03-60-214 Syntax analysis

Jianguo Lu
School of Computer Science
University of Windsor

Tl o| t| a ={p|l x| 1| c|lel + t| a|l x
Total price + | tax ;
assignment
I
id 1= E)ipr

Lexical analyzer

Parser

id +

Grammars

Formal definition of language

e Alanguage is a set of strings
— English language
{“the brown dog likes a good car”, }
{sentence | sentence written in English}
— Javalanguage {program |program written in Java}
— HTML language {document |document written in HTML}

e How do you define a language?

e [tis unlikely that you can enumerate all the sentences,
programs, or documents

17-01-24

How to define a language

e How to define English
— A set of words, such as brown, dog, like

— Aset of rules
e A sentence consists of a subject, a verb, and an object;

e The subject consists of an optional article, followed by an optional adjective, and
followed by a noun;

— More formally:
e Words ={a, the, brown, friendly, good, book, refrigerator, dog, car, sings, eats, likes}

e Rules:
1) SENTENCE - SUBJECT VERB OBJECT
2) SUBJECT - ARTICLE ADJECTIVE NOUN
3) OBEJCT - ARTICLE ADJECTIVE NOUN
4) ARTICLE > a | the| EMPTY
5) ADIJECTIVE - brown | friendly | good | EMPTY
6) NOUN - book| refrigerator | dog]| car
7) VERB - sings | eats | likes

17-01-24 5

Derivation of a sentence

e Derivation of a sentence “the brown dog likes a good car”
SENTENCE
—>SUBJECT VERB OBIJECT
—>ARTICLE ADJECTIVE NOUN VERB OBIJECT
—>the brown dog VERB OBIJECT
—>the brown dog likes ARTICLE ADJECTIVE NOUN
—>the brown dog likes a good car

e Rules:
1) SENTENCE - SUBJECT VERB OBJECT
2) SUBJECT - ARTICLE ADJECTIVE NOUN
3) OBEJCT - ARTICLE ADJECTIVE NOUN
4) ARTICLE = a | the| EMPTY
5) ADIJECTIVE = brown | friendly | good | EMPTY
6) NOUN - book| refrigerator | dog| car
7) VERB - sings | eats | likes

17-01-24

The parse tree of the sentence

Parse the sentence: “the brown dog likes a good car”
The top-down approach

SENTENCE
SUBJECT VERB OBJECT
ARTICLE ADJ NOUN ARTICLE ADJ NOUN
The brown dog likes a good car

17-01-24

Top down and bottom up parsing

SENTENCE
SUBJECT VERB OBJECT
ARTICLE ADJ NOUN ARTICLE ADJ
The brown dog likes a good

17-01-24

NOUN

car

Types of parsers

e Top down

— Repeatedly rewrite the start symbol

— Find the left-most derivation of the input string
— Easy to implement

e Bottom up

— Start with the tokens and combine them to form interior nodes of the
parse tree

— Find a right-most derivation of the input string
— Accept when the start symbol is reached

e Bottom up is more prevalent

17-01-24

Formal definition of grammar

e Agrammarisa4-tupleG=(,N,P,S)
— 2 is a finite set of terminal symbols;
— N is a finite set of nonterminal symbols;
— P is a set of productions;
— S (from N) is the start symbol.

e The English sentence example

— 2 ={a, the, brown, friendly, good, book, refrigerator, dog, car, sings,
eats, likes}

— N={SENTENCE, SUBJECT, VERB, NOUN, OBJECT, ADJECTIVE, ARTICLE}
— S={SENTENCE}

— P={rule 1) to rule 7)}

17-01-24

Recursive definition

e Number of sentence can be generated:

ARTICLE ADIJ NOUN VERB ARTICLE ADIJ NOUN sentences

3* 4* 4* 3* 3* 4* 4* =6912

e How can we define an infinite language with a finite set
of words and finite set of rules?

e Using recursive rules:

— SUBIJECT/OBIJECT can have more than one adjectives:
1) SUBJECT > ARTICLE ADJECTIVES NOUN

2) OBEJCT - ARTICLE ADJECTIVES NOUN
3) ADIJECTIVES—> ADJECTIVE | ADJECTIVES ADJETIVE

— Example sentence:
“the good brown dog likes a good friendly book”

17-01-24

Chomsky hierarchy

e Noam Chomsky hierarchy is based on the form of production rules
e General form

a; oy 03 ...0, > By By Bs ... By
Where a and B are from terminals and non terminals, or empty.

e Level 3: Regular grammar
— Oftheforma—=> B ora—=> B, B,
— n=1, and a is a non terminal.
— B is either a terminal or a terminal followed by a nonterminal
— RHS contains at most one non-terminal at the right end.
e Level 2: Context free grammar
— Oftheforma =2 B, B, Bs .. B,
— o is non terminal.
e Level 1: Context sensitive grammar

— n<m. The number of symbols on the lhs must not exceed the number of
symbols on the rhs

e Level 0: unrestricted grammar

17-01-24 12

Context sensitive grammar

e Called context sensitive because you can construct the
grammar of the form
— AaB> ABB
— AaC> AvyB

e The substitution of o depending on the surrounding context A
and B or A and C.

17-01-24 13

Chomsky hierarchy

regular € Context-free C Context-sensitive C unrestricted

Chomsky level 0 (unrestricted)

Chomsky level 1 (Context sensitive
grammar)

Chomsky level 2
(Context free grammar)

Chomsky level 3
(Regular
grammar/expression)

The more powerful the grammar, the more complex the
program required to recognize the legal inputs.

17-01-24

14

Grammar examples

e Regular grammar
— L={w]|w consists of arbitrary number of ‘a’s and ‘b’s}
— Grammar: S=2a|b|aS|bS
— Example sentence: “abb” is a legal sentence in this language

— Derivation:
S—>as

2> abs

2> abb

17-01-24

15

Context free grammar example

e Context free grammar example
— Language L={a"b"}
— Grammar: S—>ab | aSb
— Notice the difference with regular grammar.
— Example sentence: “aaabbb” is a legal sentence in this language

— Derivation:
S—>aShb
—>aaShbb
—>aaabbb

17-01-24

Characterize different types of grammars

e Regular grammar
— Being able to count one item

e Context free grammar
— being able to count pairs of items
—_ anbn

e (Context sensitive grammar

— Being able to count arbitrarily;
_ anbncn

17-01-24

17

Implications of different grammars in applications

e Regular grammar
— Recognize words

e Context free grammar
— Recognize pairs of parenthesis
((a+b) *c)/2
— Recognize blocks
{ statementi;
{ statement2;
statement3;

¥
}

e (Context sensitive grammar

17-01-24

18

Context free grammars and languages

e Many languages are not regular. Thus we need to consider
larger classes of languages;

e Context Free Language (CFL) played a central role in natural

languages since 1950’s (Chomsky) and in compilers since
1960’s (Backus);

e Context Free Grammar (CFG) is the basis of BNF syntax;
e CFGisincreasingly important for XML and DTD (XML Schema).

19

Informal Example of CFG

e Palindrome:
— Madam, I’'m adam.
— A man, a plan, a canal, panamal!

e Consider L, ={w|w is a palindrome on symbols 0 and 1}

pal
e Example: 1001, 11 are palindromes
e How to represent palindrome of any length?

e Basis: €, 0and 1 are palindromes;

1. P>e
2. P20
3. P>1
e |Induction: if wis palindrome, so are Ow0 and 1w1. nothing else is a
palindrome.
1. P->0PO
2. P>1P1

20

The informal example (cont.)

e CFGis a formal mechanism for definitions such as the one for

I‘pal

1. P2¢

. P=>0
P>1
P>0P0

P>1P1

GoR W

— 0O and 1 are terminals

— P is avariable (or nonterminal, or syntactic category)
— P is also the start symbol.
— 1-5 are productions (or rules)

21

Formal definition of CFG
e ACFGis a4-tuple G=(2,N,P,S) where

1. X is a finite set of terminals;
2. N is finite set of variables (non-terminals);

3. Pis afinite set of productions of the form A>a, where Ais a
nonterminal and a consists of symbols from Z and N;

1. Ais called the head of the production;
2. ais called the body of the production;

4. Sis adesignated non-terminal called the start symbol.
e Example:
Gpa|=({0,1}, {P}, A,P), where A ={P—2>¢, P20, P>1, P>0P0, P>1P1}

e Sometimes we group productions with the same head.
— e.g., A={P>€|0|1|0PO|1P1}.

22

Another CFG example: arithmetic expression

e G=({+7%(),a,b,0,1}, {E, R, S}, P, E)
1. E>R

E2>E+E

E>E*E

E->(E)

W N

R—>aS
R—>bS
S>> ¢

S—>aS
. S2>bS
10. S—>0S
11.S—>1S

© 0 N o v

23

Two level descriptions

Context-free syntax of arithmetic expressions
1. E—2>R

2. EDE+E
3. EDE*E
4. E>(E)

Lexical syntax of arithmetic expressions
R—>aSs

R—>bS

S ¢

S—>aSs

S—>bS

S—>0S

7. S—2>1S

R—->(a|b)(a|b|O|1)*

Why two levels

ok wnN e

— We think that way (sentence, word, character).

— besides, ... (see next slide)

24

Why use regular expression

Every regular set is a context free
language.
Since we can use CFG to describe
regular language, why using regular
expression to define lexical syntax of a
language? Why not using CFG to
describe everything?

— Lexical rules are simpler;

— Regular expressions are concise and
easier to understand;

— More efficient lexical analyzers can be
constructed from regular expression;

— Itis good to modularize compiler into
two separate components.

Chomsky level O (unrestricted)

Chomsky level 1 (Context
sensitive grammar)

Chomsky level 2
(Context free grammar)

Chomsky level 3
(Regular expression)

25

BNF and EBNF

e BNF and EBNF are commonly accepted ways to express productions of a
context-free grammar.

e BNF

— Introduced by John Backus, first used to describe Algol 60. John won Turing
award in 1977.

"Backus Normal Form”, or "Backus Naur Form".
— EBNF stands for Extended BNF.

e BNF format
— |lhs ::=rhs
— Quote terminals or non-terminals

e <> to delimit non-terminals,
e bold or quotes for terminals, or ‘as is’

— vertical bar for alternatives
— There are many different notations, here is an example

opt-stats ::= stats-list | EMPTY .
stats-list ::= statement | statement ‘;’ stats-list.

EBNF

e An extension of BNF, use regular- expression-like constructs on the right-
hand-side of the rules:

— write [A] to say that A is optional

— Write {A} or A* to denote 0 or more repetitions of A (ie. the Kleene closure
of A).

e Using EBNF has the advantage of simplifying the grammar by reducing
the need to use recursive rules.

e Both BNF and EBNF are equivalent to CFG

e Example:
BNF EBNF
block ::=‘{" opt-stats ‘} block ::= {* [stats-list] ‘}
opt-stats ::= stats-list | EMPTY stats-list ::= statement (‘;’ statement)*
stats-list ::= statement |
statement ‘;’ stats-list

27

e Java method_declaration

e method_declaration ::= { modifier } type identifier
"(" [parameter list]")" {"[" "]" } (statement block | ";")

method_declaration

< 2 ftupel{identi fier}+) (3= 2
1\!|p':ar~c:ameter'~_l ist|-/r L@w@fr]

[Tis tatement_block

28

Languages, Grammars, and automata

Language Class Grammar Automaton
3 Regular NFA or DFA
2 Context-Free Push-Down Automaton
1 Context-Sensitive Linear-Bounded Automaton
0 Unrestricted (or Free) Turing Machine

=—> (Closer to machine

1 More expressive

29

Another arithmetic expression example

(p1) exp—2>exp+digit

(p2) exp—2>exp-digit

(p3) exp—>digit

(p4) digit>0]1]|2|3|4|5|6]7|8|9

e the “|” means OR

e So the rules can be simplified as:
(P1-3) Exp =2 exp + digit | exp - digit | digit
(p4) digit—=>0]1]|2|3]4|5|6|7|8]9

30

Derivation

e One step derivation (= relation)

— If A= vy is a production, o A B is a string of terminals and variables,
then

aAPB = ayp
— Example:
9 - digit + digit = 9 - digit + 2
using rule P4 : digit — 2
e Zero or more steps of derivation (=%*)
— Basis: o =* o
— Induction:ifa=*p ,B = v, thena=*y.
— Example:
e 9 -digit + digit =* 9 - digit + digit
e 9-digit+digit=*9-5+2
e O-digit+digit=9-5+digit=9-5+2
e One or more steps of derivation (=)
— Example: 9 -digit + digit="9-5+2

31

Example of derivation

e We can derive the string 9-5 + 2 as follows:

(P1: exp — exp +digit)

exp = exp + digit (P2 : exp — exp —digit)
=> exp - digit + digit (P3: exp — digit)
=> digit - digit + digit (P4 : digit — 9)
= 9 - digit + digit (P4 : digit — 5)
= 9 -5+ digit (P4 : digit — 2)
=9-5+2
exp=>"9-5+2

exp =*9-5+2

32

Left most and right most derivations

Left most derivation: Right most derivation:
exp =, exp + digit exp = exp + digit
=, exp - digit + digit = exp+2
= digit - digit + digit = _exp -digit +2
= 9 - digit + digit = exp- 5 +2
= 9-5+digit = digit-5 +2
=, 9-5+2 =9 -5 +2
exp=>"_,9-5+2 exp="_9-5+2
exp =% 9-5+2 exp=*,9-5+2

(p1) exp—2>exp+digit

(p2) exp—2>exp-digit

(p3) exp—>digit

(p4) digit—>0]1]2|3|4|5|6|7|8]|9

33

Parse tree

e This derivation can also be represented via a Parse Tree.

(p1) exp—2>exp+digit

Exp
(p2) exp—2>exp-digit
Exlp ! _I_ (p3) exp—>digit
| + gl (p4) digit>0]1]2]3]4|5/6]7]
l I |
8|9

exp - digit 2
digit 5

9
9 - 5 + 2

34

Tree terminologies

e Trees are collections of nodes, with a parent-child
relationship.

— A node has at most one parent, drawn above the node;

— A node has zero or more children, drawn below the node.

There is one node, the root, that has no parent. This node
appears at the top of the tree

Nodes with no children are called leaves.

Nodes that are not leaves are interior nodes.

35

Formal definition of parse tree

e Parse tree shows the derivation of a
string using a grammar.

e Properties of a parse tree:
— The root is labeled by the start symbol;
— Each leaf is labeled by a terminal or g;

— Each interior node is labeled by a
nonterminal;

— If Ais the nonterminal node and X1, ..., Xn
are the children nodes of A, then A= X1 ...
Xn is a production.
e Yield of a parse tree

— look at the leaves of a parse tree, from left
to right, and concatenate them

— Example: 9-5+2

Exp
' I
Exp + digit
. |
exp digit 2
digit 5
9

36

The language of a grammar

e |f Gisagrammar, the language of the grammar, denoted as
L(G), is the set of terminal strings that have derivations from

the start symbol.

e |falanguage L is the language of some context free grammar,

then L is said to be a context free language.
e Example: the set of palindromes is a context free language.

37

Derivation and the parse tree

e The followings are equivalent:

- A=* w;

— There is a parse tree with root A and yield w.

38

Applications of CFG

e Parser and parser generator;
e Markup languages.

39

Ambiguity of Grammar

e What is ambiguous grammar;
e How to remove ambiguity;

40

Example of ambiguous grammar

e Ambiguous sentence:
— Fruit flies like a banana
e Consider a slightly modified grammar for expressions
expr > expr + expr | expr * expr | digit
e Derivations of 9+5*2
expr
=> expr + expr
=> expr + expr * expr
=, 9+5*2
expr
=> expr¥*expr
= expr+expr¥*expr
=, 9+5*2

e There are different derivations

41

Ambiguity of a grammar

e Ambiguous grammar: produce more than one parse tree
expr 2> expr + expr | exp * expr | digit

expr expr
1 1
expr expr
| — | |
expr expr |expr expr eXplr FXPT |
9 + 5 * 2 o + 5 2
9 + 5 * 2 o + 6 F 2

e Problems of ambiguous grammar
— one sentence has different interpretations

42

Several derivations can not decide whether the
grammar is ambiguous

Using the expr grammar, 3+4 has many
derivations:

E+E
D+E
3+E
3+D
3+4

Led ™

Based on the existence of two
derivations, we can not deduce that the
grammar is ambiguous;

It is not the multiplicity of derivations
that causes ambiguity;

It is the existence of more than one
parse tree.

In this example, the two derivations will
produce the same tree

=E+E
=E+D
=E+4
=D+4
=3+4

> o——m

43

Derivation and parse tree

e |n an unambiguous grammar, leftmost derivation will be
unique; and rightmost derivation will be unique;

e How about ambiguous grammar?
E

E
=, E+E — E*E
= m D*E =, E+E*E
= m IHE — _D+E*E
= m IHETE = O+E*E
= m I*D7E — _9+D*E
= im I+7E =, 9+5*E
=i I+57D =, 9+5*D
= im 94572 =, 9+5%2

e A string has two parser trees iff it has two distinct leftmost
derivations (or two rightmost derivations).

44

Remove ambiguity

e Some theoretical results (bad news)

— Is there an algorithm to remove the ambiguity in CFG?
e the answeris no

— Is there an algorithm to tell us whether a CFG is ambiguous?
e The answer is also no.
— There are CFLs that have nothing but ambiguous CFGs.
e That kind of language is called ambiguous language;
e If alanguage has one unambiguous grammar, then it is called unambiguous
language.
e |n practice, there are well-known techniques to remove ambiguity
e Two causes of the ambiguity in the expr grammar

— the precedence of operator is not respected. “*” should be grouped
before “+”;

— asequence of identical operator can be grouped either from left or from
right. 3+4+5 can be grouped either as (3+4)+5 or 3+(4+5).

45

Remove ambiguity

e Enforcing precedence by introducing several different variables, each
represents those expressions that share a level of binding strength

— factor: digit is a factor

— term: factor * factor*factor is a term

— expression: term+term+term ... is an expression
e So we have a new grammar:

E>T | E+T

TDF | T*F

F>D
e Compare the original grammar:

E>E+E

E->E*E | |

E->D E

e The parser tree for D+D*D is:

—

-n
O——T

O T

46

Another ambiguous grammar

Stmt =2 if expr then stmt
| if expr then stmt else stmt
| other

If E1 then if E2 then S1 else S2

stmt
|
! | | |
if expr then stmt
! | | | | tlt
if expr then Stmt else StM
stmt
I
if expr then stmt else Stmt

if expr then stmt

47

Remove the ambiguity

e Match “else” with closest previous unmatched “then”

e How to incorporate this rule into the grammar?
Stmt = if expr then stmt
| if expr then stmt else stmt
| other

stmt—>matched _stmt | unmatched_stmt
matched_stmt—2>if expr then matched_stmt else matched_stmt
|other
unmatched stmt—2if expr then stmt
| if expr then matched_stmt else unmatched_stmt

48

The parse tree of if-stmt example

stmt

unmatched stmt

i expr then stmt

matched stmt

r
! | | | | |
if E2 then matched ©lS€ matched
_stmt stmt

| |
S1 S2

49

