03-60-214 Syntax analysis

Jianguo Lu School of Computer Science University of Windsor

Grammars

Formal definition of language

- A language is a set of strings
 - English language{"the brown dog likes a good car",}{sentence | sentence written in English}
 - Java language {program | program written in Java}
 - HTML language {document | document written in HTML}
- How do you define a language?
- It is unlikely that you can enumerate all the sentences, programs, or documents

How to define a language

- How to define English
 - A set of words, such as brown, dog, like
 - A set of rules
 - A sentence consists of a subject, a verb, and an object;
 - The subject consists of an optional article, followed by an optional adjective, and followed by a noun;
 -
 - More formally:
 - Words ={a, the, brown, friendly, good, book, refrigerator, dog, car, sings, eats, likes}
 - Rules:
 - 1) SENTENCE → SUBJECT VERB OBJECT
 - 2) SUBJECT → ARTICLE ADJECTIVE NOUN
 - 3) OBEJCT → ARTICLE ADJECTIVE NOUN
 - 4) ARTICLE → a | the | EMPTY
 - 5) ADJECTIVE → brown | friendly | good | EMPTY
 - 6) NOUN → book | refrigerator | dog | car
 - 7) VERB → sings | eats | likes

Derivation of a sentence

brown

SENTENCE

→the

Derivation of a sentence "the brown dog likes a good car"

```
→SUBJECT VERB OBJECT

→ARTICLE ADJECTIVE NOUN VERB OBJECT

→the brown dog VERB OBJECT

→the brown dog likes ARTICLE ADJECTIVE NOUN
```

dog likes a

• Rules:

- 1) SENTENCE → SUBJECT VERB OBJECT
- 2) SUBJECT → ARTICLE ADJECTIVE NOUN

good

- 3) OBEJCT → ARTICLE ADJECTIVE NOUN
- 4) ARTICLE → a | the | EMPTY
- 5) ADJECTIVE → brown | friendly | good | EMPTY
- 6) NOUN → book | refrigerator | dog | car
- 7) VERB → sings | eats | likes

17-01-24 6

car

The parse tree of the sentence

Parse the sentence: "the brown dog likes a good car" The top-down approach

Top down and bottom up parsing

Types of parsers

Top down

- Repeatedly rewrite the start symbol
- Find the left-most derivation of the input string
- Easy to implement

Bottom up

- Start with the tokens and combine them to form interior nodes of the parse tree
- Find a right-most derivation of the input string
- Accept when the start symbol is reached
- Bottom up is more prevalent

17-01-24

Formal definition of grammar

- A grammar is a 4-tuple $G = (\Sigma, N, P, S)$
 - $-\Sigma$ is a finite set of terminal symbols;
 - N is a finite set of nonterminal symbols;
 - P is a set of productions;
 - S (from N) is the start symbol.
- The English sentence example
 - Σ ={a, the, brown, friendly, good, book, refrigerator, dog, car, sings, eats, likes}
 - N={SENTENCE, SUBJECT, VERB, NOUN, OBJECT, ADJECTIVE, ARTICLE}
 - S={SENTENCE}
 - P={rule 1) to rule 7) }

Recursive definition

Number of sentence can be generated:

ARTICLE	ADJ	NOUN	VERB	ARTICLE	ADJ	NOUN	sentences
3 *	4*	4*	3*	3*	4*	4*	= 6912

- How can we define an infinite language with a finite set of words and finite set of rules?
- Using recursive rules:
 - SUBJECT/OBJECT can have more than one adjectives:
 - 1) SUBJECT → ARTICLE ADJECTIVES NOUN
 - 2) OBEJCT → ARTICLE ADJECTIVES NOUN
 - 3) ADJECTIVES → ADJECTIVE | ADJECTIVES ADJETIVE
 - Example sentence:

"the good brown dog likes a good friendly book"

Chomsky hierarchy

- Noam Chomsky hierarchy is based on the form of production rules
- General form

$$\alpha_1 \alpha_2 \alpha_3 \dots \alpha_n \rightarrow \beta_1 \beta_2 \beta_3 \dots \beta_m$$

Where α and β are from terminals and non terminals, or empty.

- Level 3: Regular grammar
 - Of the form $\alpha \rightarrow \beta$ or $\alpha \rightarrow \beta_1 \beta_2$
 - n=1, and α is a non terminal.
 - β is either a terminal or a terminal followed by a nonterminal
 - RHS contains at most one non-terminal at the right end.
- Level 2: Context free grammar
 - Of the form $\alpha \rightarrow \beta_1 \beta_2 \beta_3 \dots \beta_m$
 - $-\alpha$ is non terminal.
- Level 1: Context sensitive grammar
 - n<m. The number of symbols on the lhs must not exceed the number of symbols on the rhs
- Level 0: unrestricted grammar

17-01-24

Context sensitive grammar

- Called context sensitive because you can construct the grammar of the form
 - $-A\alpha B \rightarrow A\beta B$
 - $A\alpha C \rightarrow A\gamma B$
- The substitution of α depending on the surrounding context A and B or A and C.

17-01-24

Chomsky hierarchy

regular ⊆ Context-free ⊆ Context-sensitive ⊆ unrestricted

 The more powerful the grammar, the more complex the program required to recognize the legal inputs.

Grammar examples

Regular grammar

- L={w|w consists of arbitrary number of 'a's and 'b's}
- Grammar: $S \rightarrow a \mid b \mid a S \mid bS$
- Example sentence: "abb" is a legal sentence in this language
- Derivation:

```
S \rightarrow a S
```

 \rightarrow a b S

 \rightarrow abb

Context free grammar example

- Context free grammar example
 - Language L={aⁿbⁿ}
 - Grammar: S→ab | aSb
 - Notice the difference with regular grammar.
 - Example sentence: "aaabbb" is a legal sentence in this language
 - Derivation:

```
S → a S b

→ a a S bb

→ a a a b b b
```

Characterize different types of grammars

- Regular grammar
 - Being able to count one item
- Context free grammar
 - being able to count pairs of items
 - aⁿbⁿ
- Context sensitive grammar
 - Being able to count arbitrarily;
 - aⁿbⁿcⁿ

Implications of different grammars in applications

- Regular grammar
 - Recognize words
- Context free grammar
- Context sensitive grammar

Context free grammars and languages

- Many languages are not regular. Thus we need to consider larger classes of languages;
- Context Free Language (CFL) played a central role in natural languages since 1950's (Chomsky) and in compilers since 1960's (Backus);
- Context Free Grammar (CFG) is the basis of BNF syntax;
- CFG is increasingly important for XML and DTD (XML Schema).

Informal Example of CFG

- Palindrome:
 - Madam, I'm adam.
 - A man, a plan, a canal, panama!
- Consider L_{pal} ={w|w is a palindrome on symbols 0 and 1}
- Example: 1001, 11 are palindromes
- How to represent palindrome of any length?
- Basis: ε , 0 and 1 are palindromes;
 - 1. $P \rightarrow \epsilon$
 - 2. $P \rightarrow 0$
 - 3. $P \rightarrow 1$
- Induction: if w is palindrome, so are 0w0 and 1w1. nothing else is a palindrome.
 - 1. $P \rightarrow 0P0$
 - 2. $P \rightarrow 1P1$

The informal example (cont.)

• CFG is a formal mechanism for definitions such as the one for $L_{\text{pal}}\,$

- 1. P→ε
- 2. P→0
- 3. $P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- 5. P→1P1
- 0 and 1 are terminals
- P is a variable (or nonterminal, or syntactic category)
- P is also the start symbol.
- 1-5 are productions (or rules)

Formal definition of CFG

- A CFG is a 4-tuple G=(Σ,N,P,S) where
 - 1. Σ is a finite set of terminals;
 - 2. N is finite set of variables (non-terminals);
 - 3. P is a finite set of productions of the form $A \rightarrow \alpha$, where A is a nonterminal and α consists of symbols from Σ and N;
 - 1. A is called the head of the production;
 - 2. α is called the body of the production;
 - 4. S is a designated non-terminal called the start symbol.
- Example:
 - $G_{pal}=(\{0,1\}, \{P\}, A,P)$, where $A = \{P \rightarrow \epsilon, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1\}$
- Sometimes we group productions with the same head.
 - e.g., A={P→ε|0|1|0P0|1P1}.

Another CFG example: arithmetic expression

- G=({+,*,(,),a,b,0,1}, {E, R, S}, P, E)
 - 1. $E \rightarrow R$
 - 2. E→E+E
 - 3. $E \rightarrow E^*E$
 - 4. $E \rightarrow (E)$
 - 5. $R \rightarrow aS$
 - 6. $R \rightarrow bS$
 - 7. $S \rightarrow \epsilon$
 - 8. $S \rightarrow aS$
 - 9. S→bS
 - 10. S→0S
 - 11. S→1S

Two level descriptions

- Context-free syntax of arithmetic expressions
 - 1. $F \rightarrow R$
 - 2. E→E+E
 - 3. $E \rightarrow E^*E$
 - 4. $E \rightarrow (E)$
- Lexical syntax of arithmetic expressions
 - 1. $R \rightarrow aS$
 - 2. $R \rightarrow bS$
 - 3. $S \rightarrow \epsilon$
 - 4. $S \rightarrow aS$
 - 5. S→bS
 - 6. $S \rightarrow 0S$
 - 7. $S \rightarrow 1S$

 $R \rightarrow (a|b)(a|b|0|1)^*$

- Why two levels
 - We think that way (sentence, word, character).
 - besides, ... (see next slide)

Why use regular expression

- Every regular set is a context free language.
- Since we can use CFG to describe regular language, why using regular expression to define lexical syntax of a language? Why not using CFG to describe everything?
 - Lexical rules are simpler;
 - Regular expressions are concise and easier to understand;
 - More efficient lexical analyzers can be constructed from regular expression;
 - It is good to modularize compiler into two separate components.

Chomsky level 0 (unrestricted)

Chomsky level 1 (Context sensitive grammar)

Chomsky level 2 (Context free grammar)

Chomsky level 3 (Regular expression)

BNF and **EBNF**

 BNF and EBNF are commonly accepted ways to express productions of a context-free grammar.

BNF

- Introduced by John Backus, first used to describe Algol 60. John won Turing award in 1977.
- Backus Normal Form", or "Backus Naur Form".
- EBNF stands for Extended BNF.

BNF format

- lhs ::= rhs
- Quote terminals or non-terminals
 - <> to delimit non-terminals,
 - bold or quotes for terminals, or 'as is'
- vertical bar for alternatives
- There are many different notations, here is an example

```
opt-stats ::= stats-list | EMPTY .
stats-list ::= statement | statement ';' stats-list .
```

EBNF

- An extension of BNF, use regular- expression-like constructs on the righthand-side of the rules:
 - write [A] to say that A is optional
 - Write {A} or A* to denote 0 or more repetitions of A (ie. the Kleene closure of A).
- Using EBNF has the advantage of simplifying the grammar by reducing the need to use recursive rules.
- Both BNF and EBNF are equivalent to CFG
- Example:

BNF	EBNF	
block ::= '{' opt-stats '}'	block ::= '{' [stats-list] '}'	
opt-stats ::= stats-list EMPTY	stats-list ::= statement (';' statement)*	
stats-list ::= statement		
statement ';' stats-list		

- Java method_declaration
- method_declaration ::= { modifier } type identifier
 "(" [parameter list] ")" { "[" "]" } (statement block | ";")

Languages, Grammars, and automata

Language Class	Grammar	Automaton	
3	Regular	NFA or DFA	
2	Context-Free	Push-Down Automaton	
1	Context-Sensitive	Linear-Bounded Automaton	
0	Unrestricted (or $Free$)	Turing Machine	

Closer to machine

More expressive

Another arithmetic expression example

```
(p1) exp→exp+digit
(p2) exp→exp-digit
(p3) exp→digit
(p4) digit→0|1|2|3|4|5|6|7|8|9
```

- the "|" means OR
- So the rules can be simplified as:

(P1-3) Exp
$$\rightarrow$$
 exp + digit | exp - digit | digit (p4) digit \rightarrow 0|1|2|3|4|5|6|7|8|9

Derivation

- One step derivation (⇒ relation)
 - − If A → γ is a production, α A β is a string of terminals and variables, then

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

- Example:

9 - digit +
$$digit \Rightarrow$$
 9 - digit + 2 using rule P4 : $digit \rightarrow$ 2

- Zero or more steps of derivation (⇒*)
 - Basis: $\alpha \Rightarrow^* \alpha$
 - Induction: if $\alpha \Rightarrow^* \beta$, $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow^* \gamma$.
 - Example:
 - 9 digit + digit \Rightarrow * 9 digit + digit
 - 9 digit + digit \Rightarrow * 9 5 + 2
 - 9 digit + digit \Rightarrow 9 5 + digit \Rightarrow 9 5 + 2
- One or more steps of derivation (⇒⁺)
 - Example: $9 digit + digit \Rightarrow^+ 9 5 + 2$

Example of derivation

• We can derive the string 9 - 5 + 2 as follows:

```
(P1: exp \rightarrow exp + digit)
\Rightarrow exp - digit + digit
\Rightarrow digit - digit + digit
\Rightarrow 9 - digit + digit
\Rightarrow 9 - 5 + digit
\Rightarrow 9 - 5 + 2
exp \Rightarrow^* 9 - 5 + 2
exp \Rightarrow^* 9 - 5 + 2
(P2: exp \rightarrow exp + digit)
(P3: exp \rightarrow digit)
(P4: digit \rightarrow 9)
(P4: digit \rightarrow 5)
(P4: digit \rightarrow 2)
\Rightarrow 9 - 5 + 2
```

Left most and right most derivations

Left most derivation:

$$exp \Rightarrow_{lm} exp + digit$$

$$\Rightarrow_{lm} exp - digit + digit$$

$$\Rightarrow_{lm} digit - digit + digit$$

$$\Rightarrow_{lm} 9 - digit + digit$$

$$\Rightarrow_{lm} 9 - 5 + digit$$

$$\Rightarrow_{lm} 9 - 5 + 2$$

$$exp \Rightarrow^{+}_{lm} 9 - 5 + 2$$

$$exp \Rightarrow^{+}_{lm} 9 - 5 + 2$$

Right most derivation:

$$exp \Rightarrow_{rm} exp + digit$$

$$\Rightarrow_{rm} exp + 2$$

$$\Rightarrow_{rm} exp - digit + 2$$

$$\Rightarrow_{rm} exp - 5 + 2$$

$$\Rightarrow_{rm} digit - 5 + 2$$

$$\Rightarrow_{rm} 9 - 5 + 2$$

$$exp \Rightarrow_{rm}^{+} 9 - 5 + 2$$

$$exp \Rightarrow_{rm}^{+} 9 - 5 + 2$$

- (p1) exp→exp+digit
- (p2) exp→exp-digit
- (p3) exp→digit
- (p4) digit \rightarrow 0|1|2|3|4|5|6|7|8|9

Parse tree

• This derivation can also be represented via a *Parse Tree*.

5

9

- (p1) exp→exp+digit
- (p2) exp→exp-digit
- (p3) exp→digit
- (p4) digit \rightarrow 0|1|2|3|4|5|6|7| 8|9

Tree terminologies

- Trees are collections of nodes, with a parent-child relationship.
 - A node has at most one parent, drawn above the node;
 - A node has zero or more children, drawn below the node.
- There is one node, the *root*, that has no parent. This node appears at the top of the tree
- Nodes with no children are called leaves.
- Nodes that are not leaves are interior nodes.

Formal definition of parse tree

- Parse tree shows the derivation of a string using a grammar.
- Properties of a parse tree:
 - The root is labeled by the start symbol;
 - Each leaf is labeled by a terminal or ε ;
 - Each interior node is labeled by a nonterminal;
 - If A is the nonterminal node and X1, ..., Xn are the children nodes of A, then A→ X1 ...
 Xn is a production.
- Yield of a parse tree
 - look at the leaves of a parse tree, from left to right, and concatenate them
 - Example: 9-5+2

The language of a grammar

- If G is a grammar, the language of the grammar, denoted as L(G), is the set of terminal strings that have derivations from the start symbol.
- If a language L is the language of some context free grammar, then L is said to be a context free language.
- Example: the set of palindromes is a context free language.

Derivation and the parse tree

- The followings are equivalent:
 - $A \Rightarrow^* W;$
 - A ⇒*_{Im} w;
 - $A \Rightarrow^*_{rm} w;$
 - There is a parse tree with root A and yield w.

Applications of CFG

- Parser and parser generator;
- Markup languages.

Ambiguity of Grammar

- What is ambiguous grammar;
- How to remove ambiguity;

Example of ambiguous grammar

- Ambiguous sentence:
 - Fruit flies like a banana
- Consider a slightly modified grammar for expressions

```
\exp r \rightarrow \exp r + \exp r \mid \exp r * \exp r \mid \operatorname{digit}
```

Derivations of 9+5*2

```
expr

\Rightarrow expr + expr

\Rightarrow expr + expr * expr

\Rightarrow _{+} 9+5*2

expr

\Rightarrow expr*expr

\Rightarrow expr+expr*expr

\Rightarrow _{+} 9+5*2
```

There are different derivations

Ambiguity of a grammar

Ambiguous grammar: produce more than one parse tree
 expr → expr + expr | exp * expr | digit

- Problems of ambiguous grammar
 - one sentence has different interpretations

Several derivations can not decide whether the grammar is ambiguous

F

 Using the expr grammar, 3+4 has many derivations:

E		L
_		⇒E+E
\Rightarrow	E+E	⇒E+D
\Rightarrow	D+E	
\Rightarrow	3+E	⇒E+4
		⇒D+4
\Rightarrow	3+D	⇒ 3+4
_	$2\pm \Lambda$	

- Based on the existence of two derivations, we can not deduce that the grammar is ambiguous;
- It is not the multiplicity of derivations that causes ambiguity;
- It is the existence of more than one parse tree.
- In this example, the two derivations will produce the same tree

Derivation and parse tree

- In an unambiguous grammar, leftmost derivation will be unique; and rightmost derivation will be unique;
- How about ambiguous grammar?

E	Е
$\Rightarrow_{Im} E+E$	⇒ _{Im} E*E
$\Rightarrow_{Im} D+E$	$\Rightarrow_{lm} E + E^*E$
\Rightarrow_{lm} 9+E	$\Rightarrow_{lm} D+E*E$
$\Rightarrow_{lm} 9+E*E$	$\Rightarrow_{lm} 9+E*E$
$\Rightarrow_{lm} 9+D*E$	$\Rightarrow_{lm} 9+D*E$
$\Rightarrow_{lm} 9+5*E$	••••
$\Rightarrow_{lm} 9+5*D$	$\Rightarrow_{lm} 9+5*E$ $\Rightarrow 9+5*D$
⇒ _{Im} 9+5*2	$\Rightarrow_{lm} 9+5*D$
	$\Rightarrow_{lm} 9+5*2$

 A string has two parser trees iff it has two distinct leftmost derivations (or two rightmost derivations).

Remove ambiguity

- Some theoretical results (bad news)
 - Is there an algorithm to remove the ambiguity in CFG?
 - the answer is no
 - Is there an algorithm to tell us whether a CFG is ambiguous?
 - The answer is also no.
 - There are CFLs that have nothing but ambiguous CFGs.
 - That kind of language is called ambiguous language;
 - If a language has one unambiguous grammar, then it is called unambiguous language.
- In practice, there are well-known techniques to remove ambiguity
- Two causes of the ambiguity in the expr grammar
 - the precedence of operator is not respected. "*" should be grouped before "+";
 - a sequence of identical operator can be grouped either from left or from right. 3+4+5 can be grouped either as (3+4)+5 or 3+(4+5).

Remove ambiguity

- Enforcing precedence by introducing several different variables, each represents those expressions that share a level of binding strength
 - factor: digit is a factor
 - term: factor * factor * factor is a term
 - expression: term+term+term ... is an expression
- So we have a new grammar:

```
E \rightarrow T \mid E+T

T \rightarrow F \mid T*F

F \rightarrow D
```

Compare the original grammar:

```
E \rightarrow E + E

E \rightarrow D
```

The parser tree for D+D*D is:

Another ambiguous grammar

Stmt → if expr then stmt | if expr then stmt else stmt | other

If E1 then if E2 then S1 else S2

Remove the ambiguity

- Match "else" with closest previous unmatched "then"
- How to incorporate this rule into the grammar?

The parse tree of if-stmt example

