
1	

03-60-214		Syntax	analysis	

Jianguo	Lu	
School	of	Computer	Science	

University	of	Windsor	



2	

Lexical analyzer 

Parser 

id						+								id	

				Expr														

				assignment		

		:=	id	

Total := price + tax ; 

T o t a l : = p r i c e + t a x ;



Grammars	



17-01-24	 4	

Formal	definiKon	of	language	

•  A	language	is	a	set	of	strings	
–  English	language		
	{“the	brown	dog	likes	a	good	car”,	…	…}	

				{sentence	|	sentence	wriYen	in	English}	
–  Java	language					{program			|program	wriYen	in	Java}	
–  HTML	language		{document	|document	wriYen	in	HTML}	

•  How	do	you	define	a	language?	
•  It	is	unlikely	that	you	can	enumerate	all	the	sentences,	

programs,	or	documents	

		

	
	
	



17-01-24	 5	

How	to	define	a	language	
•  How	to	define	English	

–  A	set	of	words,	such	as	brown,	dog,	like	
–  A	set	of	rules	

•  A	sentence	consists	of	a	subject,	a	verb,	and	an	object;	
•  The	subject	consists	of	an	opKonal	arKcle,	followed	by	an	opKonal	adjecKve,	and	

followed	by	a	noun;	
•  	…	…	

–  More	formally:	
•  Words	={a,	the,	brown,	friendly,	good,	book,	refrigerator,	dog,	car,	sings,	eats,	likes}		
•  Rules:		

1)  SENTENCE	à	SUBJECT	VERB	OBJECT	
2)  	SUBJECT	à	ARTICLE	ADJECTIVE	NOUN	
3)  	OBEJCT	à	ARTICLE	ADJECTIVE	NOUN	
4)  	ARTICLE	à		a	|	the|	EMPTY	
5)  	ADJECTIVE	à	brown	|	friendly	|	good	|	EMPTY	
6)  	NOUN	à	book|		refrigerator	|	dog|	car	
7)  VERB	à	sings	|	eats	|	likes		



17-01-24	 6	

DerivaKon	of	a	sentence	

•  Rules:		
1)  SENTENCE	à	SUBJECT	VERB	OBJECT	
2)  	SUBJECT	à	ARTICLE	ADJECTIVE	NOUN	
3)  	OBEJCT	à	ARTICLE	ADJECTIVE	NOUN	
4)  	ARTICLE	à		a	|	the|	EMPTY	
5)  	ADJECTIVE	à	brown	|	friendly	|	good	|	EMPTY	
6)  	NOUN	à	book|		refrigerator	|	dog|	car	
7)  VERB	à	sings	|	eats	|	likes		

•  DerivaKon	of	a	sentence	“the	brown	dog	likes	a	good	car”	
SENTENCE	
àSUBJECT																																VERB				OBJECT	
àARTICLE	ADJECTIVE	NOUN	VERB			OBJECT	
àthe										brown								dog					VERB			OBJECT	
àthe										brown								dog						likes			ARTICLE	ADJECTIVE	NOUN	
àthe										brown								dog						likes					a														good										car	



17-01-24	 7	

The	parse	tree	of	the	sentence	

The 

VERB SUBJECT OBJECT 

SENTENCE 

ARTICLE ADJ NOUN ARTICLE ADJ NOUN 

brown dog likes a good car 

Parse the sentence: “the brown dog likes a good car” 
The top-down approach 



17-01-24	 8	

Top	down	and	boYom	up	parsing	

The 

VERB SUBJECT OBJECT 

SENTENCE 

ARTICLE ADJ NOUN ARTICLE ADJ NOUN 

brown dog likes a good car 



17-01-24	 9	

Types	of	parsers	

•  Top	down	
–  Repeatedly	rewrite	the	start	symbol	
–  Find	the	lem-most	derivaKon		of	the	input	string	
–  Easy	to	implement	

•  BoYom	up	
–  Start	with	the	tokens	and	combine	them	to	form	interior	nodes	of	the	

parse	tree	
–  Find	a	right-most	derivaKon	of	the	input	string	
–  Accept	when	the	start	symbol	is	reached	

•  BoYom	up	is	more	prevalent	



17-01-24	 10	

Formal	definiKon	of	grammar	

•  A	grammar	is	a	4-tuple	G	=	(Σ,	N,	P,	S)	
–  Σ	is	a	finite	set	of	terminal	symbols;	
–  N	is	a	finite	set	of	nonterminal	symbols;	
–  P	is	a	set	of	producKons;	
–  S	(from	N)	is	the	start	symbol.	

•  The	English	sentence	example	
–  Σ	={a,	the,	brown,	friendly,	good,	book,	refrigerator,	dog,	car,	sings,	

eats,	likes}	
–  N={SENTENCE,	SUBJECT,	VERB,	NOUN,	OBJECT,	ADJECTIVE,	ARTICLE}	
–  S={SENTENCE}	
–  P={rule	1)		to		rule	7)	}	

	



17-01-24	 11	

Recursive	definiKon	

•  Number	of	sentence	can	be	generated:	
ARTICLE	 ADJ	 NOUN	 VERB	 ARTICLE	 ADJ	 NOUN	 sentences	

3	*	 4*	 4*	 3*	 3*	 4*	 4*	 =	6912	

•  How	can	we	define	an	infinite	language	with	a	finite	set	
of	words	and	finite	set	of	rules?	

•  Using	recursive	rules:	
–  SUBJECT/OBJECT	can	have	more	than	one	adjecKves:	

1)  SUBJECT	à	ARTICLE	ADJECTIVES	NOUN	
2)  OBEJCT	à	ARTICLE	ADJECTIVES	NOUN	
3)  ADJECTIVESà	ADJECTIVE	|	ADJECTIVES	ADJETIVE	

–  Example	sentence:		
“the	good	brown	dog	likes	a	good	friendly	book”	



17-01-24	 12	

Chomsky	hierarchy		

•  Noam	Chomsky	hierarchy	is	based	on	the	form	of	producKon	rules	
•  General	form	

α1 α2 α3 …αn à β1 β2 β3 … βm  
Where	α	and	β	are	from	terminals	and	non	terminals,	or	empty.	

•  Level	3:	Regular	grammar	
–  Of	the	form	α à β  or α à β1 β2 	
–  n=1,	and	α	is	a	non	terminal.	
–  	β	 is	either	a	terminal	or	a	terminal	followed	by	a	nonterminal	
–  RHS	contains	at	most	one	non-terminal	at	the	right	end.		

•  Level	2:	Context	free	grammar	
–  Of	the	form	α à	β1	β2	β3	…	βm	

–  α is	non	terminal. 
•  Level	1:	Context	sensiKve	grammar	

–  n<m.	The	number	of	symbols	on	the	lhs	must	not	exceed	the	number	of	
symbols	on	the	rhs		

•  Level	0:	unrestricted	grammar 
 



17-01-24	 13	

Context	sensiKve	grammar	

•  Called	context	sensiKve	because	you	can	construct	the	
grammar	of	the	form	  
–  AαB à A β B  
–  AαC à A γ B  

•  The	subsKtuKon	of	α depending	on	the	surrounding	context	A	
and	B	or	A	and	C. 

 



17-01-24	 14	

Chomsky	hierarchy	

•  regular	⊆	Context-free	⊆ Context-sensiKve		⊆ unrestricted	

Chomsky level 3 
(Regular  

grammar/expression) 

Chomsky level 2 
(Context free grammar) 

 

Chomsky level 1 (Context sensitive 
grammar) 

Chomsky level 0 (unrestricted) 

•  	The	more	powerful	the	grammar,	the	more	complex	the	
program	required	to	recognize	the	legal	inputs.	

	



17-01-24	 15	

Grammar	examples	

•  Regular	grammar	
–  L={w|w	consists	of	arbitrary	number	of	‘a’s	and	‘b’s}	
–  Grammar:			Sàa	|	b	|	a	S|	bS	
–  Example	sentence:	“abb”	is	a	legal	sentence	in	this	language	
–  DerivaKon:			

S	à	a	S																									
			à	a	b	S	
			à	a	b	b	



17-01-24	 16	

Context	free	grammar	example	

•  Context	free	grammar	example	
–  Language	L={anbn}	
–  Grammar:			Sàab	|	aSb		
–  NoKce	the	difference	with	regular	grammar.	
–  Example	sentence:	“aaabbb”	is	a	legal	sentence	in	this	language	
–  DerivaKon:			

S	à	a	S	b		
			à	a	a	S	bb	
			à	a	a	a	b	b	b	



17-01-24	 17	

Characterize	different	types	of	grammars	

•  Regular	grammar	
–  Being	able	to	count	one	item	

•  Context	free	grammar	
–  being	able	to	count	pairs	of	items	
–  anbn	

•  Context	sensiKve	grammar	
–  Being	able	to	count	arbitrarily;	
–  anbncn	



17-01-24	 18	

ImplicaKons	of	different	grammars	in	applicaKons	

•  Regular	grammar	
–  Recognize	words	

•  Context	free	grammar	
–  Recognize	pairs	of	parenthesis	

((a+b)	*c)/2	

–  Recognize	blocks	
{   statement1; 
     { statement2; 
       statement3; 
      } 
} 

•  Context	sensiKve	grammar	



19	

Context	free	grammars	and	languages	

•  Many	languages	are	not	regular.	Thus	we	need	to	consider	
larger	classes	of	languages;	

•  Context	Free	Language	(CFL)	played	a	central	role	in	natural	
languages	since	1950’s		(Chomsky)	and	in	compilers	since	
1960’s	(Backus);	

•  Context	Free	Grammar	(CFG)	is	the	basis	of	BNF	syntax;	
•  CFG	is	increasingly	important	for	XML	and	DTD	(XML	Schema).	



20	

Informal	Example	of	CFG	

•  Palindrome:		
–  Madam,	I’m	adam.	
–  A	man,	a	plan,	a	canal,	panama!	

•  Consider	Lpal	={w|w	is	a	palindrome	on	symbols	0	and	1}	
•  Example:		1001,	11	are	palindromes	
•  How	to	represent	palindrome	of	any	length?		
•  Basis:	ε,	0	and	1	are	palindromes;	

1.  Pàε	
2.  Pà0	
3.  Pà1	

•  InducKon:	if	w	is	palindrome,	so	are	0w0	and	1w1.	nothing	else	is	a	
palindrome.	
1.  Pà0P0	
2.  Pà1P1			



21	

The	informal	example	(cont.)	

•  CFG	is	a	formal	mechanism	for	definiKons	such	as	the	one	for	
Lpal	
1.  Pàε	
2.  Pà0	
3.  Pà1	
4.  Pà0P0	
5.  Pà1P1	

–  0	and	1	are	terminals	
–  P	is	a	variable	(or	nonterminal,	or	syntacKc	category)	
–  P	is	also	the	start	symbol.	
–  1-5	are	producKons	(or	rules)	



22	

Formal	definiKon	of	CFG	
•  A	CFG	is	a	4-tuple	G=(Σ,N,P,S)	where		

1.  Σ	is	a	finite	set	of	terminals;	
2.  N	is	finite	set	of	variables	(non-terminals);	
3.  P	is	a	finite	set	of	producKons	of	the	form	Aàα,  where	A	is	a	

nonterminal	and	α	consists	of	symbols	from	Σ	and	N;	
1.  A	is	called	the	head	of	the	producKon;	
2.  α	is	called	the	body	of	the	producKon;	

4.  S	is	a	designated	non-terminal	called	the	start	symbol.	

•  Example:	
–  Gpal=({0,1},	{P},	A,P),	where	A	={Pàε,	Pà0,	Pà1,	Pà0P0,	Pà1P1}	

•  SomeKmes	we	group	producKons	with	the	same	head.		
–  e.g.,	A={Pàε|0|1|0P0|1P1}.	



23	

Another	CFG	example:	arithmeKc	expression	

•  G=(	{+,*,(,),a,b,0,1},	{E,	R,	S},	P,	E)	
1.  EàR	
2.  EàE+E	
3.  EàE*E	
4.  Eà(E)	

5.  RàaS	
6.  RàbS	
7.  Sà	ε	
8.  SàaS		
9.  SàbS		
10. Sà0S	
11. Sà1S	

	



24	

Two	level	descripKons	

•  Context-free	syntax	of	arithmeKc	expressions	
1.  EàR	
2.  EàE+E	
3.  EàE*E	
4.  Eà(E)	

•  Lexical	syntax	of	arithmeKc	expressions	
1.  RàaS	
2.  RàbS	
3.  Sà	ε	
4.  SàaS		
5.  SàbS		
6.  Sà0S	
7.  Sà1S		
Rà(a|b)(a|b|0|1)*	

•  Why	two	levels		
–  We	think	that	way	(sentence,	word,	character).	
–  besides,	…	(see	next	slide)	



25	

Why	use	regular	expression	

•  Every	regular	set	is	a	context	free	
language.		

•  Since	we	can	use	CFG	to	describe	
regular	language,	why	using	regular	
expression	to	define	lexical	syntax	of	a	
language?	Why	not	using	CFG	to	
describe	everything?	
–  Lexical	rules	are	simpler;		
–  Regular	expressions	are	concise	and	

easier	to	understand;	
–  More	efficient	lexical	analyzers	can	be	

constructed	from	regular	expression;	
–  It	is	good	to	modularize	compiler	into	

two	separate	components.	

Chomsky level 3 
(Regular expression) 

Chomsky level 2 
(Context free grammar) 

 

Chomsky level 1 (Context 
sensitive grammar) 

Chomsky level 0 (unrestricted) 



26	

BNF	and	EBNF	
•  BNF	and	EBNF	are	commonly	accepted	ways	to	express	producKons	of	a	

context-free	grammar.		
•  BNF	

–  Introduced	by	John	Backus,	first	used	to	describe	Algol	60.	John	won	Turing	
award	in	1977.		

–  "Backus	Normal	Form”,	or	"Backus	Naur	Form".		
–  EBNF	stands	for	Extended	BNF.		

•  BNF	format		
–  lhs	::=	rhs		
–  Quote	terminals	or	non-terminals	

•  <>	to	delimit	non-terminals,		
•  bold	or	quotes	for	terminals,	or	‘as	is’		

–  verKcal	bar	for	alternaKves	
–  There	are	many	different	notaKons,	here	is	an	example	

																				opt-stats		::=		stats-list	|	EMPTY	.			
																													stats-list		::=		statement	|	statement			‘;’			stats-list	.	

	



27	

EBNF	
•  An	extension	of	BNF,	use	regular-	expression-like	constructs	on	the	right-

hand-side	of	the	rules:	
–  write	[A]	to	say	that		A	is	opKonal		
–  Write	{A}		or	A*	to	denote	0	or	more	repeKKons	of	A	(ie.	the	Kleene	closure	

of		A).		

•  Using	EBNF	has	the	advantage	of	simplifying	the	grammar	by	reducing	
the	need	to	use	recursive	rules.	

•  Both	BNF	and	EBNF	are	equivalent	to	CFG	

•  Example:	

BNF	 EBNF	

block						::=	‘{'		opt-stats	‘}’	
opt-stats	::=		stats-list		|		EMPTY		
stats-list		::=		statement		|	
																					statement			‘;’			stats-list	

	block	::=	‘{‘	[stats-list]	‘}’			
	stats-list	::=	statement		(	‘;’	statement	)*	



•  Java	method_declara/on	
•  method_declaraKon	::=	{	modifier	}	type	idenKfier	

"("	[	parameter_list	]	")"	{	"["	"]"	}	(	statement_block	|	";"	)					

28	



29	

Languages,	Grammars,	and	automata	

Language	Class	 Grammar	 Automaton	

3	 Regular	 NFA	or	DFA	

2	 Context-Free	 Push-Down	Automaton	

1	 Context-SensiKve	 Linear-Bounded	Automaton	

0	 Unrestricted	(or	Free)	 Turing	Machine	

Closer to machine 

 

More expressive 



30	

Another	arithmeKc	expression	example	

	
(p1)		expàexp+digit		
(p2)		expàexp-digit		
(p3)		expàdigit	
(p4)		digità0|1|2|3|4|5|6|7|8|9	
	

•  the	“|”	means	OR	
•  So	the	rules	can	be	simplified	as:	
						(P1-3)		Exp	à	exp	+	digit	|		exp	-	digit	|	digit	
						(p4)		digità0|1|2|3|4|5|6|7|8|9		



31	

DerivaKon	
•  One	step	derivaKon	(⇒	relaKon)	

–  If	Aà	γ is a production, α A β  is a string of terminals and variables, 
then  

αAβ ⇒	 αγβ  
–  Example:	

						9	-	digit	+	digit	⇒	9	-	digit	+	2		
	using	rule	P4	:	digit	→		2	

•  Zero	or	more	steps	of	derivaKon	(⇒*)	
–  	Basis:	α ⇒*	 α	
–  InducKon:	if	α	⇒*	β 	,	β		⇒	γ,	then	α	⇒*	γ.			
–  Example:		

•  9	-	digit	+	digit	⇒*	9	-	digit	+	digit		
•  9	-	digit	+	digit	⇒*	9	-	5	+	2		
•  9	-	digit	+	digit	⇒	9	-	5	+	digit	⇒	9	-	5	+	2		

•  One	or	more	steps	of	derivaKon	(⇒+)	
–  Example:			9	-	digit	+	digit	⇒+	9	-	5	+	2		



32	

Example	of	derivaKon	

•  We	can	derive	the	string		9	-	5	+	2		as	follows:	
	
																																																					(P1	:		exp	→		exp	+	digit)			
exp	⇒	exp	+	digit	 	 								(P2	:		exp	→		exp	–	digit)	
				⇒	exp	-	digit	+	digit															(P3	:		exp	→		digit)	

							⇒	digit	-	digit	+	digit														(P4	:	digit	→		9)	
							⇒	9	-	digit	+	digit																			(P4	:	digit	→		5)	
							⇒	9	-	5	+	digit																								(P4	:	digit	→		2)	
							⇒	9	-	5	+	2		
exp	⇒+	9	-	5	+	2		
exp	⇒*	9	-	5	+	2	
	



33	

Lem	most	and	right	most	derivaKons	
LeB	most	derivaEon:	

exp	⇒lm	exp	+	digit	 	 									
				⇒lm	exp	-	digit	+	digit																

							⇒lm	digit	-	digit	+	digit															
							⇒lm	9	-	digit	+	digit																				
							⇒lm	9	-	5	+	digit																									
							⇒lm	9	-	5	+	2		
exp	⇒+

lm
		9	-	5	+	2		

exp	⇒*lm		9	-	5	+	2	

Right	most	derivaEon:	
exp	⇒rm	exp	+	digit	 	 									
				⇒rm	exp	+	2																

							⇒rm	exp	-	digit	+	2															
							⇒rm	exp	-			5				+	2																				
							⇒rm	digit	-		5				+	2																									
							⇒rm	9			-		5				+	2		
exp	⇒+

rm
		9	-	5	+	2		

exp	⇒*rm		9	-	5	+	2	

(p1)		expàexp+digit		
(p2)		expàexp-digit		
(p3)		expàdigit	
(p4)		digità0|1|2|3|4|5|6|7|8|9	
	



34	

Parse	tree	

•  This	derivaKon	can	also	be	represented	via	a	Parse	Tree.	

digit											

exp			-					digit				

				Exp														

				Exp					

9								-								5							+						2	

		+	 		digit	

		2	

		9	

5				

(p1)		expàexp+digit		
(p2)		expàexp-digit		
(p3)		expàdigit	
(p4)		digità0|1|2|3|4|5|6|7|

8|9	
	



35	

Tree	terminologies	

•  Trees	are	collecKons	of	nodes,	with	a	parent-child	
relaKonship.	
–  A	node	has	at	most	one	parent,	drawn	above	the	node;	
–  A	node	has	zero	or	more	children,	drawn	below	the	node.	

•  There	is	one	node,	the	root,	that	has	no	parent.	This	node	
appears	at	the	top	of	the	tree	

•  Nodes	with	no	children	are	called	leaves.	
•  Nodes	that	are	not	leaves	are	interior	nodes.	
	



36	

Formal	definiKon	of	parse	tree	

•  Parse	tree	shows	the	derivaKon	of	a	
string	using	a	grammar.	

•  ProperKes	of	a	parse	tree:	
–  The	root	is	labeled	by	the	start	symbol;	
–  Each	leaf	is	labeled	by	a	terminal	or	ε; 	
–  Each	interior	node	is	labeled	by	a	

nonterminal;	
–  If	A	is	the	nonterminal	node	and	X1,	…,	Xn	

are	the	children	nodes	of	A,	then	Aà	X1	…
Xn	is	a	producKon.	

•  Yield	of	a	parse	tree	
–  look	at	the	leaves	of	a	parse	tree,	from	lem	

to	right,	and	concatenate	them	
–  Example:	9-5+2	

digit											

exp					-					digit				

				Exp													

				Exp				

		+	 		digit	

		2	

		9	

5				



37	

The	language	of	a	grammar	

•  If	G	is	a	grammar,	the	language	of	the	grammar,	denoted	as	
L(G),	is	the	set	of	terminal	strings	that	have	derivaKons	from	
the	start	symbol.	

•  If	a	language	L	is	the	language	of	some	context	free	grammar,	
then	L	is	said	to	be	a	context	free	language.	

•  Example:	the	set	of	palindromes	is	a	context	free	language.	
	



38	

DerivaKon	and	the	parse	tree	

•  The	followings	are	equivalent:	
–  A	⇒*			w;	
–  A	⇒*lm	w;	
–  A	⇒*rm	w;	
–  There	is	a	parse	tree	with	root	A	and	yield	w.	



39	

ApplicaKons	of	CFG	

•  Parser	and	parser	generator;	
•  Markup	languages.	



40	

Ambiguity	of	Grammar	

•  What	is	ambiguous	grammar;	
•  How	to	remove	ambiguity;	



41	

Example	of	ambiguous	grammar	

•  Ambiguous	sentence:	
–  Fruit	flies	like	a	banana	

•  Consider	a	slightly	modified	grammar	for	expressions	
expr	à	expr	+	expr	|		expr	*	expr	|	digit	

•  DerivaKons	of	9+5*2	
expr	
⇒	expr	+	expr	
⇒ expr	+	expr	*	expr	
⇒  +	9+5*2	
expr		
⇒ expr*expr	
⇒ expr+expr*expr	
⇒  +	9+5*2		

•  	There	are	different	derivaKons		
	



42	

Ambiguity	of	a	grammar	

•  Ambiguous	grammar:	produce	more	than	one	parse	tree	
	expr	à	expr	+	expr	|		exp	*	expr	|	digit	

9  +								5						*					2	

expr											expr								expr	

				expr																			

				expr					

9  +									5							*							2	

expr												expr									expr	

																							expr																			

				expr					

•  Problems	of	ambiguous	grammar	
–  one	sentence	has	different	interpretaKons	

9							+						(5							*							2)	(9							+						5)							*				2	



43	

Several	derivaKons	can	not	decide	whether	the	
grammar	is	ambiguous	
	
•  Using	the	expr	grammar,	3+4	has	many	

derivaKons:	
E		
⇒  	E+E	
⇒  	D+E	
⇒  	3+E	
⇒  	3+D	
⇒  	3+4	

	
•  Based	on	the	existence	of	two	

derivaKons,	we	can	not	deduce	that	the	
grammar	is	ambiguous;		

•  It	is	not	the	mulKplicity	of	derivaKons	
that	causes	ambiguity;	

•  It	is	the	existence	of	more	than	one	
parse	tree.	

•  In	this	example,	the	two	derivaKons	will	
produce	the	same	tree	

E	
⇒E+E	
⇒E+D	
⇒E+4	
⇒D+4	
⇒3+4	
	
	

	E																			

	D																			

	E																			 	E																			

	4																				3																			

	D																			

	+																			



44	

DerivaKon	and	parse	tree	
•  In	an	unambiguous	grammar,	lemmost	derivaKon	will	be	

unique;	and	rightmost	derivaKon	will	be	unique;	
•  How	about	ambiguous	grammar?	

E		
⇒ lm	E+E	
⇒ lm	D+E	
⇒ lm	9+E	
⇒ lm	9+E*E	
⇒ lm	9+D*E	
⇒ lm	9+5*E	
⇒ lm	9+5*D	
⇒ lm	9+5*2	

E		
⇒ lm	E*E	
⇒ lm	E+E*E	
⇒ lm	D+E*E	
⇒ lm	9+E*E	
⇒ lm	9+D*E	
⇒ lm	9+5*E	
⇒ lm	9+5*D	
⇒ lm	9+5*2	

	
•  A	string	has	two	parser	trees	iff	it	has	two	disKnct	lemmost	

derivaKons	(or	two	rightmost	derivaKons).	



45	

Remove	ambiguity	
•  Some	theoreKcal	results	(bad	news)	

–  Is	there	an	algorithm	to	remove	the	ambiguity	in	CFG?		
•  the	answer	is	no	

–  Is	there	an	algorithm	to	tell	us	whether	a	CFG	is	ambiguous?		
•  The	answer	is	also	no.	

–  There	are	CFLs	that	have	nothing	but	ambiguous	CFGs.	
•  That	kind	of	language	is	called	ambiguous	language;	
•  If	a	language	has	one	unambiguous	grammar,	then	it	is	called	unambiguous	

language.		

•  In	pracKce,	there	are	well-known	techniques	to	remove	ambiguity	
•  Two	causes	of	the	ambiguity	in	the	expr	grammar	

–  the	precedence	of	operator	is	not	respected.	“*”	should	be	grouped	
before	“+”;	

–  a	sequence	of	idenKcal	operator	can	be	grouped	either	from	lem	or	from	
right.	3+4+5	can	be	grouped	either	as	(3+4)+5	or	3+(4+5).	



46	

Remove	ambiguity	
•  Enforcing	precedence	by	introducing	several	different	variables,	each	

represents	those	expressions	that	share	a	level	of	binding	strength	
–  factor:	digit	is	a	factor	
–  term:		factor	*	factor*factor	....	is	a	term	
–  expression:	term+term+term	...	is	an	expression	

•  So	we	have	a	new	grammar:	
EàT	|	E+T	
TàF	|	T*F	
FàD	

•  Compare	the	original	grammar:	
EàE+E	
EàE*E	
EàD	

•  The	parser	tree	for	D+D*D	is:	
	

	E																			

	T																			

	E																		 	T																			

	F																			
	+																			

			T																	 	F																			

	D																						*																		
	D																			

	F																			

	D																			



47	

Another	ambiguous	grammar		
Stmt	à		if	expr	then	stmt	
												|	if	expr	then	stmt	else	stmt	
												|	other	
	
If	E1	then	if	E2	then	S1	else	S2	

	
	

stmt 

stmt 

expr if  then stmt 

expr if  then else stmt 

stmt 

expr if  then stmt 

expr if  then stmt 

else stmt 



48	

Remove	the	ambiguity	

•  Match	“else”	with	closest	previous	unmatched	“then”	
•  How	to	incorporate	this	rule	into	the	grammar?	

Stmt	à		if	expr	then	stmt	
												|	if	expr	then	stmt	else	stmt	
												|	other	
	
stmtàmatched_stmt	|	unmatched_stmt	
matched_stmtàif	expr	then	matched_stmt	else	matched_stmt	
																											|other	
unmatched_stmtàif	expr	then	stmt	
													|	if	expr	then	matched_stmt	else	unmatched_stmt	



49	

The	parse	tree	of	if-stmt	example	

unmatched_stmt 

expr if  then 

matched_stmt 

E2 if  then else matched
_stmt 

S1 

matched
_stmt 

S2 

stmt 

stmt 


