

class Token {
String type; String text; intline;
Token(String t, String txt, int |) { type=t; text=txt; line=l; }
public String toString(){ return text+" " +type + " " +line; }
}
%%
%notunix
%line
%type Token
%class MyLexer2
%eofval{ return null;
%eofval}
IDENTIFIER = [a-zA-Z_][a-zA-Z0-9 _]*
%%
"int" { return(new Token("INT", yytext(), yyline));}
{IDENTIFIER} { return(new Token("ID", yytext(), yyline));}
\r[\n {}
A

86

X[

Code generated from mylexer2.lex

class Uselexer {
public static void main(String [] args) throws java.io.lOException {
Token t; MylLexer2 lexer=new MylLexer2(System.in);
while ((t=lexer.yylex())!=null) System.out.printIn(t.toString());

}
}

class Token {
String type; String text; intline;
Token(String t, String txt, int |) { type=t; text=txt; line=l; }
public String toString(){ return text+" " +type + " " +line; }
}

Class MyLexer2 {
public Token yylex(){

case 5: { return(new Token("INT", yytext(), yyline)); }
case 7: { return(new Token("ID", yytext(), yyline)); }

87

xap

Running the extended lex specification mylexer2.lex

D:\214>java JLex.Main mylexer2.lex
Processing first section -- user code.
Processing second section -- JLex declarations.
Processing third section -- lexical rules.
Creating NFA machine representation.
NFA comprised of 22 states.

Working on character classes.::::::::.

NFA has 10 distinct character classes.
Creating DFA transition table.

Working on DFA states...........

Minimizing DFA transition table.

9 states after removal of redundant states.
Outputting lexical analyzer code.

D:\214>move mylexer2.lex.java MyLexer2.java
D:\214>javac Mylexer2.java

D:\214>java UselLexer
int

int INT O

x1

x11D1

88

xap

Another example

1
2
3
4
5
6
8
9

10
11
12
13
14
15
16
17
18
19
20
22

import java.io.lOException;
%%

%public

%class Numbers_1

%type void

%eofval{ return;

%eofval}

%line
%{ public static void main (String args []) {
Numbers_1 num = new Numbers_1(System.in);
try {
num.yylex();
} catch (IOException e) { System.err.printin(e); }

}
%}

%%
\r\n { System.out.printIn("--- " + (yyline+1)); }
H\r\n { System.out.print ("+++" + (yyline+1)+"\t"+yytext()); }

89

X[

User code (first section of JLex)

e User code is copied verbatim into the lexical analyzer source
file that JLex outputs, at the top of the file.

— Package declarations;

— Imports of an external class
— Class definitions

e Generated code
package declarations;
import packages;
Class definitions;
class Yylex {

}

e Yylex class is the default lexer class name. It can be changed to
other class name using %class directive.

90

X[

JLex directives (Second section)

e Internal code to lexical analyzer class

e Marco definition

e State declaration

e Character/line counting

e Lexical analyzer component title

e Specifying the return value on end-of-file
e Specifying an interface to implement

91

X[

Internal Code to Lexical Analyzer Class

%{ e %} directive permits the declaration of variables and functions internal
to the generated lexical analyzer

General form:
%1
<code >
%}
Effect: <code > will be copied into the Lexer class, such as MyLexer.

class MyLexer{
..... <code>

}
Example
public static void main(String argv[]) throws java.io.lOException {
MyLexer yy = new MyLexer(System.in);

while (true){ vyy.yylex(); }
}
Difference with the user code section
— Itis copied inside the lexer class (e.g., the MyLexer class)

92

xap

Macro Definition

e Purpose: define once and used several times;

— A must when we write large lex specification.

e General form of macro definition:

— <name> = <definition>
— should be contained on a single line
— Macro name should be valid identifiers
— Macro definition should be valid regular expressions
— Macro definition can contain other macro expansions, in the standard
{<name>} format for macros within regular expressions.
e Example
— Definition (in the second part of JLex spec):
IDENTIFIER = [a-zA-Z_][a-zA-Z0-9_]*
ALPHA=[A-Za-z_]
DIGIT=[0-9]
ALPHA_NUMERIC={ALPHA}|{DIGIT}
— Use (in the third part):
{IDENTIFIER} {return new Token(ID, yytext()); }

93

X[

State directive

e Same string could be matched by different regular expressions, according to
its surrounding environment.

— String “int” inside comment should not be recognized as a reserved word, not
even as an identifier.

e Particularly useful when you need to analyze mixed languages;

e For example, in JSP, Java programs can be imbedded inside HTML blocks.
Once you are inside Java block, you follow the Java syntax. But when you are
out of the Java block, you need to follow the HTML syntax.

— Injava “int” should be recognized as a reserved word;

— In HTML “int” should be recognized just as a usual string.
e States inside JLex

<HTMLState> %{ {yybegin(JavaState);}

<HTMLState> “int” {return string; }

<JavaState> %} {yybegin(HTMLState); }

<JavaState> “int” {return keyword; }

94

X[

State Directive (cont.)

Mechanism to mix FA states and REs
Declaring a set of “start states” (in the second part of JLex spec)
%state stateO [, statel, state2,]
How to use the state (in the third part of JLex spec):
— RE can be prefixed by the set of start states in which it is valid;
We can make a transition from one state to another with input RE
— yybegin(STATE) is the command to make transition to STATE;
YYINITIAL : implicit start state of yylex();
— But we can change the start state;

Example (from the sample in JLex spec):
%$state COMMENT

3%

<YYINITIAL>if {return new tok(sym.IF,”IF”);}
<YYINITIAL>[a-z]+ {return new tok(sym.ID, yytext());}
<YYINITIAL>"/*" {yybegin (COMMENT) ; }

<COMMENT>" * /" {yybegin (YYINITIAL) ;}

<COMMENT> . {}

95

X[

Character and line counting

e Sometimes it is useful to know where exactly the token is in the text. Token

position is implemented using line counting and char counting.

e Character counting is turned off by default, activated with the directive
“%char”

— Create an instance variable yychar in the scanner;

— zero-based character index of the first character on the matched region of
text.

e Line counting is turned off by default, activated with the directive “%line”
— Create an instance variable yyline in the scanner;
— zero-based line index at the beginning of the matched region of text.)

e Example

“int” {return (new Yytoken(4,yytext(),yyline,yychar,yychar+3)); }

96

xap

Lexical analyzer component titles

e Change the name of generated

— lexical analyzer class %class <name>
— the tokenizing function %function <name>
— the token return type %type <name>

e Default names
class Yylex{ /* lexical analyzer class */
public Yytoken /* the token return type */
yylex() { ...} /* the tokenizing function */
==>Yylex.yylex () returns Yytoken type

97

X[

Specifying an Interface to implement

e Form: %implements <InterfaceName>

e Allows the user to specify an interface which the Yylex or your
lexer class will implement.

e The generated parser class declaration will look like:
class MyLexer implements InterfaceName {

98

X[

Regular expression rules

General form:

Example:

Interpretation:

regularExpression { action}

{IDENTIFIER} { System.out.printIin("ID is ..." + yytext());}

Patten to be matched code to be executed when the
pattern is matched

Code generated in MyLexer:

“case 2;

{ System.out.printin("ID is ..." + yytext());} “

99

X[

Regular Expression Rules

e Specifies rules for breaking the input stream into tokens
e Regular Expression + Actions (java code)
[<states>] <expression> { <action>}

e When matched with more than one rule,
— choose the rule that is given first in the Jlex spec.
e Refer the “int” and IDENTIFIER example.
e The rules given in a JLex specification should match all possible input.
e An error will be raised if the generated lexer receives input that does not match any
of its rules
— E.g., the rules only listed the case for Identifiers, and said nothing about numbers, but
your input has numbers.
— This is the most common error (more than 50%)
— put the following rule at the bottom of RE spec

e {Java.lang.System.out.println (“Error:” + yytext());}

dot(.) will match any input except for the newline.

100

xap

Available lexical values within action code

e java.lang.String yytext()
— matches portion of the character input stream;
— always active.

e Int yychar

— Zero-based character index of the first character in the matched
portion of the input stream,;

— activated by %char directive.
e Int yyline

— Zero-based line number of the start of the matched portion of the
input stream;

— activated by %line directive.

101

X[

Regular expression in JLex

e Special characters:? + | ()"S/;.=<>[]1{}"\and blank
— After \ the special characters lose their special meaning.
— Example: \+
e Between double quotes ” all special characters but \ and ” lose their special
meaning.
— Example: "+”
The following escape sequences are recognized: \b \n \t \f \r.

With [] we can describe sets of characters.
— [abc] is the same as (a|b]c). Note that it is not equivalent to abc
— With ["] we can describe sets of characters.
— ["\n\"”] means anything but a newline or quotes
— ["a—z] means anything but ONE lower-case letter
e We can use . as a shortcut for ["\n]

$: denotes the end of a line. If $ ends a regular expression, the expression
matched only at the end of a line.

102

X[

Concluding remarks

e Focused on Lexical Analysis Process, Including
— Regular Expressions
— Finite Automaton
— Conversion

— Lex
e Regular grammar=regular expression
e Regular expression—> NFA—> DFA—> lexer

e The next step in the compilation process is Parsing:

— Context free grammar;
— Top-down parsing and bottom up parsing.

103

